2019-2020学年广东省江门市数学高二(下)期末监测试题含解析

合集下载

2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。

2022-2023学年广东省珠海市高二上学期期末数学质量检测试题(含解析)

2022-2023学年广东省珠海市高二上学期期末数学质量检测试题(含解析)

2022-2023学年广东省珠海市高二上册期末数学质量检测试题一、单选题1.等差数列{}n a 的前n 项和为n S ,若23a =,525S =,则7a =()A .16B .15C .14D .13【正确答案】D【分析】先求得等差数列{}n a 的公差,从而求得7a .【详解】15353325552225,5a S a aa a +=⨯=⨯===,设等差数列{}n a 的公差为d ,则322d a a =-=,所以72535213a a d =+=+⨯=.故选:D2.已知空间向量()()1,2,,,2,3n a m a == ,且n m ⊥,则n m -= ()A .B C .20D .【正确答案】D【分析】根据向量垂直列方程,求得a ,进而求得n m -.【详解】由于n m ⊥,所以43440,1n m a a a a ⋅=++=+==- ,所以()()()1,2,11,2,32,0,4n m -=---=-== 故选:D3.古代《九章算术》记载:“今有五人分五钱,令上二人所得与下三人等,问各得几何”其意思为:“今有5人分5钱,各人所得钱数依次成等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱”.由此可知第一人分得的钱数是()A .43B .1C .23D .13【正确答案】A【分析】设第()15,N n n n *≤≤∈分到n a 钱,由题意可得出关于1a 、d 的方程组,解出1a 的值即可.【详解】设第()15,N n n n *≤≤∈分到n a 钱,设数列{}()15,N n a n n *≤≤∈的公差为d ,由题意可得1234512345++++=5+=++a a a a a a a a a a ⎧⎨⎩,所以,121315+=2+=2=+2=1a a a d a a d ⎧⎪⎨⎪⎩,解得143a =.故选:A.4.已知圆1C :22(5)(3)9x y -+-=,圆2C :224290x y x y +-+-=,则两圆的位置关系为()A .外离B .外切C .相交D .内切【正确答案】C【分析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系.【详解】圆1C :22(5)(3)9x y -+-=的圆心为1(5,3)C ,半径13r =,圆2C :224290x y x y +-+-=,即22(2)(1)14x y -++=,圆心1(2,1)C -,半径2r =,两圆的圆心距125C C =,353-<<+,即211221r r C C r r -<<+,所以圆1C 与圆2C 相交.故选:C5.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A .12B .24C .30D .32【正确答案】D【分析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q ++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q ++=++=++==.故选:D.本题主要考查等比数列基本量的计算,属于基础题.6.过点()21P ,作圆221:+=O x y 的切线l ,则切线l 的方程为()A .3450x y --=B .4350x y --=C .1y =或4350x y --=D .1y =或3450x y --=【正确答案】C【分析】设切线l 为1(2)y k x -=-,即120kx y k -+-=,由l 与圆221:+=O x y 相切,得1d =,即可解决.【详解】由题知,圆221:+=O x y ,圆心为(0,0),半径为1,因为()21P ,在圆外,所以设切线l 为1(2)y k x -=-,即120kx y k -+-=,因为l 与圆221:+=O x y 相切,所以1d ==,解得0k =或43k =,所以切线l 的方程为1y =,或4350x y --=,故选:C7.已知直线1l :20x ay -+=与直线2l :()()240a x a y a ++-+=平行,则a 的值是()A .4-B .1C .4-或1D .4或1-【正确答案】B【分析】根据给定条件列出关于a 的等式,求解并验证即可作答.【详解】因直线1l :20x ay -+=与直线2l :()()240a x a y a ++-+=平行,则有(2)40a a a ++-=,解得1a =或4a =-,当1a =时,直线1l :20x y -+=与直线2l :3310x y -+=平行,当4a =-时,直线1l :420x y ++=与直线2l :2840x y ---=,即420x y ++=重合,所以a 的值是1.故选:B8.已知2F 是椭圆()222210x y a b a b+=>>的右焦点,点P 在椭圆上,()220OP OF PF +⋅= ,且22OP OF b +=,则椭圆的离心率为()A B C D .5【正确答案】A【分析】设2PF 的中点为Q ,根据向量的线性运算法则及数量积的定义可得2OQ PF ⊥,从而得到12PF PF ⊥,根据22OP OF b +=得到1||2PF b =,再根据椭圆的定义得到2||PF ,在直角三角形中利用勾股定理得到23b a =,最后根据离心率公式计算可得;【详解】解:设2PF 的中点为Q ,则22OP OF OQ +=由22()0OP OF PF +⋅= ,即220OQ PF ⋅= 所以2OQ PF ⊥,连接1PF 可得1//OQ PF ,所以12PF PF ⊥,因为22OP OF b += ,即22OQ b = ,即1||2PF b =所以21||2||22PF a PF a b =-=-,在12R t PF F 中,2221212||||||PF PF F F +=,即()()2222224c b a b -+=,又222c a b =-,所以222222b a b ab a b +=+--,所以232b ab =,即23b a =解得c e a =故选:A 二、多选题9.下列说法正确的是()A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60︒D .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=【正确答案】BD【分析】A 选项忽略了过原点的情况,错误,B 选项计算截距得到正确,直线斜率为k =倾斜角为120︒,C 错误,根据垂直关系计算直线方程得到D 正确,得到答案.【详解】过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=和2y x =,A 错误;取0x =,=2y -,则直线32y x =-在y 轴上的截距为2-,B 正确;10y ++=的斜率为k =120︒,C 错误;垂直于直线230x y -+=的直线方程斜率为2k =-,过点()1,2-的直线方程为()2122y x x =-++=-,即20x y +=,D 正确.故选:BD.10.已知无穷等差数列{}n a 的前n 项和为n S ,20182019S S <且20192020S S >,则()A .在数列{}n a 中,1a 最大;B .在数列{}n a 中,2019a 最大C .20200a >D .当2020n ≥时,0n a <【正确答案】AD【分析】由题得201920200,0a a ><,即可解决.【详解】由题知,无穷等差数列{}n a 的前n 项和为n S ,20182019S S <且20192020S S >,所以201920200,0a a ><,所以等差数列{}n a 为递减数列,所以在数列{}n a 中,1a 最大;当2020n ≥时,0n a <;故选:AD11.已知空间中三点()0,1,0A ,()2,2,0B ,()1,3,1C -,则下列命题正确的是()A .AB方向的单位向量是55⎛⎫- ⎪ ⎪⎝⎭B .AB 与BC 夹角的余弦值是C .ABC的面积为2D .若3AP AB AC =+ ,则点P 到直线AC【正确答案】BCD【分析】根据单位向量、向量夹角、三角形面积、点线距等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()2,1,0AB = ,所以AB方向的单位向量是2,1,0,055AB AB ⎛⎫== ⎪ ⎪⎝⎭,A 选项错误.B 选项,()3,1,1BC =- ,设AB与BC 夹角为θ,则cos AB BC AB BCθ⋅==-⋅,B选项正确.C 选项,由于cos 11θ=-,所以cos 11B =,则B 是锐角,所以sin B =所以12ABC S =C 选项正确.D 选项,()1,2,1AC =-,()111,3,1,,31,33AP AB AC AP ⎛⎫===+ ⎪⎝⎭,所以点P 到直线ACD 选项正确.故选:BCD12.如图,P 是椭圆22122:1(0)x y C a b a b+=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点,且12,C C 共焦点121212,,,,F F F PF C C ∠θ=的离心率分别为12,e e ,则下列结论正确的是()A .12,PF a m PF a m=+=-B .若60θ=︒,则2221314e e +=C .若90θ=︒,则2212e e +的最小值为2D .tan2n bθ=【正确答案】ABD【分析】根据给定条件结合椭圆、双曲线定义计算判断A ;借助余弦定理、离心率公式、均值不等式计算判断B ,C ,D 作答.【详解】由椭圆和双曲线的定义得:121222PF PF aPF PF m ⎧+=⎪⎨-=⎪⎩,解得1PF a m =+,2PF a m =-,A 正确;在12F PF △中,由余弦定理得:()()()()()2222cos 2a m a m a m a m c θ-++--+=,整理得()()2221cos 1cos 2a m c θθ-++=,()()22221cos 1cos 2a m c c θθ-++=,即22121cos 1cos 2e e θθ-++=,当60θ=︒时,222132122e e +=,即2221314e e +=,B 正确;当90θ=︒时,2212112e e +=,2222222112122222121211)11()()1(22e e e e e e e e e e ++++==+2221221212e e e e ≥+⋅,当且仅当121e e ==时取“=”,而1201,1e e <<>,C 不正确;在椭圆中,22222121212122||||cos ||||||442||||PF PF PF PF F F a c PF PF θ=+-=--,即2122||||1cos b PF PF θ=+,在双曲线中,22222121212122||||cos ||||||442||||PF PF PF PF F F m c PF PF θ=+-=-+,即2122||||1cos n PF PF θ=-,于是得22222222sin 221cos 2tan 1cos 1cos 1cos 22cos 2n b n b θθθθθθθ-=⇔===-++,而022θπ<<,则tan 2n b θ=,D 正确.故选:ABD方法点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、双曲线定义,得到a ,c 的关系.三、填空题13.双曲线221916x y -=的渐近线方程是___________.【正确答案】43y x=±【分析】直接由双曲线的方程求解即可【详解】因为双曲线方程为221916x y -=,所以双曲线的渐近线方程为220916x y -=,即43y x =±,故43y x=±14.