9 强度理论
强度理论

M max ya 80103 N m 135103 m 122.7 MPa 6 4 Iz 8810 m
第9章 强度理论
9-1 强度理论概述
强度条件: max
[ ]
适用于单向应力状态,σmax为拉(压)杆横截面上 的正应力或梁横截面上的最大弯曲正应力。
max [ ]
适用于纯剪切应力状态,τmax为圆轴扭转时横截 面上的最大切应力或梁在横力弯曲时横截面上的 最大弯曲切应力。
[σ]或[τ]是由拉伸(或压缩)试验或纯剪切试验所
且相应的材料多为塑性材料;为避免在校核强度时
需先求主应力值等的麻烦,可直接利用图示应力状
Ⅱ.产生显著塑性变形而丧失工作能力的塑性屈服。
铸铁拉伸时沿试件的横截面断裂
铸铁圆轴扭转时沿与轴线约成 450的螺旋面断裂。 断裂与最大拉应力或最大拉应变有关,是拉应力 或拉应变过大所致。
低碳钢拉伸至屈服时,会出现与轴线约成450 的滑移线。
低碳钢圆轴扭转时沿纵横方向出现滑移线。
屈服或显著塑性变形是切应力过大所致。
2
2 0
3 2 27.7 MP a 2 2
2
由于梁的材料Q235钢为塑性材料,故用第三或第 四强度理论校核a点的强度。
r3 1 3 150.4 MPa 27.7 MPa 178.1 MPa
r4
1 1 2 2 2 3 2 3 1 2 2
材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。
材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。
强度理论的研究对于材料的设计、制备和应用具有重要意义。
首先,强度理论可以帮助我们了解材料的破坏机制。
材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。
强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。
其次,强度理论可以指导材料的合理使用。
在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。
强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。
此外,强度理论还可以为材料的改进和优化提供指导。
通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。
比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。
综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。
在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。
材料力学第9章 强度理论

由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E
b
E
1 1 1 2 3 E
1u
1u
E
b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa
工程力学第9章 应力状态与强度理论

27
根据广义胡克定律,有
解 (1)m-m 截面的内力为:
(2)m-m 截面上 K 点的应力为:
28
29
30
9.5 强度理论
9.5.1 强度理论的概念 在第7章中介绍了杆件在基本变形情况下的强度计 算,根据杆件横截面上的最大正应力或最大切应力及相 应的试验结果,建立了如下形式的强度条件:
31
32
33
(2)第二强度理论———最大伸长线应变理论
34
(3)第三强度理论———最大切应力理论
35
(4)第四强度理论———最大形状改变比能理论
36
37
(2)校核正应力强度
(3)校核切应力强度
38
(4)按第三强度理论校核 D 点的强度
39
思考题 9.1 某单元体上的应力情况如图9.18所示,已知 σx=σy。试求该点处垂直于纸面的任意斜截面上的正应力、 切应力及主应力,从而可得出什么结论?
