线线垂直、线面垂直、面面垂直的判定与性质
线面垂直、面面垂直的判定与性质

本周知识小结:直线与平面垂直的判定和性质:线线垂直⇔线面垂直⇔面面垂直线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
线面垂直的性质定理:垂直于同一个平面的两条直线平行。
面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线例3、.(2012·广东高考)如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点,且DF=21AB,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD.(2)若PH=1,AD= 2,FC=1,求三棱锥E-BCF的体积.(3)证明:EF⊥平面PAB.例4、(09一模东城)如图,ABCD是边长为2a的正方形,ABEF是矩形,且二面角C AB F--是直二面角,AF a=,G是EF的中点.(Ⅰ)求证:平面AGC⊥平面BGC;(Ⅱ)求GB与平面AGC所成角的大小;例5、(09年崇文一模)在直四棱柱1111ABCD A B C D-中,AB CD∥,1AB AD==,12D D CD==,AB AD⊥.(Ⅰ)求证:BC⊥平面1D DB;(Ⅱ)求1D B与平面11D DCC所成角的大小.例6、如图,在三棱锥P-ABC中,△PAC和△PBC角形,AB=2,O是AB中点.(1)在棱PA上求一点M,使得OM∥平面PBC;(2)求证:平面PAB⊥平面ABC.课后练习:B1、若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.倍B.2倍C.倍D.倍2、(2013·惠州高一检测)某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为5的等腰三角形,侧视图是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )A.24B.80C.64D.2403、(2013·宿州高一检测)如图,四边形BCC1B1是圆柱的轴截面.AA1是圆柱的一条母线,已知AB=2,AC=2,AA1=3.(1)求证:AC⊥BA1.(2)求圆柱的侧面积4、如图,四棱锥P-ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=a,则PC=5、对于直线m,n和平面α,β,能得出α⊥β的一个条件是( )A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β6、(2012·上海高考)一个高为2的圆柱,底面周长为2π,则该圆柱的表面积为.。
线线垂直、线面垂直、面面垂直的判定与性质

空间中的垂直关系1.线面垂直 直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明你的结论6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC.7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD 证明:AB ⊥平面VADVDC B A SAB8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD .求证:AB DE ⊥9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。
线面垂直、面面垂直

线面垂直、面面垂直及其证明一 线面垂直的判定定理(1)线面垂直定义:如果一条直线和一个平面内的任何一条直线都垂直,那么这条直线和这个平面垂直.(2(3)三垂线定理及其逆定理①三垂线定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影.②三垂线逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直. (4)线面垂直的证明例1例2例3SDD 1ODBA C 1B 1A 1C例4在正方体1111ABCD A BC D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .练习1 在正方体1111ABCD A BC D -中. (1)求证:AC ⊥平面11B D BD .(2)求证:1BD ⊥平面1ACB .练习2在三棱锥A BCD -中,BC AC =,AD BD =,作BE CD ⊥,E 为垂足,作AH BE ⊥于H .求证:AH ⊥平面BCD .在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,AC CD ⊥,60ABC ︒∠=,PA AB BC ==,E 是PC 的中点.(1)求证:CD AE ⊥. (2)求证:PD ⊥面ABE .二 面面垂直(1条直线叫做二面角的棱,每个半平面叫做二面角的面,若棱为l ,两个面分别为,,αβ二面角记作为l αβ--.(2)二面角的平面角定义:在二面角l αβ--棱l 上取一点O ,在半平面α和β内,从点O 分别作垂直于棱l 的射线,OA OB ,射线组成AOB ∠.则AOB ∠叫做二面角的平面角.二面角的取值范围为[0,180]︒︒.(3)面面垂直定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直.(4)面面判定定理:一个平面过另一个平面,则这两个面相互垂直. (5)面面垂直的正面即:面面垂直→线面垂直→线线垂直. 