以点(1,1),(3,3)A B -为直径的圆的一般式方程为______________.【正确答案】22240x y x y +--=【分析】根据AB 为直径,得到直径和圆心坐标,然后写方程即可.【详解】因为()1,1A -,()3,3,所以AB =AB 中点坐标为()1,2,所以以AB 为直径的圆的标准方程为()()22125x y -+-=,展开得一般式方程为22240x y x y +--=.故答案为.22240x y x y +--=15C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【正确答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x -代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线=1x -的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故163本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.16.如图,二面角AB αβ--的大小为60 ,线段PM 与NQ 分别在这个二面角的两个面内,并且都垂直于棱AB .若2,3,4PM MN NQ ===,则PQ =__________.21【分析】利用空间向量的线性运算可得PQ PM MN NQ =++,再根据向量所成角,结合数量积公式平方即可得解.【详解】根据题意,PQ PM MN NQ =++,由二面角l αβ--大小为120︒,可得,120PM NQ =,22()PQ PM MN NQ =++ 222222PM MN NQ PM MN NQ MN PM NQ=+++⋅+⋅+⋅ 14916224212⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭,所以PQ =四、解答题17.已知公差不为0的等差数列{an }满足a 3=9,a 2是a 1,a 7的等比中项.(1)求{an }的通项公式;(2)设数列{bn }满足()17n n b n a =+,求{bn }的前n 项和Sn .【正确答案】(1)an =4n ﹣3.(2)Sn 44nn =+.(1)设等差数列{an }的公差为d (d ≠0),根据a 3=9,a 2是a 1,a 7的等比中项.利用“1,a q ”法求解.(2)由(1)知()1111741n n b n a n n ⎛⎫==⎪++⎝⎭,再用裂项相消法求解.【详解】(1)设等差数列{an }的公差为d (d ≠0),则()()12111296a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩解得d =4或d =0(舍去),a 1=1,∴an =1+4(n ﹣1)=4n ﹣3.(2)∵()1111741n n b n a n n ⎛⎫==⎪++⎝⎭,∴1231111111412231n n S b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++++=-+-++- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ 1114144nn n ⎛⎫=-=⎪++⎝⎭.本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.18.已知圆22:240C x y y +--=,直线:10l mx y m -+-=.(1)判断直线l 与圆C 的位置关系;(2)若直线l 与圆C 交于不同的两点,A B,且AB =.【正确答案】(1)直线l 与圆C 相交;(2)直线的方程为0x y -=或20x y +-=【分析】(1)先求出直线l 过的定点坐标,判断定点在圆内,则直线l 必与圆相交;(2)由圆的半径和弦长求得圆心到直线l 的距离,以此列方程求解m 的值,即可求出直线l 的方程.【详解】(1)直线:10l mx y m -+-=,整理得(1)1m x y -=-,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩即直线l 过定点(1,1)P .将P 点坐标代入圆C 方程得112440+--=-<,故P 点在圆C 内,直线l 与圆C 相交.(2)圆22:240C x y y +--=,整理得22(1)5x y +-=即(0,1)C ,r =.因为AB =,所以圆心C 到直线l 的距离为2d ==.又2d =,所以1m =±故直线的方程为0x y -=或20x y +-=.19.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是PA 的中点,PD ⊥平面ABCD ,且4PD CD ==,2AD =.(1)求证:PA CD ⊥;(2)求AP 与平面CMB 所成角的正弦值;(3)求二面角M CB P --的余弦值.【正确答案】(1)证明见解析;(2)45;(331010(1)根据线面垂直的判定定理证明CD ⊥平面PAD ,即证PA CD ⊥;(2)以D 为原点,分别以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,求平面CMB的法向量,用向量的方法求直线AP 与平面CMB 所成角的正弦值;(3)求平面CBP 的法向量,用向量的方法求二面角M CB P --的余弦值.【详解】(1)PD ⊥ 平面ABCD ,CD ⊂平面ABCD ,PD CD ∴⊥.底面ABCD 是矩形,AD CD ∴⊥,又AD PD D =I ,CD \^平面PAD ,PA ⊂平面PAD ,CD PA ∴⊥.(2)以D 为原点,分别以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示则()()()()()()0,0,0,2,0,0,0,4,0,0,0,4,1,0,2,2,4,0D A C P M B ,()()()2,0,4,2,0,0,1,4,2,25AP CB BM AP ∴=-==--= 设平面CMB 的法向量(),,n x y z = ,则·0·0n CB n BM ⎧=⎨=⎩,即0420x x y z =⎧⎨--+=⎩,令1y =,则2z =,()0,1,2,5n n ∴== .设直线AP 与平面CMB 所成的角为θ,则4sin cos ,5255AP n AP n AP n θ=〈〉==⨯ .所以AP 与平面CMB 所成角的正弦值为45.(3)()()2,0,0,2,4,4CB BP ==-- .设平面CBP 的法向量(),,m x y z = ,则·0·0m CB m BP ⎧=⎨=⎩,即02440x x y z =⎧⎨--+=⎩,令1y =,则1z =.()0,1,1,2m m == 又平面CMB 的法向量()0,1,2,5n n == 设二面角M CB P --的大小为α,则α为锐角,310cos cos ,1025m n m n m nα∴=〈〉===⨯ ,所以二面角M CB P --的余弦值为31010.本题考查线线垂直,考查用向量的方法求线面角和面面角,考查学生的运算能力,属于较难的题目.20.如图,焦点为F 的抛物线2y 2px(p 0)=>过点()Q 1,m (m 0)>,且QF 2=.(Ⅰ)求p 的值;(Ⅱ)过点Q 作两条直线1l ,2l 分别交抛物线于()11A x ,y ,()22B x ,y 两点,直线1l ,2l 分别交x 轴于C ,D 两点,若QCD QDC ∠∠=,证明:12y y +为定值.【正确答案】(Ⅰ)p 2=;(Ⅱ)见解析.【分析】(Ⅰ)由抛物线的定义可得出p 的值;(Ⅱ)先写出抛物线的方程,由条件∠QCD =∠QDC ,得出直线AQ 和直线BQ 的斜率之和为零,利用两点的斜率公式以及等式2114y x =,2224y x =可计算出y 1+y 2=-4,进而证明结论成立.【详解】(Ⅰ)抛物线的准线方程为p x 2=-,由抛物线的定义得p QF 122=+=,得p 2=;(Ⅱ)由(Ⅰ)可知,抛物线的方程为2y 4x =,将点Q 的坐标代入抛物线的方程得2m 414=⨯=,m 0> ,得m 2=,所以,点Q 的坐标为()1,2.QCD QDC ∠∠= ,所以,直线AQ 和BQ 的斜率互为相反数.则()()121212AQ BQ 2222121212124y 24y 2y 2y 2y 2y 244k k 0y y x 1x 1y 4y 4y 2y 21144------+=+=+=+=+=----++--.所以,12y 2y 20+++=,因此,12y y 4(+=-定值).本题考查直线与抛物线的综合,考查抛物线的定义,同时考查抛物线性质的应用,考查计算能力,属于中等题.21.已知数列{}n a 中,12a =且*122(2,)n n a a n n n N -=-+≥∈.(1)求2a ,3a ,并证明{}n a n -是等比数列;(2)设12n n n a b -=,求数列{}n b 的前n 项和n S .【正确答案】(1)24a =,37a =,证明见解析;(2)1242n n n S n -+=+-.(1)在已知的数列递推公式中分别取2,3n =,结合已知的首项即可求得23,a a 的值,再把递推式两边同时减n 即可证明{}n a n -是等比数列;(2)由{}n a n -是等比数列求出数列{}n a 的通项公式,代入12n n n a b -=,分组后利用错位相减法求数列{}n b 的前n 项和n S .【详解】(1)由已知()*1222,n n a a n n n N -=-+≥∈+24a =,37a =,1222n n a n a n --=-+,即()121n n a n a n -⎡⎤-=--⎣⎦,因为()()*122,1n n a n n n N a n --=≥∈--,所以{}n a n -是以2为公比的等比数列.(2)由(1)得()1112n n a n a --=-⋅,即12n n a n -=+,所以11122n n n n a n b --==+,设12n n n C -=,且前n 项和为n T ,所以01231123422222n n n T -=+++++ ,①123112322222n n n T =++++ ,②①-②得231111111222222-⎛⎫=+++++- ⎪⎝⎭ n n n n T ,11112212122212--+=+-=--n n nn n ,所以1242n n n T -+=-,1242n n n S n -+=+-.该题主要考查的是等比数列的定义,数列的递推公式,错位相减法求和,还考查了运算求解的能力,属于中档题.22.已知定点()1,0M -,圆N :()22116x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于点P ,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A ,B 和点D ,E ,求四边形ABDE 面积的最大值.【正确答案】(1)22143x y +=(2)6【分析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【详解】(1)由题意可得42MP NP PQ NP MN +=+=>=,所以动点P 的轨迹是以M ,N 为焦点,长轴长为4的椭圆,即曲线C 的方程为:22143x y +=;(2)由题意可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩,设()11,D x y ,()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以DE =()2212134t t +=+,根据椭圆的对称性可得()2212134t DE AB t +==+,1l 与2l 的距离即为点M 到直线2l的距离,为d所以四边形ABDE 面积为24S =()1u u =≥得224241313u S u u u==++,由对勾函数性质可知:当且仅当1u =,即0=t 时,四边形ABDE 面积取得最大值为6.。

