传染病模型

合集下载

传染病模型

传染病模型

丹尼尔·伯努利(Daniel Bernoulli,1700-1782)1760年:《天花死亡率新分析以及对预防性接种疫苗的优势研究》;证明了采用接种疫苗方式对于抵抗这种疾病是非常有效的。

引入爱德华·詹纳1796年5月,詹纳接种天花疫苗。

W. Kermack和A.McKendrick Kermack W. O and McKendrick. W. O . A Contribution to the Mathematical Theory of Epidemics, Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 115(772):700-721,January 1927 .SIR模型得到了历史上发生过的大规模的传染病(如孟买1905 ~1906 年发生的瘟疫)数据的有力支持。

常见的传染病模型有:SI,SIS,SIR,SEIR等等SI模型与SIS模型传染源传播途径易感人群S:Susceptible 易感人群I:Infective患者感染率传染S:Susceptible健康人I:Infective患者感染率总人数设为N ,每个患者每天有效接触而感染的人数λ,为日感染率;(),();s t i t 时刻t 健康人群、患者() () s t i t + =1λ213S:Susceptible; I:Infective[()()]i t t i t +∆-λ()()1+=s t i t ()N i t ∆t ∆t 在时间内,患者的改变量:N =→+∆t t t感染人数()s t disi dtλ=()()1s t i t +=0(1)(0)dii i dti i λ=-=0(1)(0)dii i dti i λ=-=01()111ti t ei λ-=⎛⎫+- ⎪⎝⎭1/2t mi i 01t∙t m ~传染病高潮到来时刻101ln 1m t i λ-⎛⎫=- ⎪⎝⎭λ(有效感染数)↓→t m ↑1→⇒∞→i t 1/2t mi i 01t∙SI 模型SIS 模型(伤风)SIR 模型(天花)考虑治愈S:Susceptible; I:Infective一、SI 模型——修正模型1/2t mi i 01t二、SIS 模型S:Susceptible 健康人I:Infective患者感染率传S:Susceptible健康人痢疾,伤风感冒总人数设为N ,每个患者每天有效接触的人数λ,日感染率;(),();s t i t 每天移出的患者占总患者的比例为μ,日治愈率;时刻t 健康人群、患者占总人数的比例为2134S:Susceptible健康人I:Infective患者感染率S:Susceptible健康人二、SIS 模型——模型假设(1)二、SIS 模型——建立模型(2)[()()]i t t i t +∆-λ()N i t ()N i t ∆t ∆t μ∆t 在时间内,λ:每个患者日感染率;μ:日移出率;N :总人数;患者的改变量:N =→+∆t t t感染人数治愈人数()s t t :时间;-0(1)(0)dii i i dt i i λμ⎧=--⎪⎨⎪=⎩()()1+=s t i tλσμ=这种传染病的平均感染期;1μ每天移出的患者占总患者的比例为μ;34在疾病初期,整个感染期内每个患者有效接触而感染的平均人数,称为感染数;二、SIS 模型——建立模型(2)每个患者每天有效接触的人数λ;0R =2,i 0it0R 1<0R 1=0R 1>0R 2.2≈基本再生数:它表示在疾病爆发的初期,所有人群都是易感人群的时候,一个感染者,在他的染病期内平均能传染几个人。

传染病最简单模型

传染病最简单模型

传染病最简单模型:已感染人数 (病人) x(t),每个病人每天有效接触(足以使人致病)人数为λ 有()()()x t t x t x t t λ+∆-=∆ 又设()00x x =,得微分方程dxx dtλ= 解得0()t x t x e λ=SI 模型:区分已感染者(病人)和未感染者(健康人)。

