探索三角形全等的条件(2)PPT课件
合集下载
《“边角边”判定三角形全等》PPT课件

思考:已知一个三角形的两条边和一个角,那么这两条边
与这一个角的位置上有几种可能性呢?
A
A
B
C
图一
在图一中, ∠A
是AB和AC的夹角,
符合图一的条件,它 可称为“两边和它们 的夹角”。
B
图二
C
符合图二的条件, 通常 说成“两边和其中一边的对角”两边源自它们的夹角夹角 CA
BD
F E
验证猜想 归纳结论
B
把画好的△A′B′C′剪下来,放到△ABC上, 它们全等吗?反映了什么规律?
验证猜想 归纳结论
探究3反映的规律是:
两边和它们的夹角分别相等的两个三角形全等
(简写成“边角边”或“SAS”)
数学符号语言:
∵在△ABC和△A′B′C ′中
AB=A′B′
C
C′
∠A=∠A′
AC=A′C′
A
B A′
B′
∴ △ABC≌△A′B′C ′(SAS)
∵在△ABF和△ DCE中 AB=DC
∠B= ∠C
A BE
BF=CE ∴ △ABF≌△DCE (SAS)
∴ ∠A=∠D
D FC
验证猜想 归纳结论
把一长一短的两根木棍的一端固定在一起,摆出△ABC 。 固定住长木棍,转动短木棍,得到△ABD。这个实验说 明了什么?
A 说明:△ABC与△ABD不全等
B
解: 相等,理由如下
B
∵在△ABC和△ABD中 AB=AB
∠BAC= ∠BAD=90°
AC=AD
DA C
∴ △ABC≌△ABD (SAS)
∴ BC=BD
巩固练习 拓展提高
如图:点E、F在BC上,BE=CF,AB=DC, ∠B= ∠C.
数学:11.3《探索三角形全等的条件》课件(2)(苏科版七年级下)

D C
例题讲解:
例1. 已知:点D在AB上,点E在AC上,BE和CD相 交于点O,AB=AC,∠B=∠C。
求证:BD=CE
A
D
O B
E
C
例题讲解:
例1.已知:点D在AB上,点E在AC上,BE和CD相交于 点O,AB=AC,∠B=∠C。
A D O B C E
求证:BD=CE
证明 :在△ADC和△AEB中
C
P
A
45°
60°
2.6cm
B
角边角公理
:
有两角和它们夹边对应相 等的两个三角形全等(简写成 “角边角”或“ASA”)。
练 习 1
.已知:如图,AB=A’C,∠A=∠A’,∠B=∠C 求证:△ABE≌ △A’CD
证明:在______和_______中
________ ( ________ ( ) )
初中数学七年级下册 (苏科版)
探索三角形全等的条件 (二)
1.什么样的图形是全等三角形?
2.判定两个三角形全等要具备什么 条件?
边角边公理
:
有两边和它们夹角对应相 等的两个三角形全等。
怎么办?可以帮帮 我吗?
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?能恢复原来三角形
∠A=∠A(公共角)
AC=AB(已知) ∠C=∠B(已知) ∴△ACD≌△ABE(ASA) ∴AD=AE(全等三角形的对应边相等) 又∵AB=AC(已知) ∴BD=CE
巩 固 练 习
1.如图,∠1=∠2,∠3=∠4 求证:AC=AD 证明:∵∠——=180-∠3 ∠——=180-∠4 而∠3=∠4(已知)
全等三角形的判定方法边角边定理PPT课件