【精准解析】广西钦州市2019-2020学年高二下学期期末考试教学质量监测数学(文)试题

【精准解析】广西钦州市2019-2020学年高二下学期期末考试教学质量监测数学(文)试题

A. 甲
B. 乙
C. 丙
D. 丁
【答案】D 【解析】
【分析】
根据两个变量 y 与 x 的回归模型中,它们的相关指数越接近于 1,这个模型的拟合效果越好判 断. 【详解】因为两个变量 y 与 x 的回归模型中,它们的相关指数越接近于 1,这个模型的拟合效 果越好,
而丁的相关指数 0.93 最大, 所以回归效果最好的模型是丁,


A. i
B. i
【答案】B
【解析】
C. 1 i
D. 1 i
【分析】
直接由复数的除法运算可得解.
【详解】复数 1 i (1 i)2 2i i , 1 i (1 i)(1 i) 2
故选:B. 【点睛】本题主要考查了复数的除法运算,属于基础题.
2. 在直角坐标系 xOy 中,以坐标原点为极点, x 轴正半轴为极轴,建立极坐标系,则极坐标
即d k 2 1, 1 k2
解得 k 3 4
故选:A
【点睛】本题主要考查参数方程与直角坐标方程的转化以及直线与圆的位置关系,属于基础
题.
9. 执行如图的程序框图,则输出 S 的值是( )
-5-
A. 11 【答案】B 【解析】
B. 57
C. 120
D. 26
【分析】
由 S=1,k=1,根据循环结构的循环功能,一一循环验证,直至 k 4 ,终止循环,输出结果.