6
9.2.1 方位角与应力分量的正负号约定 取平面单元体位于Oxy平面内,如图9.5(a)所示。 已知x面(外法线平行于x轴的面)上的应力σx及τxy,y 面上的应力σy及τyx。根据切应力互等定理,τxy=τyx。现 在为了确定与z轴平行的任意斜截面上的应力,需要首 先对方位角α以及各应力分量的正负号作如下约定:
10
11
9.2.3 平面应力状态下的主应力 与极值切应力由式(9.1)和式(9.2)可知,当σx, σy和τxy已知时,σα和τα将随α的不同而不同,即随斜截面 方位不同,截面上的应力也不同。因而有可能存在某种 方向面,其上之正应力为极值。设α=α0时,σα取极值。 由
12
13
14
15
16
材料力学第九章强度理论

本章重点
1. 强度理论的概念 2. 四种主要强度理论及其应用 3. 杆件强度的合理设计
§9-1 强度理论
一、强度理论的概念
轴向拉压、弯曲正应力 扭转、弯曲剪应力
m ax [ ]
m ax [ ]
材料破坏的形式主要有两类:
1、脆性断裂(断裂破坏) 2、塑性屈服(剪切破坏)
论没有考虑中间主应力σ2的影响,其带来的最大误 差不超过15%,而在大多数情况下远比此为小。 对三向均匀受拉时,塑性材料也会发生脆性断裂 破坏的事实无法解释。
2、形状改变能密度理论(第四强度理论) (畸变能密度) 假定:复杂应力状态下材料的形状改变能 密度达到单向拉伸时使材料屈服的形状改变 能密度时,材料即会发生屈服。 屈服破坏条件是:
相应地,强度理论也可分为两类: 一类是关于脆性断裂的强度理论; 一类是关于塑性屈服的强度理论。
(一)、关于脆断的强度理论
1、最大拉应力理论(第一强度理论)
假定:无论材料内各点的应力状态如何, 只要有一点的主应力σ1 达到单向拉伸断裂时的 极限应力σu,材料即破坏。 在单向拉伸时,极应变片贴于与母线成45°角的外表面上
1 ,
1
1 E 1
2
0,
3
1 ( 2 3 )
1 E m
m ax
m in
E
d
16
3
0
3
m
d E0
1 6 (1 )
杆件强度设计
关键:如何确定危险截面、危险点的位置 以及危险点的应力状态
材料失效的原因是应力、应变和变形能 等诸因素中的某一因素引起的。 无论是简单或复杂应力状态,引起失效 的因素是相同的。且应具有相同的失效基 准。 利用强度理论可由简单的应力状态的实 验结果,建立复杂应力状态的强度条件。
9_强度理论

3、塑性材料(除三轴拉伸外),宜采用形状改变比能理 论(第四强度理论)和最大剪应力理论(第三强度理论)。
4、三轴压缩状态下,无论是塑性和脆性材料,均采用形状
改变比能理论。
由强度理论可从 σ
推知 τ
3
σ 0.577σ τ 如纯剪时,由第四强度理论得:
二、应用举例 强度准则的统一形式: s r [s ]
强度理论
三、最大切应力理论(第三强度理论)
准则:无论在什么样的应力状态下,材料发生屈
服流动的原因都是单元体内的最大切应力tmax达到某 一共同的极限值tjx。 1.屈服原因:最大切应力tmax(与应力状态无关); 2.屈服条件:
s1 s 3 s s
3.强度准则: s1 s 3 [s ] 4.应用情况:形式简单,符合实际,广泛应用,偏于安全。
滑移面上所产生的阻碍滑移的内摩擦力却取决于剪切面上 的正应力s的大小。
1. 摩尔理论适用于脆性剪断:
脆性剪断:在某些应力状态下,拉压强度不等的一些材 料也可能发生剪断,例如铸铁的压缩。
2.材料的剪断破坏发生在(tfs)值最大的截面上(这里f为内摩 擦系数)。
①在一定应力状态下,滑移面上为压应力时,滑移阻力增大; 为拉应力时,滑移阻力减小;
[s l ] s1 s [s l ] [s y ] 3
[sl]—拉伸许可应力;[sy]—压缩许可应力。如材料拉压许 用应力相同,则莫尔准则与最大剪应力准则相同。
t
t jx F( s n )
s
极限应力圆
纯剪切
t
拉伸
用单向拉伸、压 缩和纯剪切极限 应力圆作包络线 tjx=F(sn)
压缩
s
D2