把你画的三角形与其他同学画的三角形进行比较, 那么所有的三角形都全等吗?此时符合条件的三角 形的形状能有多少种呢?
用“两边一角”证明三角形全等时, 那个“角”必须是“两边”的夹角
学以致用
例:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证:△AFD≌△CEB A
D
E
分析:证三角形全等的三个条件 B
\\
B
\
{
A
D
因为AB=DE,∠B=∠E,
\\Байду номын сангаас
BC=EF,
CE
\
根据“SAS”可以得到 F △ABC≌△DEF
在△ABC和△ DEF中,
小试身手
例1如图19.2.4,在△ABC中,AB=AC, AD平分 ∠BAC,求证: △ABD≌△ACD.
如图,已知两条线段和一个角,以长的线段为已 知角的邻边,短的线段为已知角的对边,画一个 三角形.
在△AOC和△BOD中 ∵ AC= BD ,
AO= BO , CO= DO ,
∴ △AOC≌△BOD(SSS)
A
D
O
C
B
如图19.2.2,已知两条线段和一个角,以这两条线段 边,以这个角为这两条边的夹角,画一个三角形.
步骤: 1 画一线段AB, 使它等于4cm; 2 画∠MAB=45°; 3 在射线AM上截取AC=3cm; 4 连结BC.
△ABC即为所求.
1 你们所画的三角形有什么共同特征? 有两边及其夹角对应相等
2 把你画的三角形与其他同学画的三角形 进行比较,所有的三角形都全等吗?
在△ABC和△A′B′C′中,已知AB=A′B′, ∠B= ∠B′, BC=B′C′
A
用“两边一角”证明三角形全等时, 那个“角”必须是“两边”的夹角
学以致用
例:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证:△AFD≌△CEB A
D
E
分析:证三角形全等的三个条件 B
\\
B
\
{
A
D
因为AB=DE,∠B=∠E,
\\Байду номын сангаас
BC=EF,
CE
\
根据“SAS”可以得到 F △ABC≌△DEF
在△ABC和△ DEF中,
小试身手
例1如图19.2.4,在△ABC中,AB=AC, AD平分 ∠BAC,求证: △ABD≌△ACD.
如图,已知两条线段和一个角,以长的线段为已 知角的邻边,短的线段为已知角的对边,画一个 三角形.
在△AOC和△BOD中 ∵ AC= BD ,
AO= BO , CO= DO ,
∴ △AOC≌△BOD(SSS)
A
D
O
C
B
如图19.2.2,已知两条线段和一个角,以这两条线段 边,以这个角为这两条边的夹角,画一个三角形.
步骤: 1 画一线段AB, 使它等于4cm; 2 画∠MAB=45°; 3 在射线AM上截取AC=3cm; 4 连结BC.
△ABC即为所求.
1 你们所画的三角形有什么共同特征? 有两边及其夹角对应相等
2 把你画的三角形与其他同学画的三角形 进行比较,所有的三角形都全等吗?
在△ABC和△A′B′C′中,已知AB=A′B′, ∠B= ∠B′, BC=B′C′
A
人教版《三角形全等的判定》PPT全文课件

知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
第3讲探索三角形全等的条件(二)

(AAS),正确;B 选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C, ∠DFB=∠DEC=90°∴DF=DE 故点 D 在∠BAC 的平分线上,正确;C 选项: ∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴ △BDF≌△CDE(AAS),正确.
(1)一个锐角和这个角的对边对应相等;( )
(2)一个锐角和斜边对应相等;
()
(3)两直角边对应相等;
()
(4)一条直角边和斜边对应相等. ( )
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SA根据全等三角形的判定来判断.
4、【答案】A 【解析】解:∵OM=ON,CM=CN,OC 为公共边, ∴△MOC≌△NOC(SSS).∴∠MOC=∠NOC 故选:A.
5【答案】AH=CB; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为 D、E, ∴∠BEC=∠AEC=90°, 在 Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在 Rt△AEH 和 Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, 所以根据 AAS 添加 AH=CB 或 EH=EB; 根据 ASA 添加 AE=CE. 可证△AEH≌△CEB.
【总结升华】直角三角形全等可用的判定方法有 5 种:SAS、ASA、AAS、SSS、HL.
例 3、如图,AB⊥AC 于 A,BD⊥CD 于 D,若 AC=DB,则下列结论中不正确的是( )
A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD 【答案与解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合 已知条件与全等的判定方法逐一验证. 解:∵AB⊥AC 于 A,BD⊥CD 于 D ∴∠A=∠D=90°(A 正确) 又∵AC=DB,BC=BC ∴△ABC≌△DCB(HL) ∴∠ABC=∠DCB(B 正确) ∴AB=CD 又∵∠AOB=∠C ∴△AOB≌△DOC(AAS) ∴OA=OD(D 正确) C 中 OD、OB 不是对应边,不相等. 故选 C. 【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全 等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
(1)一个锐角和这个角的对边对应相等;( )
(2)一个锐角和斜边对应相等;
()
(3)两直角边对应相等;
()
(4)一条直角边和斜边对应相等. ( )
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SA根据全等三角形的判定来判断.
4、【答案】A 【解析】解:∵OM=ON,CM=CN,OC 为公共边, ∴△MOC≌△NOC(SSS).∴∠MOC=∠NOC 故选:A.
5【答案】AH=CB; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为 D、E, ∴∠BEC=∠AEC=90°, 在 Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在 Rt△AEH 和 Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, 所以根据 AAS 添加 AH=CB 或 EH=EB; 根据 ASA 添加 AE=CE. 可证△AEH≌△CEB.
【总结升华】直角三角形全等可用的判定方法有 5 种:SAS、ASA、AAS、SSS、HL.
例 3、如图,AB⊥AC 于 A,BD⊥CD 于 D,若 AC=DB,则下列结论中不正确的是( )
A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD 【答案与解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合 已知条件与全等的判定方法逐一验证. 解:∵AB⊥AC 于 A,BD⊥CD 于 D ∴∠A=∠D=90°(A 正确) 又∵AC=DB,BC=BC ∴△ABC≌△DCB(HL) ∴∠ABC=∠DCB(B 正确) ∴AB=CD 又∵∠AOB=∠C ∴△AOB≌△DOC(AAS) ∴OA=OD(D 正确) C 中 OD、OB 不是对应边,不相等. 故选 C. 【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全 等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
数学(七下)3.3探索三角形全等的条件(二)