为参数),转化为直角坐标方程,再利用直线与圆相
切求解.
x 1 cos
【详解】因为曲线
C

y
sin
( 为参数)
所以直角坐标方程为 x 12 y2 1 ,
因为直线 l

郑州市2019-2020学年高二下期期末考试 数学(理)(高清含答案)

郑州市2019-2020学年高二下期期末考试 数学(理)(高清含答案)

2019—2020学年下期期末考试高中二年级数学(理)评分参考一、单选题(每题5分,满分20分)题号123456789101112答案A D C A B C A D D B D B二、填空题(每题5分,满分20分)13.20;14.24;15.3025;16.28(0,)e.三、解答题17.解:(Ⅰ)由题()()()()43124310521212125i i i i z i i i i +-+-====-++-.即2z i =-....................5分(Ⅱ)由(Ⅰ)2z i =-,故()()222215z z i i i -=--+=-,...................8分故2z z -==即2z z -=.................................10分18.试题解析:(1)由已知得0164n n n n C C C +++= ,264n =6n ∴=,.......3分展开式中二项式系数最大的项是6331130334611520282T C x x x --⎛⎫⎛⎫⎛⎫=-=⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.......6分(2)展开式的通项为23112r n r r r n T C x -+⎛⎫=- ⎪⎝⎭,()0,1,,r n = 由已知:02012111,,222n n n C C C ⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭成等差数列,12112124n n C C ⨯=+∴n =8,..10分在n 中令x=1,得各项系数和为1256.........12分19解:函数f (x )的定义域为(0,+∞),f ′(x )=1-a x.............2分(Ⅰ)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x>0),因而f (1)=1,f ′(1)=-1,............4分所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.....6分(Ⅱ)由f ′(x)=1-a x =x a x-,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数;....................8分②当a >0时,由f ′(x )=0,解得x =a ,又当x ∈(0,a )时,f ′(x)<0;函数f (x )在(0,a )上单调递减;当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )在(a ,+∞)单调递增....................11分综上,当a ≤0时,函数f (x )在(0,+∞)上的单调递增;当a >0时,函数f (x )在函数f (x )在(0,a )上单调递减,在(a ,+∞)单调递增..............12分20.证明:若0<c ≤14,要证{x n }是递增数列.即x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立........................2分下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立.①当n =1时,x 1=0<c ≤12,结论成立...................4分②假设当n =k (k ≥1,k ∈N *)时结论成立,即x k <c ...................6分因为函数f (x )=-x 2+x +c 在区间1(,)2-∞内单调递增,所以x k +1=f (x k )<f (c )=c ,......................10分∴当n =k +1时,x k +1<c 成立.由①,②知,0<x n <c 对任意n ≥1,n ∈N *成立....................11分.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.....................12分.21.解:(Ⅰ)根据题意,补充完整的列联表如下:潜伏期6<天潜伏期6≥天总计50岁以上(含50岁)653510050岁以下5545100总计12080200..................2分则22(65455535)20025 2.0831208010010012K ⨯-⨯⨯==≈⨯⨯⨯,...............4分经查表,得2 2.083 3.841K ≈<,..................5分所以,没有95%的把握认为潜伏期与年龄有关....................6分(Ⅱ)由题可知,该地区每1名患者潜伏期超过6天发生的概率为400210005=,...8分设调查的20名患者中潜伏期超过6天的人数为X ,则X 服从二项分布:2~20,5X B ⎛⎫ ⎪⎝⎭,202023()55k k k P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0k =,1,2,…,20,.........10分则2()2085E X =⨯=,所以,X 的期望为()8E X =..............12分22.解:(Ⅰ)()f x 的定义域为(0,)+∞,21ln ()x f x x -'=,.........2分令()0f x '>,解得:0x e <<,令()0f x '<,解得:x e >,所以当(0,e)x ∈,()f x 为增函数,当(e,)x ∈+∞,()f x 为减函数,..........4分所以x e =时,()f x 有极大值11e (e)e ef k +=+=,所以1k =;....................5分(Ⅱ)由(1)知,ln ()1x f x x =+,则()()g x af x ≥,即ln x a a x e a x x-≥+对(0,)x ∀∈+∞恒成立,所以e ln x x a a x ax -≥+对(0,)x ∀∈+∞恒成立,即e ln 0x x a x ax a ---≥对(0,)x ∀∈+∞恒成立设()e ln x h x x a x ax a =---,则()0h x ≥对(0,)x ∀∈+∞恒成立,..........7分ln ln ()e e ln e (ln )x x x x h x a x ax a a x x a+=---=-+-设ln x x t +=,t ∈R ,原问题转化为:()0t t e at a ϕ=--≥对t ∀∈R 恒成立,①若0a <,当(,0)t ∈-∞时,()1t t e at a at a ϕ=--<--,则111110a a a a ϕ⎛⎫⎛⎫-<---= ⎪ ⎪⎝⎭⎝⎭,不合题意;.......................9分②若0a =,则()0t t e ϕ=≥对t ∀∈R 恒成立,符合题意..............10分③若0a >,则()t t e a ϕ'=-,令()0t ϕ'>,ln t a >,令()0t ϕ'<,ln t a <,所以当(,ln )t a ∈-∞时,()t ϕ为减函数,当(ln ,)t a ∈+∞,时,()t ϕ为增函数,所以ln ()(ln )e ln ln 0a t a a a a a a ϕϕ≥=--=-≥,即ln 0≤a ,即01a <≤;.............................11分综上01a ≤≤......................12分。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析
9. 若某10人一次比赛得分数据如茎叶图所示,则这组数据的中位数是( )
A。 82。5B。 83C。 93D. 72
【答案】A
【解析】
【分析】
由茎叶图得出所有数据并从小到大排序,由于偶数个,则中位数为中间两个数之和再除以2。
【详解】将这组数据从小到大排列为72,74,76,81,82,83,86,93,93,99,则这组数据的中位数是 ,即82。5
A. 3B. 4C。 6D。 7
【答案】B
【解析】
【分析】
类比二分法,将16人均分为两组,选择其中一组进行检测,再把认定的这组的8人均分两组,选择其中一组进行检测,以此类推,即可得解.
【详解】先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测。继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测。继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测。选认定的这组的2人中一人进行样本混合检查,为阴性则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测。所以,最终从这16人中认定那名感染者需要经过4次检测。
【解析】
【分析】
分析图形中火柴数 变化是以3位首项2为公差的等差数列,由此可算第100个图形所用火柴棒数。
【详解】由图形可知,第一个图形用3个火柴,以后每一个比前一个多两个火柴,则第n个使用火柴为 ,则第100个图形所用火柴棒数为2×100+1=201.
故答案为:201
【点睛】本题考查合情推理的应用,属于基础题.
70 29 17 12 13 40 33 12 38 26 13 89 51 03