形状改变比能理论
(二)塑性屈服理论
1.最大剪应力理论(第三强度理论) 无论材料处于什么应力状态,只要最 大剪应力达到极限值,就发生屈服破坏。 破坏原因:tmax 破坏条件: tmax = to
= s 强度条件: n 适用范围:塑性材料屈服破坏; 一般材料三向
s1 s 3
ss
材料力学
2.形状改变比能理论 (Mises’s Criterion)
第9章 强度理论
材料力学
本章主要内容
§9-1 强度理论的概念
§9-2 四个常用强度理论及其相当应力 §9-3 莫尔强度理论及其相当应力
§9-4 各种强度理论的适用范围及其应用
材料力学
§ 9-1 强度理论的概念
一、建立强度条件的复杂性 复杂应力状态的形式是无穷无尽的,建立 复杂应力状态下的强度条件,采用模拟的方法 几乎是不可能的,即逐一用试验的方法建立强 度条件是行不通的,需要从理论上找出路。
= s 2+3t 2
材料力学
§9-3 莫尔强度理论 及其相当应力
莫尔强度理论是以各种状态下材料的破坏 试验结果为依据,而不是简单地假设材料地破 坏是由某一个因素达到了极限值而引起地,从 而建立起来的带有一定经验性的强度理论。
材料力学
一、两个概念:
1、极限应力圆:
t
ts
极限应力圆
s s3
O
s
材料力学
二、利用强度理论建立强度条件
(1)对破坏形式分类; (2)同一种形式的破坏,可以认为是由相同的原因造成的; (3)至于破坏的原因是什么,可由观察提出假说,这些假
说称为强度理论;
(4)利用简单拉伸实验建立强度条件。
材料力学
பைடு நூலகம்
§9-2 四个常用强度理论 及其相当应力
四种强度准则
1 3
理论能够很好的解释钢材 等塑性材料的屈服,形式 简单,机械工程中运用得 很广泛。
max
1 ( 1 3 ) u 2
选用单向拉伸实验来确定。
1
1 s max
2 3 0
2 3 0 s 1 ( 1 3 )
r3 1 3
1 r 4 [ (1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 ] 2
强度理论的运用
• 温度、静载作用下,通常的脆性材料选用第一、二强 度理论;塑性材料选用第三、四强度理论。 • 破坏形式和应力状态有关,在特殊情况下要作特殊处
1) 最大拉应力是引起脆性断裂的主要因素。 2) 不管材料处于何种应力状态,只要最大拉应力达到 极限值,就会引起脆性断裂。 max u
1 u
无论什么应力状态,上述条件都成立。 选用单向拉伸实验来确定u:
1
1 b u b
2 3 0
2 3 0
选用单向拉伸实验的(uf)u来确定
1
2 3 0
(1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 2 s2
1 [( s ) 2 ( s ) 2 ] (u f ) u 1 6E [( 1 2 )2 ( 2 3 ) 2 ( 3 1 )2 ] [ ] 2 1 (u f ) u [2( s ) 2 ] 这种理论能够很好的解释钢材 6E
§9-10常用的四种强度理论
第一强度理论──最大拉应力理论(17世纪,伽利略) 第二强度理论──最大伸长线应变理论(17世纪,马里奥特)
第三强度理论──最大剪应力理论(1773年,库仑)
材料力学第9章应力分析强度理论
F
n
0
F 0
dA ( xydAcos ) sin ( x dAcos ) cos ( yxdAsin ) cos ( y dAsin ) sin 0
dA ( xydAcos ) cos ( x dAcos ) sin ( yxdAsin ) sin ( y dAsin ) cos 0
2
2 xy
xy
min
y
yx
23
⒉主方向
应力圆:D点顺时针转2α0到A1点
单元体:x轴顺时针转α0到主平面法线
证明:
xy 2 xy AD tg 2 0 CA x y x y 2
24
㈣利用应力圆求剪应力极值 应力圆上最高点、最低点的纵坐标值,为剪 应力的极大、极小值。 证明:
2
?