1、角.边.角;
2、角.角.边
每种情况下得到的三角形都全等吗?
做一做
1.角.边.角;
若三角形的两个内角分别是60°和80° 它们所夹的边为4cm,你能画出这个三角形吗?
2cm
60°
80°
做一做
2.角.角.边
若三角形的两个内角分别是60°和45°,且45° 所对的边为3cm,你能画出这个三角形吗?
2
C
∴△ABC≌△DCB( AAS )
巩固练习:
如图,O是AB的中点,∠A=∠B,△AOC 与△BOD全等吗?为什么? 我的思考过程如下: 两角与夹边对应相 等 A
C O B D
∴△AOC≌△BOD
补充练习
1﹑请在下列空格中填上适当的条件, 使△ABC≌△DEF。 在△ABC和△DEF中 A D
课堂小结
通过这堂课的学习你有 什么收获?知道了哪些 新知识?学会了做什么?
布置作业
P83 知识技能2.3; 问题解决。
第三章
三角形
3 探索三角形全等的条件(第2课时)
情境导入
我们已学过识别两个三角形全等的方法 是什么?识别三角形全等是不是还有其 它方法呢?
情境导入
有一块三角形纸片撕去了一个角, 要去剪一块新的,如果你手头没 有测量的仪器,你能保证新 剪的纸片形状、大小和原来的一 样吗?
实践探究
我们知道:如果给出一个三角形三条边的长度, 那么因此得到的三角形都是全等.如果已知一个 三角形的两角及一边,那么有几边对应相等的两个三 角形全等,简写成“角边角”或“ASA”
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
练一练
1.如图,已知AB=DE, ∠A =∠D, ,∠B=∠E, 则△ABC ≌△DEF的理由是:角边角(ASA) 2.如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是: 角角边(AAS)
七年级下探索三角形全等的条件(二)课件

60°
45°
分析: 分析:
这里的条件与1中的条件有什 这里的条件与 中的条件有什 么相同点与不同点? 么相同点与不同点?你能将它 转化为1中的条件吗 中的条件吗? 转化为 中的条件吗?
60°
75°
两角和它们的夹边对应相 等的两个三角形全等, 等的两个三角形全等,简写 角边角” 成“角边角”或“ASA” 两角和其中一角的对边对 应相等的两个三角形全等, 应相等的两个三角形全等, 简写成“角角边” 简写成“角角边”或“AAS”
、 边角 做一做 1、角.边.角; 若三角形的两个内角分别是 60°和80°它们所夹的边为 ° °它们所夹的边为2cm, 你能画出这个三角形吗? 你能画出这个三角形吗
2cm
60°
80°
60°
80°
你画的三角形与同伴 画的一定全等吗? 画的一定全等吗
2、角.角.边 、 角边 若三角形的两个内角分别是60° 若三角形的两个内角分别是 ° 和45°,且45°所对的边为 ° °所对的边为3cm, , 你能画出这个三角形吗? 你能画出这个三角形吗?
作业: 作业: P164页:习题 页 习题 习题5.8
课后思考题: 课后思考题:
A
1、在△ABC中,AB=AC, 、 中 , AD是边BAC的角平分线。 : 是边BC上的中线 是边 上的中线,证明: AD是∠ 上的中线,证明 的角平分线。 是 的角平分线 ∠BAD=∠ 求证: ∠CAD 求证:BD=CD = C B D 证明: AD是BC边上的中线 证明:∵AD是BC边上的中线 的角平分线( ∠BAC的角平分线(已知) 的角平分线 已知) ∴∠BAD= 三角形中线的定义) ∴∠ = =∠CAD(角平分线的定义 ∴BD=CD(三角形中线的定义) ) ( (角平分线的定义) ) AB = AC(已知 ∵AB=AC(已知) = (已知) 在△ABD和△ACD中 ) = CD(已证 和CAD(中 BD ) 已证) ∠BAD=∠ = (已证 AD=AD(公共边) AD = AD(公共边 = (公共边) ) ) ∴△ABD≌△ACD(SAS) ≌ △ACD(SSS) ( ∴ △ABD≌ ≌ ( ∴BD=CD(全等三角形对应边相等) = (全等三角形对应边相等) 全等三角形对应角相等) ∴ ∠BAD=∠CAB(全等三角形对应角相等) ∠
探索三角形全等的条件(二)