2019-2020年高二下学期期末考试试卷 数学(理) 含答案

2019-2020年高二下学期期末考试试卷 数学(理) 含答案

俯视图侧(左)视图正(主)视图秘密★启用前2019-2020年高二下学期期末考试试卷 数学(理) 含答案第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D . 2. “”是“函数在区间内单调递减”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也必要条件3. 下列说法中正确的是 ( )A .“” 是“函数是奇函数” 的充要条件B .若,则C .若为假命题,则均为假命题D .“若,则” 的否命题是“若,则” 4.函数的定义域为( )A. B. C. D.5.二项式的展开式中的系数为,则( )A. B. C. D.26. 已知是周期为4的偶函数,当时,则( )A.0B.1C.2D.37. 某三棱锥的三视图如图所示,则该三棱锥四个面的面积中最大的是( ) A. B. 3 C. D.8. PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出与的线性回归方程是( )A. B. C. D.参考公式:121()()()nii i nii xx y y b x x ==--=-∑∑,;参考数据:,;9.某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B. 120C. 144D. 16810. 已知椭圆与双曲线222222222:1(0,0)y x C a b a b -=>>有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为( )A .B .4C .D .911.设函数21228()log (1)31f x x x =+++,则不等式的解集为( )A. B. C. D.12.(原创)已知是定义在上的奇函数,对任意的,均有.当时,2()(),()1(1)5x f f x f x f x ==--,则290291()()2016201314315()()201620166f f f f +-+-+-+-=( )A.B. C. D.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