总人数N 不变,λ为日接触率,病人和健康人的比例分别为i(t),s(t)。

则有di si dt λ=,又有s(t)+i(t)=1。

所以有0(1),(0)dii i i i dtλ=-=。

求解出01()11(1)ti t e i λ-=+- ,传染速度最快时刻为101ln(1)mt i λ-=-SIS 模型:传染病无免疫性。

总人数N 不变,病人的日接触率为λ,病人和健康人的比例分别为i(t),s(t),接触数σ(感染期内每个病人的有效接触人数)。

病人日治愈率为μ,所以有diN Nsi Ni dtλμ=- , 0(0)i i =。

由s(t)+i(t)=1,/σλμ=,就推出1[(1)]di i i dt λσ=---。

SIR 模型:传染病有免疫性。

总人数N 不变,病人、健康人和移出者的比例分别为i(t),s(t),r(t) ,病人的日接触率为λ,病人日治愈率为μ,接触数/σλμ=。

且有s(t)+i(t)+r(t)=1。

则有r(0)=r0很小,故000i s +≈。

推出00d ,(0)d d ,(0)d i si i i i ts si s s t λμλ⎧=-=⎪⎪⎨⎪=-=⎪⎩ 经济增长模型;1 )道格拉斯(Douglas)生产函数 Q(t),K(t),L(t),0f 分别表示某地区在t 时刻的产值、资金、劳动力和技术。

静态模型令z=Q/L ,y=K/L ,则z 是每个劳动力产值,y 是每个劳动力投资。

由于z 随y 增加而增长,但增速递减。

)(/0y g f L Q z ==,10,)(<<=ααy y g ,α)/(0L K L f Q =αα-=10),(L K f L K Q 此为Douglas 生产函数。