min
tg 2 0
2 xy
max
yx
x
x y
xy
解出两各极值点α0,α0=90+α0 最大、最小应力即为主应力
max x y x y 2 2 ( ) xy min 2 2
y
σmax、σmin为三个主应力中的两个。
11
讨论: ⑴若代数值σx≥σy,则α0、α0中,绝对值较小者是
σx与σmax之间夹角,且小于45。 ⑵若代数值 σx≤σy ,则α0 、α0 中,绝对值较小者是 σx 与 σmin之间夹角,且小于45。
min
max
yx
x
xy
12
y
㈢τmax、τmin(与z轴平行的任意斜截面上的)
强度理论Word
§10.5 强度理论一、 强度理论的概念强度理论是研究材料在复杂应力条件下强度失效的原因和失效条件的理论。
在前面的章节中,分别介绍了杆件在基本变形时的强度条件,如杆件在轴向拉、压时处于单向应力状态,其强度条件为[]max max N A σσ=≤式中许用应力[σ]是通过拉伸实验得出材料的极限应力再除以安全系数获得的。
圆轴扭转时,材料处于纯剪应力状态状态,其强度条件为[]max max t T W ττ=≤式中许用应力[τ]也是直接通过实验得出材料的极限应力再除以安全系数获得的。
梁横力弯曲时基于最大正应力作用点和基于最大切应力作用点的强度条件也是直接通过实验建立的。
但是,由于工程构件或元件所处的应力状态是多种多样的。
在复杂应力状态下,判断材料失效仅仅通过实验和这些简单应力状态下建立的强度条件是远远不够的。
人们在长期的生产实践中,综合分析材料强度的失效现象,提出了各种不同的假说。
各种假说尽管各有差异,但它们都认为:材料之所以按某种方式失效(屈服或断裂),是由于应力、应变或应变能密度等诸因素中的某一因素引起的。
按照这种假说,无论单向或复杂应力状态,造成失效的原因是相同的。
所以可将简单应力状态的实验结果,与复杂应力状态的下材料的破坏联系起来,从而建立了强度理论。
二、 材料破坏的两种基本形式综合分析材料破坏现象,可以认为构件由于强度不足将引起两种破坏形式:(1)脆性断裂:材料破坏前无明显的塑性变形,断裂面粗糙,且多发生在最大正应力作用面上,如铸铁受拉和受扭时的破坏,均属于脆性断裂。
(2)塑性屈服(流动):材料破坏前发生较大的塑性变形,破坏面较光滑,且多发生在最大剪应力作用面上,如低碳钢受拉和受扭时的破坏便属于这类破坏。
三、 工程中常用的几个强度理论1.最大拉应力理论(第一强度理论)该理论认为最大拉应力是引起断裂破坏的主要原因。
即认为不论材料处于简单应力状态还是复杂应力状态,引起材料破坏的原因是它的最大拉应力σ1达到某一极限值,材料就发生断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京林业大学
BEIJING FORESTRY UNIVERSITY
●1997年7月12日,浙江常山县城南开发区一幢5 层住宅楼突然发生中部坍塌,整栋楼内39人中 仅3人幸存
●1994年,青海沟后水库大坝垮塌,淹死下游居 民近300人,失踪几十人 ●1995年12月,四川德阳旌湖开发区一栋7层综 合楼倒塌,造成17人死亡
例1 直径为d=0.1m的铸铁圆杆受力 T=7kNm, P=50kN
[]=40MPa, 用第一强度理论校核强度
T 解:危险点A的应力状态如图 A T
A A
P
P
P 4 50 103 6.37MPa A 0.12
T 16 7000 35.7MPa 3 Wn 0.1
塑性屈服与脆性断裂
北京林业大学
BEIJING FORESTRY UNIVERSITY
POINT LOADS
DISTRIBUTED LOADS
• Hydrostatic Loading
P
• Pressure Vessels • Aerodynamic Wing Loading
P
P(x)
北京林业大学
BEIJING FORESTRY UNIVERSIБайду номын сангаасY
三、关于塑性屈服的强度理论
1、最大剪应力准则(第三强度理论)