例1如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . .例2如图,直三棱柱111C B A ABC -中,侧棱垂直于底面,90ACB ︒∠=121AA BC AC ==,D 是棱1AA 的中点,求证:平面1BDC 平面BDC .AC B1B 1A D1C练习 如图,过S 引三条长度相等但不共面的线段,,SA SB SC ,且60ASB ASC ︒∠=∠=,90BSC ︒∠=,求证:平面ABC ⊥平面BSC .三 立体几何高考证明例1(2013江苏)如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:(1)平面平面; (2).例2(2012江苏)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F⊥,为11B C 的中点.求证:(1) 平面ADE ⊥平面11BCC B ; (2) 直线1//A F 平面ADE .ABC S -⊥SAB SBC BC AB ⊥AB AS =A SB AF ⊥F G E ,SC SA ,//EFG ABC SA BC ⊥ABCSGFE例3如图,四棱锥P ABCD -中,底面ABCD 为平行四四边形,60DAB ︒∠=,2AB AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥(2)设1PD AD ==,求棱锥D PBC -的高.练习1如图,几何体E ABCD -是四棱锥,ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .练习2(2011天津)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点,PO ABCD ⊥平面,2PO =,M为PD 的中点.(Ⅰ) 证明://PB ACM 平面;MP(Ⅱ)(Ⅲ)。
线线垂直、线面垂直、面面垂直的判定和性质

空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。
线面垂直面面垂直的判定定理和性质定理

线面垂直面面垂直的判定定理和性质定理
线面垂直面面垂直的判定定理是指两个射线有一定的关系即垂直面是垂直的,其中一个起点在另一个终点上。
简单来说就是两线垂直于一个面,则这两条线的垂直的面也是垂直的。
由线面垂直面面垂直的判定定理可以得出线面垂直面面垂直的性质定理,这是建立在线面垂直面面的判断定理的基础之上的定理。
线面垂直面面垂直的性质定理:若两个射线分别与两个平面成垂直,则它们两个平面所成的平面也是垂直的。
该定理也可以用图形来表示,如下图所示:
从图中可以看出,射线AB和CD都是垂直于两个平面m、n,其中AB与m,CD与n成垂直。
而平面m和n又组成一个新平面mn,根据线面垂直面面垂直的性质定理可以知道AB与mn也是垂直的,同样CD也与mn是垂直的。
线面垂直面面垂直的定理主要应用在几何中,它可以用来证明两个平面的面积计算方法是正确的,也可以用来证明两个球面的夹角是垂直的。
同时,它同样可以应用在工程技术中,例如对于地面上的建筑物,我们可以用它来判断其是否与地面垂直。
由此可以看出,线面垂直面面垂直的判定定理和性质定理对于各类几何计算和工程技术应用具有十分重要的意义。
它能有效地帮助人们判断两面之间是否是垂直的关系,从而实现各种几何计算和工程技术应用。
面面垂直线面垂直的判定定理
面面垂直线面垂直的判定定理一、引言在几何学中,面面垂直是一个基本的概念。
当两个平面垂直时,我们称它们是面面垂直的。
本文将介绍面面垂直线面垂直的判定定理。
二、定义1. 面:在三维空间中,由无数条线段组成的平坦曲面。
2. 平行:两条线或两个平面在同一平面内,且不相交。
3. 垂直:两条线或两个平面相交于一个角度为90度的交点。
4. 面面垂直:当两个平面相互垂直时,它们被称为“面面垂直”。
三、定理如果一条直线同时与两个不同的平面相交,并且这条直线与其中一个平面的交线是另一个平面上的一条直线,则这两个平面是“面面垂直”的。
四、证明假设有两个不同的平面A和B,并且这两个平面相互垂直。
我们需要证明如果一条直线同时与这两个不同的平面相交,并且这条直线与其中一个平面A的交线是另一个平面B上的一条直线,则这两个平面是“ 面面垂直”的。
首先,我们需要证明这条直线存在。
假设这两个平面A和B相交于一条直线L。
因为这两个平面相互垂直,所以它们的交角为90度,因此直线L与平面A和平面B的交线都是垂直的。
接下来,我们需要证明这条直线与平面A和平面B的交线是垂直的。
假设这条直线与平面A的交点为P,与平面B的交点为Q,并且PQ 在平面B上。
我们需要证明AP和BQ是垂直的。
由于PQ在平面B上,所以PQ与平面A的交线PA也在平面B上。
因此,我们可以得到三角形APQ和三角形BPQ共享一个角度PQB,并且它们有一个共同边界PQ。
根据余弦定理:cos(APQ) = (AQ² + PQ² - AP²) / (2 * AQ * PQ)cos(BPQ) = (BQ² + PQ² - BP²) / (2 * BQ * PQ)由于AP = BQ(因为它们都等于L),所以AP² = BQ²。
将其代入上式中可得:cos(APQ) = cos(BPQ)因此,APQ = BPQ因此,AP和BP是垂直的。
线面垂直_面面垂直的性质定理
规范认真,步骤严谨,板书整洁;
另一个平面的一条垂线。
B A 思考2:黑板所在平面与地面所在平面垂直,在黑板上是否存在直线与地面垂直?若存在,怎样画线?