传染病传播模型

传染病传播模型

传染病传播模型传染病一直是人类面临的严重公共卫生问题之一,了解传染病的传播规律对于控制疫情的蔓延至关重要。

在传染病学领域,研究人员提出了各种传染病传播模型,以帮助我们更好地理解疾病的传播过程。

本文将介绍几种常见的传染病传播模型。

一、SIR模型SIR模型是最经典的传染病传播模型之一,模型中将人群划分为易感者(S),感染者(I)和康复者(R)三个群体。

在SIR模型中,易感者被感染后转为感染者,感染者经过一段潜伏期后康复并具有免疫力。

该模型适用于传染病传播速度较慢且一旦康复后不再感染的情况。

二、SEIR模型SEIR模型在SIR模型的基础上增加了潜伏者(E)这一群体,即将易感者感染后先转化为潜伏者,再由潜伏者成为感染者。

这样的模型更适用于具有潜伏期的传染病,如流感和艾滋病等。

通过引入潜伏者这一群体,SEIR模型可以更准确地反映出疾病的传播过程。

三、SI模型与SIR模型和SEIR模型不同,SI模型只考虑了易感者和感染者这两类人群,即易感者一旦被感染就无法康复并具有免疫力。

SI模型适用于那些一旦感染就无法康复的传染病,比如艾滋病和病毒性肝炎等。

四、SIS模型SIS模型在SI模型的基础上增加了康复者再次成为易感者这一过程,即感染者可以康复但并没有永久的免疫力。

SIS模型适用于那些患者可以反复感染的传染病,如流感和普通感冒等。

五、SEIRS模型在SEIR模型的基础上,SEIRS模型引入了康复者再次成为易感者这一过程,从而更为贴合实际传染病的传播过程。

SEIRS模型适用于那些感染后康复后不具备永久免疫力的疾病。

以上是一些常见的传染病传播模型,每种模型都有其适用的场景和特点。

在实际研究和预测传染病传播过程时,我们可以根据病原体的特性和传播规律选择合适的模型来进行分析和预测,从而更好地控制疫情的蔓延。

传染病模型的研究为我们提供了有效的工具,帮助我们更好地理解传染病的传播机制,为公共卫生工作提供科学依据。

希望在未来的研究中能够进一步完善传染病传播模型,为防控传染病提供更有力的支持。

传染病模型

传染病模型


i
2
时达到)。

a
,可知
i ()
1
1 a
,
0 ,
a 1 a 1
i(t)
i0
1 1 a
i0
0
t
(a 1)
i(t) a 1
a 1
0
t
(a 1)
模型解释
可知 a( a 刻画出该地区医疗条件和卫生水平)为
一个阈值,当 a 1 时,i(t) 0;当a 1时,i(t) 增减
性取决于i0
的大小,但其极限1
x s0 s
由 i0 0, s0 1, 经(8),
x
1
ln(1
x s0
)
0
x
2s0
(s0
1
)
当该地区的卫生和医疗水平不变时, 就不变,这个
比例也不变。
2、群体免疫和预防
由于当 s0
1
时不会蔓延,故降低
s0也是种手段。
由 i0
0 , s0
1 r0
,于是 s0
1
可表示为 r0
1 1
,即通
过群体免疫使初始时刻的移出者比例r0
求出(6)的解为
(6)
i
(s0
i0 )
s
1
ln
s s0
(7)
从(5)中无法得到 s(t) 和 i(t) 的解析解,转到 s i 相平
面上讨论解的性质。
D (s,i) | s 0,i 0, s i 1
i 1
O
1/σ
0
σ
s 1
可根据(5),(7)及上图分析 s(t),i(t),r(t) 的变化情况:
1、无论s0,i0如何,i 0,即病人终将消失。

传染病模型

传染病模型
染病但可能被该类疾病传染的人数;
染病类(Infectives):其数量记为I(t),表示t时刻已经
被感染成病人而且具有传染力的人数;
移出类(Removed):其数量记为R(t),表示t时刻已经从染
病类移出的人数;
Susceptibles
Infectives
模型1
假设 建模
已感染人数(病人)
i (t )
1/ σ 阈值
• s0 < 1 / σ ( P2 ) → i (t )单调降至0
模型4
预防传染病蔓延的手段
传染病不蔓延的条件——
s0 < 1 / σ
• 提高阈值1 / σ ⇒ σ ( = λ / µ ) ↓⇒ λ ↓, µ ↑
λ (日接触率)↓ ⇒ 卫生水平↑ µ(日治愈率)↑ ⇒ 医疗水平↑
• 降低s0 ( s0 + i0 + r0 = 1) ⇒ r0 ↑
t
tm~传染病高潮到来时刻 λ (日接触率)↓ → tm↑
1 − 1 t m = λ ln i 0
t → ∞ ⇒ i →1 ?
病人可以治愈!
模型3
增加假设
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染
SIS 模型
3)病人每天治愈的比例为µ µ ~日治愈率
建模 N [i (t + ∆t ) − i (t )] = λNs (t )i (t ) ∆t − µNi (t ) ∆t
第二部分 建立模型前的准备工作
1. 艾滋病发展阶段
感染
潜伏
发病
死亡
2个 月
8年
1年
每年的新发HIV感染数
年龄段 性别 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 男 13.5 0 10.65 8.18 5.63 4.39 1.24 0 0 0.34 0 0 0 0 合计(千人) 45.06 2000 女 6.44 2.31 2.25 3.43 0.89 0.98 0.89 0.32 0 0.28 0 0 0 0 18.86 男 12.48 0 9.86 7.23 6.5 5.06 1.08 0 0 0.39 0 0 0 0 43.78 2001 女 5.94 1.08 1.73 2.94 0.47 1.26 0.71 0.36 0 0.25 0 0 0 0 15.89 男 21.21 7.83 22.7 24.19 22.51 15.96 8.21 0 0.76 0.73 0 0 0 0 125.5 2002 女 9.02 5.81 7.04 7.79 4.15 3.26 2.22 1.35 0 0.42 0 0 0 0 42.45 男 19.13 5.32 16.14 17.34 18.67 12.27 4.13 0 1.04 0.51 0 0 0 0 96.2 2003 女 8.91 4.75 5.53 6.75 3.73 3.43 1.52 1.3 0 0.42 0 0 0 0 37.9 男 25.7 10.6 20.52 24.78 27.45 18.05 6.35 0 1.84 0.48 0 0 0 0 137.7 2004 女 11.62 7 6.6 8.17 5.42 4.43 2.09 1.91 0 0.58 0 0 0 0 49.65 男 35.95 19.4 28.71 38.62 43.4 29.7 12.58 0.96 3.18 0.55 0 0 0 0 215.5 2005 女 16.64 11.79 10.15 13.12 9.81 7.22 3.53 3.21 0 1.11 0 0 0 0 78.89