强度条件 :
1 3
s
ns
北京林业大学
BEIJING FORESTRY UNIVERSITY
2、形状改变比能准则(第四强度理论)
强度条件 :
1 ( 1 2 )2 ( 2 3 )2 ( 3 1 )2 s 2 ns
1
2
( ) 2 2
2
2
6.37 6.37 2 ( ) 35.7 2 39 MPa 32 2 2
1 39 MPa , 2 0, 3 32 MPa 1 安全
例 薄壁圆筒受最大内压时, 测得x=1.8810-4
y=7.3710-4, 用第三强度理论校核其强度
北京林业大学
BEIJING FORESTRY UNIVERSITY
内容提要
研究对象: 受力杆件内危险点处的微立方体 单元。 研究内容: 研究目的: 强度理论的建立和相应的强度条件。 用强度理论校核复杂应力状态的强 度。
北京林业大学
BEIJING FORESTRY UNIVERSITY
一、建立强度理论的基本思想
1 183.1MPa , 2 94.4 MPa , 3 0
1 3 183.1
3
r 3 183.1170 7.70 0 170
所以,此容器不满足第三强度理论, 不安全
北京林业大学
BEIJING FORESTRY UNIVERSITY
BEIJING FORESTRY UNIVERSITY
北京林业大学
BEIJING FORESTRY UNIVERSITY
二、关于脆性断裂的强度理论
1、最大拉应力准则(第一强度理论)
强度条件 :
1
b
nb
北京林业大学
BEIJING FORESTRY UNIVERSITY
2、最大伸长线应变准则(第二强度理论)
“豆腐渣”工程触目惊心 ●1999年1月4日,长200米的重庆綦江彩虹桥垮塌,死
36人,多人受伤失踪
●1998年8月7日,号称“固若金汤”的九江长江大堤发 生 决堤, 事后调查, 大堤里面根本没有钢筋。 朱总理 怒斥为“王八蛋”工程
●1996年初,投资43亿、我国铁路建设史上规模最大的 北京西客站投入使用后,几乎所有的站台都经过封闭 式返修。天篷玻璃、办公大厅和行包房更是大小毛病 不断
北京林业大学
BEIJING FORESTRY UNIVERSITY
●1996年11月底,总投资 3200万元的 210国道改道工程 完工,仅过了两个月,还未交付使用的西延公路就沿 山段就变成翻浆路,路面凸凹不平、柏油不知去向
●1996年8月初,耗资2000万元的南京长江大桥 路面修补完工,专家称10年内无需大修。只 过了2年,此桥又进行了全面维修 ●1998年10月,沈哈高速公路清阳河大桥出现坍 塌,造成 2人死亡、5人重伤 ●1997年3月25日,福建莆田江口镇新光电子有 限公司一栋职工宿舍楼倒塌,死亡35人、重伤 上百人
北京林业大学
BEIJING FORESTRY UNIVERSITY
四、强度理论的应用
1、选用原则
2、题例
结论:
1)对于中、低强度钢,相应断裂韧度较高,允许临界裂纹长度较长, 因而对中、小型零件不会出现裂纹导致的脆断问题,主要考虑常规 强度问题(应用经典强度理论)。 2)对于高强、超高强钢,如果相应断裂韧度较低,允许临界裂纹 长度很短,除应进行常规强度校核外,必须严格检查与控制内含裂 纹长度,利用 断裂准则进行安全校核,因而对结构材料,高强度不 是追求的唯一目标,还应提高其断裂韧性。
( E = 210GPa, [] = 170MPa, = 0.3 ) 解:由广义虎克定律得
A
y
x
E 2.1 x 2 ( x y ) (1.880.37.37)107 94.4MPa 1 10.32
E 2.1 y 2 ( y x ) (7.370.31.88)107 183.1MPa 1 10.32
强度条件 :
1 ( 2 3 ) b
nb
北京林业大学
Failure and Damage
BEIJING FORESTRY UNIVERSITY
北京林业大学
Failure and Damage
BEIJING FORESTRY UNIVERSITY
北京林业大学