= 如图:已知 AE=AD 如图:已知AB=AC, = , A ∠B=∠C,△ABD与△ACE全 = , 与 全 E 等吗?为什么? 等吗?为什么?
B
D C
课堂小结: 课堂小结:
通过本节课的学习, 通过本节课的学习,你有 所收获? 所收获?
作业: 作业: P164页 页 习题5.8第 题 习题 第1题
探索三角形全等 二 的条件(二)
学习目标
1.三角形全等的条件 角边角 三角形全等的条件:角边角 三角形全等的条件 角边角, 角角边
做一做 1、角.边.角; 、 边角
若三角形的两个内角分别是 60°和80°它们所夹的边为 ° °它们所夹的边为2cm, 你能画出这个三角形吗? 你能画出这个三角形吗
2cm
60°
80°
两角和它们的夹边对应相等的 两角和它们的夹边对应相等的 两个三角形全等,简写成“ 两个三角形全等,简写成“角边 A D 角”或“ASA” 1、在△ABC中,AB=AC, 、 中 ∠B= ∠ F ,∠ A= ∠ D。 。 求证: = 求证:BC=EF
B CE F
2、角.角.边 、 角边 若三角形的两个内角分别是60° 若三角形的两个内角分别是 ° 和45°,其中 °角所对的边 ° 其中60 为3cm,你能画出这个三角形吗 ,你能画出这个三角形吗?
60°
40°
A 1、在△ABC中,AB=AC, 、 中 1、在△ABC中,AB=AC, 、 中 AD是边 上的角平分线 是边BC上的角平分线 是边 上的角平分线. AD是边 上的中线。 是边BC上的中线 是边 上的中线。 B (1)图中有全等的三角形吗 (1)图中有全等的三角形吗 (2) AD是∠BAC的中线吗 是 的中线吗 (2) AD是∠BAC的平分线吗 是 的平分线吗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和其中一角的对边对
应相等的两个三角形全等, 简写成“角角边”或“AAS”
2020年10月2日
9
练一练:
1、完成下列推理过程:
在△ABC和△DCB中,A
∠ABC=∠DCB 3
∵ BC=CB(公共边 )
∠13=∠24
B1
D
4
O 2C
∴△ABC≌△DCB( ASAA)S
2020年10月2日
10
2、请在下列空格中填上适当的 条件,使△ABC≌△DEF。
汇报人:XXX 汇报日期:20XX年10月10日
14
在△ABC和△DEF中
A
D
∠AAB==∠DDE
∵ ∠BABACB=C=∠BEDD=FEE∠F
∠ABBACC=C==∠BDED=FE∠F
B
EC
F
∴△ABC ≌△DEF( ASASAS)
2020年10月2日
11
想一想:
如图,O是AB的中点,
∠A=∠B,△AOC与△BOD全
等吗?为什么?
我的思考过程 C
1、角.边.角; 2、角.角.边
每种情况下得到的三角形都
全等吗?
2020年10月2日
4
做一做1、角.边.角;
若三角形的两个内角分别是 60°和70°它们所夹的边为4cm, 你能画出这个三角形吗?
4cm
60°
70°
2020年10月2日
5
60°
70°
你画的三角形与同伴画的一 定全等吗?
2020年10月2日
探索三角形全等的条件
(二)
2020年10月2日
1
复习 1、在括号内填写适当的理
由:如图,已知AB=DC,AC=DB,那
么∠A=∠D.说明理由. A D
∵AB=DC( 已知 ) AC=DB( 已知 )
BC=CB(公共边 ) B
C
∴△ABC≌△DCB( SSS )
∴∠A=∠D
(全等三角形的对应角相等)
如下:两角与 夹边对应相等 A
O
B
D
∴△AOC≌△BOD
2020年10月2日
12
课堂小结:
通过这堂课的学习, 你有哪些收获和感受?课 后与同学们交流。
2020年10月2日
13
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
6
2、角.角.边
若三角形的两个内角分别是60° 和50°,且50°所对的边为3cm, 你能画出这个三角形吗?
60°
50°
2020年10月2日
7
分析:
这里的条件与1中的条件有什 么相同点与不同点?你能将它 转化为1中的条件吗?
60°
70°
2020年10月2日
8
两角和它们的夹边对应相
等的两个三角形全等,简写 成“角边角”或“ASA”
2020年10月2日
2
2、如图,已知AC=AD,BC=BD,
那么AB是∠DAC的平分线.
证明:∵AC=AD( 已知)
C
BC=BD(已知 ) AB=AB(公共边)
A
1 2
B
∴△ABC≌△ABD( SSS) ∴∠1=∠2
D
(全等三角形的对应角相等)
∴20A20年1B0月2是日 ∠DAC的平分线
3我们知道:如果给出一个三 Nhomakorabea 形三条边的长度,那么因此得到 的三角形都是全等.如果已知一 个三角形的两角及一边,那么有 几种可能的情况呢?