04、传染病模型

04、传染病模型

di si i dt 无法求出 i(t ), s(t ) ds 的解析解 si dt i (0) i0 , s (0) s0 在相平面 s ~ i 上 s 1 (通常r (0) r 很小) 研究解的性质 i0 0 0
消去dt 1 di di si i ds s 1 / dt i s s i0 ds si dt 相轨线 i (0) i0 , s (0) s0 1 s i ( s ) ( s0 i0 ) s ln
~ 日接触率 1/ ~感染期
/
~ 一个感染期内每个病人的有效接触 人数,称为接触数。
模型3
di/dt
di 1 / i[i (1 )] dt 接触数
i
1
1
i0
1
1
i
i0
1

0
1-1/
1 i
i0
0
t
0
t
1 1 , 1 i ( ) 0, 1 1
建模
s(t ) i(t ) r (t ) 1
需建立
i(t ), s(t ), r (t )的两个方程
模型4
SIR模型
N[i(t t ) i(t )] Ns(t )i(t )t Ni(t )t N[ s(t t ) s(t )] Ns(t )i(t )t
1 ~阈值 1 i (t )
感染期内有效接触感染的 i0小 i(t )按S形曲线增长 健康者人数不超过病人数
思考
模型4
假设
模型2(SI模型)如何看作模型3(SIS模型)的特例
传染病有免疫性——病人治愈 后即移出感染系统,称移出者 SIR模型

传染病传播模型

传染病传播模型

传染病传播模型随着世界人口的不断增加和人类活动的频繁交流,传染病的传播成为了一个日益严重的问题。

为了更好地理解和应对传染病的传播,科学家们提出了各种传染病传播模型。

本文将介绍几种常见的传染病传播模型,并分析它们的特点和应用。

一、SI模型SI模型是最简单的传染病传播模型之一,其中S表示易感者(Susceptible)、I表示感染者(Infectious)。

在SI模型中,人群中的个体只有在易感者和感染者两种状态之间相互转换。

具体而言,易感者可以通过与感染者接触而被感染,一旦感染,就成为感染者,并在一段时间内具有传播传染病的能力。

然而,在SI模型中,感染者随着时间的流逝不会重新变回易感者。

由于缺乏免疫力的存在,SI模型所描述的传染病在人群中的传播速度通常很快,例如流感等。

二、SIR模型SIR模型是相对复杂一些的传染病传播模型,其中R表示康复者(Recovered)。

和SI模型一样,SIR模型中的人群也被分为易感者、感染者和康复者三个状态。

然而,SIR模型引入了康复者的概念,即感染者经过一段时间的潜伏期后可以康复并具有免疫力。

在SIR模型中,康复者不再具有传播传染病的能力,不会再感染其他人。

与SI模型相比,SIR模型所描述的传染病传播速度相对较慢,且可能经历一次大规模的传播后逐渐衰减。

三、SEIR模型SEIR模型是在SIR模型的基础上进一步扩展的,其中E表示潜伏者(Exposed)。

在SEIR模型中,人群被分类为易感者、潜伏者、感染者和康复者四个状态。

潜伏者是指已经被感染但尚未表现出症状的个体,潜伏期结束后,潜伏者会进一步转化为感染者,并开始传播传染病。

由于潜伏期的存在,SEIR模型所描述的传染病具有一定的潜伏期,并且在人群中的传播速度相对较慢。

四、SIRS模型SIRS模型是对SIR模型的改进,其中S表示易感者、I表示感染者,R表示免疫者(Susceptible-Infected-Recovered-Susceptible)。