2019-2020学年广东省茂名市七年级第二学期期末监测数学试题含解析

2019-2020学年广东省茂名市七年级第二学期期末监测数学试题含解析

2019-2020学年广东省茂名市七年级第二学期期末监测数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题只有一个答案正确)1.把不等式组的解集表示在数轴上,正确的是()A.B. C.D.【答案】D【解析】【分析】先求出每一个不等式的解集,得到不等组的解集,然后在数轴上表示出来即可.【详解】解:解不等式①得:x>-1,解不等式②得:x≤1,所以不等组的解集为:-1<x≤1,在数轴上表示为:,故选D.【点睛】本题考查解一元一次不等式组,熟练掌握不等式的基本性质是解不等式的关键.2.下列说法中正确的有()个.(1)同一平面内,两条不相交的直线叫做平行线(2)经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条(3)如果a//b,b//c,则a//c(4)两条不平行的射线,在同一平面内一定相交A.0B.1C.2D.3【答案】D【解析】分析: 根据平行公理对各选项分析判断后利用排除法求解.详解: (1)在同一平面内,两条不相交的直线叫做平行线,是平行的定义,正确;(2)经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条,是公理,正确;(3)如果a∥b,b∥c,则a∥c,是平行公理,正确;(4)两条不平行的射线,在同一平面内也不一定相交,故本小题错误.所以正确的是(1)(2)(3)共3个.故选D.点睛: 本题主要考查了基础知识的掌握,需要熟记并灵活运用.3)A.3B.5C.-7D【答案】D【解析】【分析】先将原数化简,然后根据平方根的性质即可求出答案.【详解】,∴3的平方根是故选D.【点睛】本题考查平方根的概念,解题的关键是将原数进行化简,本题属于基础题型.4.某种服装的进价为200元,出售时标价为300元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打()A.6折B.7折C.8折D.9折【答案】C【解析】【分析】根据题意列出不等式,求解即可.【详解】设该服装打x 折销售,依题意,得:300×10x ﹣200≥200×20%, 解得:x ≥1.故选:C .【点睛】 本题考查了不等式的实际应用,掌握解不等式的方法是解题的关键.5.不等式组 的解集是,那么m 的取值范围是 A . B . C . D .【答案】A【解析】【分析】先求出不等式的解集,再根据不等式组的解集得出答案即可.【详解】解:,解不等式②,得:, ∵不等式组 的解集是,∴.故选择:A.【点睛】 本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.6.若a >b ,则下列各式中正确的是( )A .a-c <b-cB .ac >bcC .-a b c c <(c≠0)D .a (c 2+1)>b (c 2+1)【答案】D【解析】【分析】根据不等式的性质对各选项分析判断即可得解,在分析的过程中要注意不等式的方向应该不应该进行改变.根据不等式的性质1,给不等式的两边同时加上或者减去任意一个数,不等号的方向不发生改变,所以给不等式的两边同时加上或者减去任意一个数不等号的方向改变的就错误;不等式的性质2和3,主要是乘以(除以)正数还是负数,所以给不等式的两边同时乘以(除以)数(或式)时不等能判断这个数(或式)是正数还是负数的都是错误.【详解】解:A、根据不等式的基本性质1,A选项结论错误,不符合题意;B、因为c可正可负可为0,所以无法判断ac和bc的大小关系,B选项结论错误,不符合题意;C、左边除以-c,右边除以c,不等式没有这个性质,所以C选项错误;D、因为c2+1>0,所以根据不等式的基本性质2,D选项结论正确,符合题意;故选:D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.下列说法正确的个数有()⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个【答案】A【解析】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.故正确的有0个.故选A.8.如图,已知AB=AC=BD,则∠1与∠2的关系是()A.3∠1﹣∠2=180°B.2∠1+∠2=180°C.∠1+3∠2=180°D.∠1=2∠2【答案】A【分析】根据等腰三角形的性质和三角形内角和定理可得∠1 和∠C 之间的关系,再根据三角形外角的性质可得∠1 和∠2 之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.9.下列实数中,最大的数是()A.﹣|﹣4| B.0 C.1 D.﹣(﹣3)【答案】D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【详解】解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.【点睛】此题主要考查了实数的比较大小,关键是掌握比较大小的法则.10.要调查下列问题,应采用全面调查的是()A.检测某城市的空气质量B.了解全国初中学生的视力情况香C.某县引进“优秀人才”招聘,对应聘人员进行面试三常上点活D.调查某池塘里面有多少条鱼【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、检测某城市的空气质量用抽样调查,错误;B 、了解全国初中学生的视力情况用抽样调查,错误;C 、某县引进“优秀人才”招聘,对应聘人员进行面试用全面调查,正确;D 、调查某池塘里面有多少鱼用抽样调查,错误;故选:C .【点睛】考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.如图,折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知1CD =,30B ∠=,则BD =______.【答案】2【解析】【分析】由折叠的性质可得CD =DE =1,∠C =∠AED =90°,由直角三角形的性质可求BD 的长.【详解】解:∵将△ABC 折叠使点C 落在斜边AB 上的点E 处∴CD =DE =1,∠C =∠AED =90°∴∠BED =90°∵∠B =30°∴BD =2DE =2故答案为:2【点睛】本题考查了翻折变换,直角三角形的性质,熟练掌握折叠的性质是本题关键.12.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为.【答案】1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.13.已知a>b,则﹣4a+1_____﹣4b+1.(填>、=或<)【答案】<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+1<﹣4b+1,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=_____.【答案】50°【解析】【分析】运用垂线的定义,对顶角的性质进行计算即可.【详解】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点睛】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.如图,已知在ABC中,AB边的垂直平分线交CA的延长线于点E,在CE上取一点F,使FBA ABC C∠=∠∠=︒,则EBF,35∠=________.【答案】35°【解析】【分析】首先根据线段的垂直平分线性质得出EA=EB,然后进一步利用等边对等角得出∠EBA=∠EAB,据此再利用三角形外角性质得出∠EAB=∠C+∠ABC,进而求出∠EBF=∠C=35°.【详解】∵AB边的垂直平分线交CA的延长线于点E,∴EA=EB,∴∠EBA=∠EAB,又∵∠EBA=∠EBF+∠FBA,∠EAB=∠C+∠ABC,∴∠EBF+∠FBA=∠C+∠ABC,∠=∠,∠C=35°,∵FBA ABC∴∠EBF=∠C=35°,故答案为:35°.【点睛】本题主要考查了线段垂直平分线性质以及三角形外角性质的综合运用,熟练掌握相关概念是解题关键. 16.π的相反数是___2的绝对值是___,2的平方根是___.【答案】﹣π【解析】【分析】可根据相反数,绝对值,平方根的定义来解答即可. 【详解】π的相反数是:﹣π,=2的平方根是:.故答案为:﹣π,.【点睛】本题主要考查相反数,绝对值,平方根的定义,解题的关键是熟练掌握并会运用其定义.17.已知长方形的周长为6,面积为2,若长方形的长为a,宽为b,则22a b ab+的值为___________.【答案】1.【解析】【分析】根据题意先把a+b和ab的值求出,再把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.【详解】解:根据题意得:a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=1.故答案为:1.【点睛】本题既考查对因式分解方法的掌握,又考查代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.三、解答题18.解不等式组513(1)2151132x xx x-<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上.【答案】﹣1≤x<2【解析】分析:分别解不等式,找出解集的公共部分即可.详解:()513121511,32x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 解不等式①,得 2x <;解不等式②,得1x ≥-; 把不等式①和②的解集在数轴上表示出来;原不等式组的解集为12x .-≤< 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.19.湖州奥体中心是一座多功能的体育场,目前体育场内有一块长80m ,宽60m 的长方形空地,体育局希望将其改建成花园小广场,设计方案如图,阴影区域是面积为192平方米的绿化区(四块相同的直角三角形),空白区域为活动区,且四周出口宽度一样..........(1)体育局先对四个绿化区域进行绿化,在完成工作量的13后,施工方进行了技术改进,每天的绿化面积是原计划的两倍,结果提前四天完成四个绿化区域的改造,问原计划每天绿化多少平方米? (2)老师提出了一个问题:你能不能求出活动区的出口宽度是多少呢?请你根据小丽的方法求出活动区的出口宽度,并把过程写下来. 【答案】(1)16平方米;(2)48米 【解析】 【分析】(1)设原计划每天修x 平方米,根据“结果提前4天完成任务”列出方程.(2)设直角三角形较长边为x 米,较短边为y 米,根据出口宽度相同,阴影部分面积为192平方米可列出方程组求解即可. 【详解】(1)设原计划每天x 平方米;则:121921921923342x x x ⎛⎫⨯⨯ ⎪-+= ⎪ ⎪⎝⎭, 解得:x=16经检验,x=16是原方程的解, 所以,原计划每天修16平方米;(2)由题可得:60-28021119224y xxy =-⎧⎪⎨=⨯⎪⎩,1096x y xy -=⎧⎨=⎩ ()()224100384484x y x y xy +=-+=+=∴x+y=221022x y x y -=⎧⎨+=⎩解得:166x y =⎧⎨=⎩则出口宽度:80-2x=48(米) 【点睛】考查了由实际问题抽象出分式方程和二元一次方程组,找到关键描述语,找到合适的等量关系是解决问题的关键.20.计算(1)221)1)-;(2)130120.1252019|1|2-⎛⎫-⨯++- ⎪⎝⎭;(3)111222133224-⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭【答案】(1);(2)3;(3)12. 【解析】【分析】(1)利用平方差公式进行计算即可;(2)根据整数指数幂的运算法则和绝对值的定义进行计算即可; (3)根据负指数幂和逆用积的乘方法则进行计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省江门市数学高二(下)期末监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.甲、乙两人独立地解同一问题,甲解决这个问题的概率是1p ,乙解决这个问题的概率是2p ,那么恰好有1人解决这个问题的概率是 ( ) A .12p p B .1221(1)(1)p p p p -+- C .121p p - D .121(1)(1)p p ---【答案】B 【解析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p 1(1-p 2),甲未解决问题乙解决问题的概率为p 2(1-p 1),则恰有一人解决问题的概率为p 1(1-p 2)+p 2(1-p 1).故选B. 点睛:本题考查互斥事件概率加法公式,考查基本求解能力.2.211i i -⎛⎫ ⎪+⎝⎭的值等于( ) A .1 B .-1C .iD .i -【答案】B 【解析】 【分析】根据复数的计算方法,可得11i i -+的值,进而可得211i i -⎛⎫ ⎪+⎝⎭,可得答案.【详解】解:根据复数的计算方法,可得21(1)1(1)(1)i i i i i i --==-++-, 则()22111i i i -⎛⎫=-=- ⎪+⎝⎭, 故选:B . 【点睛】本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方,属于基础题. 3.设是平面内的两条不同直线,是平面内两条相交直线,则的一个充分不必要条件是( ) A .11,l m l n ⊥⊥B .12,m l m l ⊥⊥C .12,m l n l ⊥⊥D .1//,m n l n ⊥ 【答案】B 【解析】 试题分析:A .不能得出,所以本题条件是的不充分条件;B .,当时,不一定有故本命题正确;C .不能得出,故不满足充分条件;D .不能得出,故不满足充分条件;故选B.考点:平面与平面垂直的方法.4.如图所示,这是一个几何体的三视图,则该几何体的体积为( )A .28π+B .88π+C .48π+D .68π+【答案】A 【解析】由三视图可知:该几何体分为上下两部分,下半部分是长、宽、高分别为4,2,1的长方体,上半部分为底面半径为1,高为2的两个半圆柱,故其体积为24211282V ππ=⨯⨯+⨯⨯=+,故选A. 5.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。