思考4:一般地, , CD , C D , A B , A B C D ,
AB ,AB CD ,垂足为B,那么直
线AB与平面 的位置关系如何?为
A1ADD1内,且都与交线AD垂直,这两 线面垂直_面面垂直的性质定理
2、熟练掌握定理的运用,完善步骤,总结做题方法. 线面垂直_面面垂直的性质定理 2、熟练掌握定理的运用,完善步骤,总结做题方法.
条直线与平面ABCD垂直吗? 问题1:广场上垂直于地面的几根旗杆,它们之间具有什么位置关系?
垂直于同一个平面的两条
要求:
1、组长负责协调好小组讨论,可先一对一讨论然后组内 共同讨论,做到全员积极参与,高效讨论。 2、讨论时,随时记录,争取在讨论时能将问题解决,未 能解决的组长记录好,准备展示质疑.
高效展示(5分钟)
展示问 题 自测1 自测2 达标1
展示小 组
2组 8组 4组
目标与要求
1. 规范认真,步骤严谨,板书整洁; 2. 不但要展示解题过程,更重要的 是展示规律、数学思想方法,以及 注意的问题、拓展等。
αl β
αl β
α
l βBiblioteka 知识探究(一)平面与平面垂直的性质定理
思考2:黑板所在平面与地面所在平 面垂直,在黑板上是否存在直线与 地面垂直?若存在,怎样画线?
α
β
思考3:如图,长方体ABCD—A B C D 垂直于同一个平面的两条
直线与平面垂直判定定理:
1111
中,平面A ADD 与平面ABCD垂直,其 规范认真,步骤严谨,板书整洁;
直线、平面垂直的判定及其性质
2.3 直线、平面垂直的判定及其性质线面垂直→线线垂直:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。
【线面垂直定义】线线垂直→线面垂直:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
【判定】线面垂直→线线平行:如果两条直线同时垂直于一个平面,那么这两条直线平行。
【性质】线面垂直→面面垂直:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
【判定】面面垂直→线面垂直:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【性质】三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
一、选择题1.给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【解析】直线l与平面α内两条相交直线都垂直,是线面垂直判定定理的条件,故为充要条件.【答案】 C2.空间四边形ABCD中,若AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是( ) A.面ABD⊥面BDC B.面ABC⊥面ABDC.面ABC⊥面ADC D.面ABC⊥面BED【解析】在等腰三角形ABC、ADC中,E为底边AC的中点,则BE⊥AC,DE⊥AC.又∵BE∩DE=E,∴AC⊥面BDE,故面ABC⊥面BDE,面ADC⊥面BDE.【答案】 D3.对两条不相交的空间直线a和b,必定存在平面α,使得 ( )A.a⊂α,b⊂α B.a⊂α,b∥αC.a⊥α,b⊥α D.a⊂α,b⊥α【解析】当a,b异面时,A不成立;当a,b不平行时,C不成立;当a,b不垂直时,D不成立.故选B.【答案】 B4.设直线m与平面α相交但不垂直,则下列说法中正确的是( )A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直【解析】在平面α内有无数条彼此平行的直线与直线m垂直,与直线m垂直的直线可能与平面α平行,与直线m平行的平面可能与平面α垂直.故A,C,D错误.【答案】 B5.设a,b,c是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立...的是( )A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bC.当b⊂α时,若b⊥β,则α⊥βD.当b⊂α,且c⊄α时,若c∥α,则b∥c【解析】α⊥β,b⊂α,b不一定垂直于β.故C错误.【答案】 C6.命题p:若平面α⊥β,平面β⊥γ,则必有α∥γ;命题q:若平面α上不共线的三点到平面β的距离相等,则必有α∥β.对以上两个命题,下列结论中正确的是( ) A.命题“p且q”为真 B.命题“p或綈q”为假C.命题“p或q”为假 D.命题“綈p且綈q”为假【解析】命题p,命题q皆为假,所以命题C正确.【答案】 C7.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在的平面,那么( )A .PA =PB >PCB .PA =PB <PCC .PA =PB =PCD .PA ≠PB ≠PC【解析】 ∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故PA =PB =PC .【答案】 C二、填空题8.m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m ∥α,则m ⊥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥n ,n ⊂α,则m ∥α.其中真命题的序号是________.【解析】 由平面平行的传递性知①正确,由面面垂直的判定定理知③正确.【答案】 ①③9.P 为△ABC 所在平面外一点,AC =2a ,连接PA 、PB 、PC ,得△PAB 和△PBC 都是边长为a 的等边三角形,则平面ABC 和平面PAC 的位置关系为________.【解析】如图所示,由题意知PA =PB =PC =AB =BC =a ,取AC 中点D ,连接PD 、BD ,则PD ⊥AC ,BD ⊥AC ,则∠BDP 为二面角P -AC -B 的平面角,又∵AC =2a ,∴PD =BD =22a , 在△PBD 中,PB 2=BD 2+PD 2,∴∠PDB =90°.【答案】 垂直10.(精选考题·四川高考)如图所示,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________________________________________________________________________.