传染病的传播模型

传染病的传播模型

传染病的传播模型传染病是指通过直接或间接接触,人与人之间传播的一类由病原体引起的疾病。

了解传染病的传播模型对于控制和预防疾病的传播具有重要意义。

本文将介绍一些常见的传染病传播模型,并对其特点和应用进行分析。

一、接触传播模型接触传播模型是指病原体通过直接接触传播至受感染者的传播方式。

这种传播方式主要包括密切接触和接触传播。

密切接触是指患者和健康人员之间有较长时间的近距离接触,如同居、护理和工作等。

接触传播是指通过接触患者的血液、体液、呕吐物、粪便等体液传播病原体。

二、空气传播模型空气传播模型是指病原体通过空气传播至受感染者的传播方式。

这种传播方式主要包括飞沫传播和气溶胶传播。

飞沫传播是指通过患者咳嗽、打喷嚏等方式,将含有病原体的液体颗粒释放到空气中,进而被他人吸入而导致感染。

气溶胶传播是指患者排出的微小液滴中的病原体随空气流动传播至他人。

三、血液传播模型血液传播模型是指病原体通过血液传播至受感染者的传播方式。

这种传播方式主要包括输血传播、注射传播和性传播。

输血传播是指通过输血过程中病原体传播至受血者的方式。

注射传播是指共用注射器、针头等器械而导致病原体传播的方式。

性传播是指通过性接触传播病原体的方式,特别是对于性传播病毒如艾滋病病毒等。

四、垂直传播模型垂直传播模型是指病原体通过母婴传播至受感染者的传播方式。

这种传播方式主要包括围产儿传播和胎儿传播,即在婴儿在子宫内感染或在分娩过程中被母亲感染。

传染病的传播模型对于制定疾病防控策略具有重要意义。

根据不同传播模型的特点,可以采取相应的预防措施来降低疾病的传播风险。

例如,对于接触传播模型,需要加强个人卫生和环境卫生措施,如勤洗手、保持通风等。

对于空气传播模型,需要加强呼吸道防护,如佩戴口罩等。

对于血液传播模型,需要加强注射安全和性保护等。

对于垂直传播模型,需要加强孕产妇的健康管理和儿童疫苗接种等。

总之,传染病的传播模型多种多样,了解和掌握不同传播模型的特点对于预防和控制疾病的传播至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的估计
提高 r0 s0 i0 r0 1
s0
i0
s
1
ln s s
0
忽略i0
0
群体免疫
ln s0 ln s
s0 s
模型4
被传染人数的估计
记被传染人数比例 x s0 s
1s
s i s ln 0
0
0
s0
i0 0, s0 1
x<<s0
x(1
1
s0
x
2s02
)0
SIR模型
x 1 ln(1 x ) 0
di i
dt i(0) i0
i(t) i0et
ti ?
若有效接触的是病人,则 不能使病人数增加
必须区分已感染者(病人) 和未感染者(健康人)
模型2
假设
建模
区分已感染者(病人,Infective)和易感染 者(健康人,Susceptible)
1)总人数N不变,病人和健康 人
的 比例分别为 i(t), s(t)
s0
i
x 2s (s 1 )
0
0
P1
0 s 1/ s0
s
s0 - 1/ = x 2
小, s0 1
降低s0,提高阈值1/σ降 低被传染人数比例 x
群体免疫和预防
根据对 SIR 模型的分析,当 s0 1 时传染病不会蔓延。所以 为制止蔓延;除了提高卫生和医疗水平,使阈值 1 变大以外,另一
SI 模型
2)每个病人每天有效接触人数为 ~ 日
, 且使接触的健康人致病
接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di dt
i(1 i)
i(0)
i 0
模型2
di
dt
i(1
i)
Logistic 模型
i
i(0) i0
1
1
i(t)
1/2
1
1 i0
1et
i0
0
tm
t=tm, di/dt 最大
t
tm
1
ln
1 i
0
1
tm~传染病高潮到来时刻
(日接触率) tm
模型3
传染病无免疫性——病人治愈成为
健康人,健康人可再次被感染
SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
传染病模型
