安德森《商务与经济统计》(第10版)(上册)课后习题详解(关于总体方差的统计推断)

安德森《商务与经济统计》(第10版)(上册)课后习题详解(关于总体方差的统计推断)
安德森《商务与经济统计》(第10版)(上册)课后习题详解(关于总体方差的统计推断)

单因素方差分析和多因素方差分析简单实例

单因素方差分析实例 [例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。 问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体 在SPSS 中进行方差分析的步骤如下: (1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数 值型),G=1、2、3 表示第一组、第二组、第三组。然后录入相应数据,如图6-66所示 图6-66 方差分析数据格式 (2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对 话框(如图6-67所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。单击[OK]按钮完成。

图6-67 方差分析对话框 (3)分析结果如下: 因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。 多因素方差分析 [例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产 量,观测到的产量如表6-31所示。试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为: (1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作 者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。录入相应数据,如图6-68所示。 图6-68 双因素方差分析数据格式 (2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。单击[OK]按钮

阿伦方差的定义以及计算方法和物理意义

阿伦方差的定义以及计算方法和物理意义 1. 阿伦方差的定义,计算方法以及物理意义。 David AIlan于1966年提出了Allan方差,最初该方法是用于分析振荡器的相位和频率不稳定性,高稳定度振荡器的频率稳定度的时域表征目前均采用Allan方差。由于陀螺等惯性传感器本身也具有振荡器的特征,因此该方法随后被广泛应用于各种惯性传感器的随机误差辨识中。 Allan方差的基本原理如下:设系统采样周期为τ,连续采样N个数据 点.Y(i),i=1,2,3…N。对任意的时间r=mτ,m=1,2…N/2,由式(1)求改族时间内各点的均值序列Y(K),由式(2)求取差值序列D(K). KM,,1 Yi(),JK,Y(K)=1/M K=1,2…N-M+1 (1) D(K)=Y(K+M)-Y(K) K=1,2…N-2M+1 (2) 普通AlIan方差的定义如式(3)。其中<>表示取均值,σ=1,2,?, Round((N,m)-1)。 2 2(τ)=1/2(3) ,yn Allan方差反映了相邻两个采样段内平均频率差的起伏。它的最大优点在于一2,大大缩短了测量的时间。对各类噪声的幂律谱项都是收敛的;此外每组测量N 交叠式Allan方差由式(4)计算: 2,yn(τ)=1/2 P=1,2…N-2M+1 (4) 衡量陀螺精度的一个非常重要的指标是陀螺随机漂移(drift),又指偏置稳定性(bias stabil—ity)以及零偏稳定性,不同应用场合对陀螺的漂移精度提出不同的要求。MEMS的随机误差具有慢时变、非平稳的特点,因而对其的辨识更适合采

用Allan方差分析法。然而由于在相同的置信水平之下,交叠式Allan方差分析方法比普通的Allan方差具有更大的置信区间. 所谓频率稳定度是指任何一台频率源在连续运行之后,在一段时期中能产生同一频率的程度,即频率随机起伏的程度。造成频率起伏的根本原因是噪声对信号相位或频率调制的结果。这种调相或调频所引起的频率不稳定度在时域表现为频率随时间的起伏,在频域表现为信号的频谱纯度。时域频率稳定度一般用阿伦方差来表征. 频率稳定度最常用的表达式是阿伦方差(Allan variance),根据稳定度时间的长短,分为频率短期稳定度,如lms,lOms,lOOms,ls稳定度等,中长期稳定度,如ls,10s一?,10000s稳定度等。频率短期稳定度和中长期稳定度虽然它们的定义是一样的,但反映的却是信号稳定度方面不同的特性。短期稳定度表征了信号的抖动水平(fluctuation),而中长期稳定度则代表了信号频率随时问的漂移程度(drift)。时域短期频率稳定度在时测量非常困难,甚至是不可能的,但此时进行频域测量则比较容易,因此,可以将测量的频率短期稳定度即相位噪声转换为时域的阿伦方差实现对时域短稳的间接测量。相噪理论和统计学认为,频域的相位噪声和时域的阿伦方差是等效的,如果求得了彼此间的换算关系,可以进一步揭示出各表征量的物理性 2. 用阿伦方差与统计平均及均方差在误差描述方面的差异,以及各自的优缺点 (1)均方差也叫标准差,方差开根号为均方差,工程中其量纲与变量一致,应用较广. 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差典型例题