【解析】 如图,过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线,垂足为D ,连接AD ,由线面垂直关系可知AD ⊥l ,故∠ADC 为二面角α-l -β的平面角,∴∠ADC =60°.连接CB ,则∠ABC 为AB 与平面β所成的角.设AD =2,则AC =3,CD =1,AB =AD sin30°=4,∴sin ∠ABC =AC AB =34. 【答案】34 三、解答题11.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)在四棱锥P -ABCD 中,∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC, ∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知,AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD 且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】 (1)证明:∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°,得BC ⊥DC .又PD ∩DC =D ,∴BC ⊥平面PCD .∵PC ⊂平面PCD ,∴PC ⊥BC .(2)如图,连接AC .设点A 到平面PBC 的距离为h .∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°.从而由AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P -ABC 的体积V =13S △ABC ·PD =13.∵PD ⊥平面ABCD ,DC ⊂平面ABCD ,∴PD ⊥DC .又PD =DC =1,∴PC =PD 2+DC 2= 2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =22.由V =13S △PBC h =13×22h =13,得h = 2.因此点A 到平面PBC 的距离为 2.。
线面垂直 面面垂直的性质与判定定理
A
又⊥β,∩β=AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
符号语言:
ab
a ,b a//b
α
线面垂直关 系
线线平行关 系
平面与平面垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
a/ / ,aA,B 试判断 a与直 平 的 线 面 位置关
α
Aa
β
a⊥β
B
例3 ,a ,a ,判 断 a 与 位 置 关 系
证明:设 I l
α a //
在α内作直线b⊥l
b
a
l
β
I b b
l
l
b
α 发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中得垂直关系
1.线面垂直
直线与平面垂直得判定定理:如果,那么这条直线垂直于这个平面。
推理模式:
直线与平面垂直得性质定理:如果两条直线同垂直于一个平面,那么这两条直线。
2.面面垂直
两个平面垂直得定义:相交成得两个平面叫做互相垂直得平面。
两平面垂直得判定定理:(线面垂直面面垂直)
如果,那么这两个平面互相垂直。
推理模式:
两平面垂直得性质定理:(面面垂直线面垂直)
若两个平面互相垂直,那么在一个平面内垂直于它们得得直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直线面垂直面面垂直.这三者之间得关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级得垂直关系中蕴含着低一级得垂直关系,下面举例说明.
例题:1.如图,AB就是圆O得直径,C就是圆周上一点,PA⊥平面ABC.
(1)求证:平面PAC⊥平面PBC;
(2)若D也就是圆周上一点,且与C分居直径AB得两侧,试写出图中所有互相垂直得各对平面.
2、如图,棱柱得侧面就是菱形,
证明:平面平面
3、如图所示,在长方体中,AB=AD=1,AA
1=2,M就是棱CC
1
得中点
(Ⅰ)求异面直线A
1M与C
1
D
1
所成得角得正切值;
(Ⅱ)证明:平面ABM⊥平面A
1B
1 M
1
4、如图,就是圆O得直径,C就是圆周上一点,平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC
.
5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您得结论
6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC 、
7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD
证明:AB ⊥平面VAD
V
D
C B A S
A
B
8、如图,平行四边形中,,,将沿折起到得位置,使平面平面、
求证:
9、如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别就是AP、AD得中点
求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD
10、如图,在三棱锥中,平面平面,、过作,垂足为,点分别就是棱得中点。
求证:(1)平面//平面
(2)
11、如图,在三棱锥中,分别就是棱得中点,已知、
求证:(1)直线平面;
(2)平面平面
12、如图,在正方形中,就是得中点,就是得中点。
现在沿将向上折起,在折起得图形中解答下列问题:
(1)在线段上就是否存在一点,使得平面?若存在,请正明您得结论;若不存在,请说明理由。
(2)若平面平面,求证:平面平面
13、如图,在四棱锥中,,,
分别就是得中点。
(1)求证:平面;
(2)求证:平面平面
14、如图,直四棱柱中,,AD=,,为上一点,
(1)证明:平面;
(2)求点到平面得距离。