2。考虑接触率、日治愈率随时间变化时如何?
模型5
传染病有免疫性——病人治愈后 即移出感染系统;传染病流行期 间,人口出生率为常数。不考虑 死亡、人口迁移。
传染病模型
假设 1)传染病流行期间,人口出生率为常数 k
2)传染病流行期间,病人、健康人和移出
1s
P1: s0>1/σ i(t)先升后降至0 P2: s0<1/σ i(t)单调降至0
传染病蔓延 传染病不蔓延
1/σ~ 阈值
模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
问题
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
模型1
假设 建模
已感染人数 (病人) i(t)
• 每个病人每天有效接触
(足以使人致病)人数为
i(t t) i(t) i(t)t
N[s(t t) s(t)] Ns(t)i(t)t
di
dt
si
i
ds
dt
si
无法求出 i(t), s(t)
的解析解
i(0) i0 , s(0) s0
在相平面 s ~ i 上
研究解的性质
i0 s0 1(通常r(0) r0很小)
模型4
SIR模型
di dt
si
i
ds dt
si
消去dt
/
di
ds
1
s
1
i
i
s s0
0
相轨线
i(0) i0 , s(0) s0 相轨线 i(s) 的定义域
1s
i(s)
(s0
i
i0 )
s
ln
s0
1
D {(s,i) s 0, i 0, s i 1}
在D内作相轨线 i(s)
的图形,进行分析
D 0
s
1
模型4 相轨线 i(s)及其分析
SIR模型
di dt
si
i
ds
dt
si
di
ds
1
s
1
i 0 i0
i
1
D
i(s)
(s0
i0
)
s
1
ln
s s0
i(0) i0 , s(0) s0
P4
s(t)单调减相轨线的方向 im
s 1/ , i im t , i 0
P2
P1
P3
s满足
s0
i0 s
1
ln
s s0
0
0
s S0 1/ s0
di dt
i(1
i)
i
i(0) i0
~ 日接触率 1/ ~感染期
/
~ 一个感染期内每个病人的有
效接触人数,称为接触数。
模型3
di/dt
di i(1 i) i /
dt
i
>1
i0
>1
1-1/
di i[i (1 1 )]
dt i
1
i0 di/dt < 0
0
1-1/ 1 i
i0
0
i()
1
1
,
1
0,
1
1 i0小 i(t)按S形曲线增长
t
0
t
接触数 =1 ~ 阈值
1 i(t)
感染期内有效接触感染的 健康者人数不超过病人数
模型2(SI模型)如何看作模型3(SIS模型)的特例
模型4
传染病有免疫性——病人治愈后即移 出感染系统,称移出者(Removed) SIR模型
假设 1)总人数N不变,病人、健康人和移出
者的比例分别为 i(t ), s(t), r(t)
2)病人的日接触率 , 日治愈率, 接触数 = /
建模 s(t) i(t) r(t) 1
需建立 i(t ), s(t ), r (t ) 的两个方程
模型4
SIR模型
N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
个途径是降低 s0 ,这可以通过比如预防接种使群体免疫的办法做到。
忽略病人比例的初始值 i0 ,有 s0 1 r0 。于是传染病不会蔓
延的条件 s0 1 可以表为
r0
1
1
(20)
这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫者比
例) r0 满足(20)式,就可以制止传染病的蔓延。
问题: 1。考虑人口出生率时如何?
传染病模型
20世纪初,霍乱、天花经常在世界上的 某些地区流行,虽然现在这些病在世界上 已基本灭绝,但其它的烈性传染病还不时 在一些不发达的贫穷国家爆发流行,而象 爱滋病、SARS等更是经常在世界上引起恐 慌。所以,建立传染病的数学模型来描述 传染病的传播过程,分析受感染人数的变 化规律,预报传染病高峰的到来等等,一 直是各国有关专家和官员关注的问题。
相关文档
最新文档