【详解】 由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C 。

【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。

6.已知ABC ∆的边AB ,AC 的长分别为20,18,120BAC ∠=︒,则ABC ∆的角平分线AD 的长为( ) A .180319B .9019C .18019D .90319【答案】C 【解析】 【分析】利用角平分线定理以及平面向量的线性运算法则可得9101919AD AB AC =+u u u v u u u v u u u v,两边平方,利用平面向量数量积的运算法则,化简即可得结果. 【详解】如图,因为AD 是ABC ∆的角平分线,所以2010189BD AB DC AC ===, 所以1019AD AB BD AB BC =+=+u u u v u u u v u u u v u u u v u u u v()10910191919AB AC AB AB AC u u u v u u u v u u u v u u u v u u u v =+-=+,即9101919AD AB AC =+u u u v u u u v u u u v .两边平方得2AD =u u u v222211180 8120100182109182019219⎡⎤⎛⎫⎛⎫⨯+⨯+⨯⨯⨯⨯⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以18019AD AD ==u u u v ,故选C .【点睛】本题主要考查平面向量的线性运算法则,以及平面向量数量积的运算法则,属于中档题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=v v v v ;二是向量的平方等于向量模的平方22a a =v v .7.以()1,0F 为焦点的抛物线的标准方程是( ) A .24y x = B .22y x = C .24x y =- D .22x y =【答案】A 【解析】 【分析】由题意和抛物线的性质判断出抛物线的开口方向,并求出p 的值,即可写出抛物线的标准方程. 【详解】因为抛物线的焦点坐标是()1,0F , 所以抛物线开口向右,且p =2, 则抛物线的标准方程24y x =. 故选:A . 【点睛】本题考查抛物线的标准方程以及性质,属于基础题.8.已知定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()2xf x m =-,则()2019f =( )A .1B .-1C .2D .-2【答案】B 【解析】 【分析】根据f (x )是R 上的奇函数,并且f (x+1)=f (1-x ),便可推出f (x+4)=f (x ),即f (x )的周期为4,而由x ∈[0,1]时,f (x )=2x -m 及f (x )是奇函数,即可得出f (0)=1-m=0,从而求得m=1,这样便可得出f (2019)=f (-1)=-f (1)=-1. 【详解】∵()f x 是定义在R 上的奇函数,且()()11f x f x +=-; ∴(2)()()f x f x f x +=-=-; ∴(4)()f x f x +=; ∴()f x 的周期为4;∵[0,1]x ∈时,()2xf x m =-;∴由奇函数性质可得(0)10f m =-=; ∴1m =;∴[0,1]x ∈时,()21xf x =-;∴(2019)(15054)(1)(1)1f f f f =-+⨯=-=-=-. 故选:B. 【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.9.某几何体的三视图如图所示,则该几何体的体积为( )A .3πB .4πC .6πD .8π【答案】A 【解析】 【分析】由三视图得出该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,在利用体积公式求解,即可得到答案. 【详解】由三视图可知,该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,故该几何体的体积为12232πππ⨯+⨯⨯=,故选A. 【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.10.二面角l αβ--为60︒,A 、B 是棱上的两点,AC 、BD 分别在半平面α、β内,AC l ⊥,BD l ⊥且1AB AC ==,2BD =,则CD 的长为 A .1B 3C .2D 5【答案】C 【解析】试题分析:,,,60,0,0AC l BD l AC BD AC BA AB BD ⊥⊥∴=⋅=⋅=ou u u r u u u r u u u r u u u r u u u r u u u r Q Q CD CA AB BD ∴=++u u u r u u u r u u u r u u u r2CD ∴===u u u r考点:点、线、面间的距离计算11.世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16个队按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为( ) A .64 B .72 C .60 D .56【答案】A 【解析】分析:先确定小组赛的场数,再确定淘汰赛的场数,最后求和.详解:因为8个小组进行单循环赛,所以小组赛的场数为24848C =因为16个队按照确定的程序进行淘汰赛,所以淘汰赛的场数为842216+++= 因此比赛进行的总场数为48+16=64, 选A.点睛:本题考查分类计数原理,考查基本求解能力.12.912x x ⎛⎫- ⎪⎝⎭展开式中的所有项系数和是( ) A .0 B .1C .256D .512【答案】B 【解析】 【分析】令1x =,可求出展开式中的所有项系数和. 【详解】令1x =,则9121x x ⎛⎫-= ⎪⎝⎭,即展开式中的所有项系数和是1,故选B.【点睛】本题考查了二项式定理的应用,考查了展开式的系数和的求法,属于基础题. 二、填空题(本题包括4个小题,每小题5分,共20分)13.一只蚂蚁位于数轴0x =处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.【答案】49【解析】 【分析】3秒后,这只蚂蚁在x =1处的概率即求蚂蚁三次移动中,向右移动两次,向左移动一次的概率,由n 次独立重复试验的概率计算即可。

【详解】3秒后,这只蚂蚁在x =1处的概率即求蚂蚁三次移动中,向右移动两次,向左移动一次的概率,所以223124339P C ⎛⎫=⨯⨯= ⎪⎝⎭【点睛】本题主要考查独立重复试验概率的计算,属于基础题。

14.在极坐标系中,圆2ρ=上的点到直线()cos 3sin 6ρθθ+=的距离的最小值是 ____ 【答案】1 【解析】试题分析:圆2ρ=的直角坐标方程为224x y +=,直线(cos 3sin )6ρθθ+=的直角坐标方程为,圆心()0,0到直线的距离632d ==,圆上的点到直线的距离的最小值为321d r -=-=. 考点:直角坐标与极坐标、距离公式.15.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中偶数共有__________个. 【答案】312 【解析】 【分析】考虑个位是0和个位不是0两种情况,分别计算相加得到答案. 【详解】当个位是0时,共有55120A =种情况; 当个位不是0时,共有114424192A A A ⋅⋅=种情况.综上所述:共有120192312+=个偶数. 故答案为:312. 【点睛】本题考查了排列的应用,将情况分为个位是0和个位不是0两种类别是解题的关键.16.若函数()1,03,0x x f x x x ⎧>⎪=⎨⎪≤⎩,则不等式()13f x ≥的解集为______________.【答案】{}|13x x -≤≤ 【解析】 【分析】分类讨论,分别求解不等式,即可求得不等式的解集,得到答案. 【详解】由题意,当0x >时,令113x ≥,解得03x <≤,当0x ≤时,令133x ≥,解得10x -≤≤, 所以不等式()13f x ≥的解集为{}|13x x -≤≤. 【点睛】本题主要考查了分段函数的应用,以及指数函数的图象与性质的应用,着重考查了推理与运算能力,属于基础题.三、解答题(本题包括6个小题,共70分)17.已知复数122,34z a i z i =+=-(a ∈R,i 为虚数单位)(I )若12·z z 是纯虚数,求实数a 的值; (II )若复数12z z 在复平面上对应的点在第二象限,求实数a 的取值范围 【答案】(Ⅰ)38a =-(II )3823a <<【解析】 【分析】(I )计算出12z z ,由其实部为0,虚部不为0可求得a 值;(II )计算出12z z ,由其实部小于0,虚部大于0可求得a 的取值范围.【详解】解:(I )由复数122,34z a i z i =+=-得12·z z =(2a i +)(34i -)=3a+8+(6-4a )i若12·z z 是纯虚数,则3a+8=0,(6-4a )≠0,解得a=-83(II )12z z =()()()()234238643434342525a i i a i a ai i i i +++-+==+--+ 若12z z 在复平面上对应的点在第二象限,则有380640a a -<⎧⎨+>⎩解得-3823a << 【点睛】本题考查复数的乘除运算,考查复数的概念与几何性质,属于基础题. 18.已知函数()x ex f x e=(e为自然对数的底数). (1)求()f x 的单调区间; (2)是否存在正实数x 使得(1)(1)f x f x -=+,若存在求出x ,否则说明理由;【答案】(1)单调递减区间是()1,+∞,单调递增区间为(),1-∞;(2)不存在,证明见解析. 【解析】分析:(1)先求一阶导函数()x 0f '=的根,求解()x 0f '>或()x 0f '<的解集,写出单调区间. (2)函数()y f x =在(),1-∞上的单调性,和函数的对称性说明不存在 详解:(1)函数()y f x =的单调递减区间是()1,+∞,单调递增区间为(),1-∞. (2)不存在正实数x 使得()()11f x f x -=+成立, 事实上,由(1)知函数()y f x =在(),1-∞上递增,而当()0,1x ∈,有()0,1y ∈,在()1,+∞上递减,有01y <<, 因此,若存在正实数x 使得()()11f x f x -=+,必有()0,1x ∈. 令()()()()1111x x x F x f x f x x e e+=+--=+-, 令()1'xxF x x e e ⎛⎫=-⎪⎝⎭,因为()0,1x ∈,所以()'0F x >,所以()F x 为()0,1上的增函数,所以()()00F x F >=,即()()11f x f x +>-,故不存在正实数x 使得()()11f x f x -=+成立.点睛:方程的根、函数的零点、两个函数图像的交点三种思想的转化,为解题思路提供了灵活性,导数作为研究函数的一个基本工具在使用.19.甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下: 测试指标分数甲产品 8 12 40 32 8 乙产品71840296(1)根据以上数据,完成下面的22⨯ 列联表,并判断是否有95% 的有把握认为两种产品的质量有明显差异?甲产品 乙产品合计合格品 次品 合计(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记X 为生产1件甲产品和1件乙产品所得的总利润,求随机变量X 的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率). 附:20()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.0012.702 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)没有(2)的分布列见解析,()66E X =【解析】 试题分析:(1)由题意完成列联表,然后计算可得20.717 3.841K ≈<,则没有95%的有把握认为两种产品的质量有明显差异(2) X 可能取值为90,45,30,-15,据此依据概率求得分布列,结合分布列可求得数学期望()66E X =. 试题解析: (1)列联表如下: 甲产品 乙产品 合计 合格品 80 75 155 次品 20 25 45 合计10010020022200802575200.717 3.84110010015545K ()<⨯⨯-⨯=≈⨯⨯⨯∴没有95%的有把握认为两种产品的质量有明显差异 (2)依题意,生产一件甲,乙产品为合格品的概率分别为,随机变量可能取值为90,45,30,-15,90 4530 -15的分布列为:∴20.设向量3sin cos)a x x x⎛⎫=-⎪⎪⎝⎭r,(cos,sin cos)b x x x=+v,x∈R,记函数()f x a b=⋅r r. (1)求函数()f x的单调递增区间;(2)在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若1()2f A=,2a=ABC∆面积的最大值.【答案】 (1)5[,]()1212k k k Zππππ-+∈.(212+.【解析】分析:(1)函数()f x a b=⋅vv,根据向量坐标的运算,求出()f x的解析式,化简,结合三角函数的性质可得单调递减区间;(2)根据()12f A=,求出A,由2a=ABC∆面积的最大值.详解:(1)由题意知:()sin cosf x a b x x=⋅=⋅vv)()3sin cos sin cosx x x x-+13sin2cos2sin2223x x xπ⎛⎫=-=-⎪⎝⎭,令222232k x kπππππ-≤-≤+,k Z∈,则可得:51212k x kππππ-≤≤+,k Z∈,∴()f x的单调递增区间为()5,1212k k k Zππππ⎡⎤-+∈⎢⎥⎣⎦.(2)∵()12f A=,∴1sin232Aπ⎛⎫-=⎪⎝⎭,结合ABC∆为锐角三角形,可得236Aππ==,∴4A π=.在ABC ∆中,利用余弦定理2222cos a b c bc A =+-,即(2222b c bc =+≥(当且仅b c =时等号成立),即2bc ≤=,又sin sin42A π==,∴1sin 24ABC S bc A bc ∆== (1242+≤+=. 点睛:本题考查了三角函数的性质的运用、余弦定理和基本不等式灵活应用.21.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且()sin 2sin 0b A a A C -+=. (1)求角A ;(2)若3a =,ABC △的面积为2,求11b c +的值.【答案】(1)3π;(2【解析】 【分析】(1)可通过化简()sin2sin 0b A a A C -+=计算出cos A 的值,然后解出A 的值。

相关文档
最新文档