方差典型例题 【例1】选用恰当的公式,求下列各数据的方差。 (1)-2,1,4 (2)-1,1,2 (3)79,81,82 分析:由于(1)中各数据及它们的平均数为较小整数,因此选用公式: 求方差较简便;(2)中各数据虽为较小整数,但 它们的平均数为分数,因此选用公式:求方差较简便;(3)中数据较大且接近80,因此取运用公式: 求方差较简便。 答案:(1);(2);(3) 【例2】甲、乙两人在相同条件下,各射靶10次,每次射靶的成绩情况如图所示, (1)请填写下表:

①从平均数和方差相结合看; ②从平均数和中位数相结合看(分析谁的成绩好些); ③从平均数和命中9环以上次数相结合看(分析谁的成绩好些); ④从折线图上两人射击命中环数的走势看(分析谁更有潜力) 解:(1)略; (2)①∵平均数相同,,∴甲的成绩比乙稳定; ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些; ③∵平均数相同,命中9环以上环数甲比乙少,∴乙的成绩比甲好些; ④甲成绩的平均数上下波动,而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力。 【例3】某工人加工一种轴,轴的直径要求是20±5毫米,他先加工了8件,量得直径分别为(单位:毫米):19.7、20.2、19.6、19.8、20.2、20.3、19.8、20.0。当他加工完10件后,发现这10件的直径平均数为20毫米,标准差为0.3毫米,请问此工人最后加工的两件轴的直径符合要求吗?为什么? 分析:要想作出正确的判断,需首先根据已知的平均数和标准差求出最后加工的两件轴的直径。 解:此工人最后加工的两件轴中,只有一件的直径符合要求。 设最后加工的两件轴的直径分别为毫米,毫米(≤),令,,取,则。 由得: 由得: ∴有方程组,解得: ∴, 因此该工人最后加工的两件轴中有一件是符合要求的(直径为19.8毫米的),一件是不符合要求的(直径为20.6毫米的)。

SPSS方差分析案例实例

SPSS 第二次作业——方差分析 1、案例背景: 在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。 2、案例所需资料及数据的获取方式和表述,变量的含义以及类型: 所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分; 获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据; 变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。 表1如下: 3、分析方法: 用方差分析的方法对四个总体的平均数差异进行综合性的F 检验。 4、数据的检验和预处理: a) 奇异点的剔除:经检验得无奇异点的剔除; b) 缺失值的补齐:无; c) 变量的转换(虚拟变量、变量变换):无; d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。 正态性,用QQ 图进行分析得下图: 教师 题目 1 2 3 a 27.3 28.5 29.1 b 29.0 29.2 28.3 c 26.5 28.2 29.3 d 29.7 25.7 27.2

得到近似满足正态性。 ?对方差齐性的检验: 用SPSS对方差齐性的分析得下表: Test of Homogeneity of Variances 分数 Levene Statistic df1 df2 Sig. .732 2 9 .508 易知P〉0.05,接受方差齐性的假设。 5、分析过程: a) 所用方法:单因素方差分析;方差分析中的多重比较。 b) 方法细节: ●单因素方差分析 第一步,提出假设: H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同) H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:

方差分析选择题及答案

第10章方差分析与试验设计 三、选择题 1.方差分析的主要目的是判断()。 A. 各总体是否存在方差 B. 各样本数据之间是否有显著差异 C. 分类型自变量对数值型因变量的影响是否显著 D. 分类型因变量对数值型自变量的影响是否显著 2.在方差分析中,检验统计量F是()。 A. 组间平方和除以组内平方和B. 组间均方除以组内均方C. 组间平方除以总平方和D. 组间均方除以总均方 3.在方差分析中,某一水平下样本数据之间的误差称为()。A. 随机误差B. 非随机误差C. 系统误差D. 非系统误差 4.在方差分析中,衡量不同水平下样本数据之间的误差称为()。A. 组内误差B. 组间误差C. 组内平方D. 组间平方 5.组间误差是衡量不同水平下各样本数据之间的误差,它()。A. 只包括随机误差 B. 只包括系统误差 C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差 6.组内误差是衡量某一水平下样本数据之间的误差,它()。A. 只包括随机误差 B. 只包括系统误差 C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差 7.在下面的假定中,哪一个不属于方差分析中的假定()。 A. 每个总体都服从正态分布B. 各总体的方差相等

C. 观测值是独立的 D. 各总体的方差等于0 8.在方差分析中,所提出的原假设是210:μμ=H = ···=k μ,备择假设是( ) A. ≠≠H 211:μμ···k μ≠ B. >>H 211:μμ···k μ> C. <

方差分析公式

方差分析公式 (2012-06-26 11:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analysis of variance,简写为ANOV或ANOVA)可用于两个或两个以上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的μ1,μ2,……μk是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6 完全随机设计的多个样本均数比较的方差分析公式变异来源离均差平方和SS 自由度v 均方MS F 总ΣX2-C* N-1 组间(处理组间)k-1 SS组间/v组间MS组间/MS组间 组内(误差)SS总-SS组间N-k SS组内/v组内 *C=(ΣX)2/N=Σni,k为处理组数 表19-7 F值、P值与统计结论 αF值P值统计结论 0.05 <F0.05(v1.V2)>0.05 不拒绝H0,差别无统计学意义 0.05 ≥F0.05(v1.V2)≤0.05 拒绝H0,接受H1,差别有统计学意义 0.01 ≥F0.01(v1.V2)≤0.01 拒绝H0,接受H1,差别有高度统计学意义

方差分析计算的统计量为F,按表19-7所示关系作判断。

例19.9 某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别? 表19-8 某湖水不同季节氯化物含量(mg/L)X ij 春夏秋冬 22.6 19.1 18.9 19.0 22.8 22.8 13.6 16.9 21.0 24.5 17.2 17.6 16.9 18.0 15.1 14.8 20.0 15.2 16.6 13.1 21.9 18.4 14.2 16.9 21.5 20.1 16.7 16.2 21.2 21.2 19.6 14.8 ΣX ij j 167.9 159.3 131.9 129.3 588.4(ΣX)n i8 8 8 8 32(N) X i20.99 19.91 16.49 16.16 ΣX2ijj 3548.51 3231.95 2206.27 2114.11 11100.84(ΣX2)H0:湖水四个季节氯化物含量的总体均数相等,即μ1=μ2=μ3=μ4 H1:四个总体均数不等或不全相等 α=0.05 先作表19-8下半部分的基础计算。 C= (Σx)2/N=(588.4)2/32=10819.205 SS总=Σx2-C=11100.84-10819.205=281.635 V总=N-1=31 V组间=k-1=4-1=3 SS组内=SS总-SS组间=281.635-141.107=140.465

数据的分析知识点总结与典型例题

数据的分析知识点总结 与典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

目录 数据的分析知识点总结与典型例题 一、数据的代表 1、算术平均数: 把一组数据的总和除以这组数据的个数所得的商. 公式:n x x x n +???++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使 用该公式计算平均数. 2、加权平均数: 若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则 n n n w w w w x w x w x +???+++???++212211,叫做这n 个数的加权平均数. 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时, 一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度. 常见的权:1)数值、2)百分数、3)比值、4)频数等。 3、组中值:(课本P128)

数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据. 4、中位数: 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半. 5、众数: 一组数据中出现次数最多的数据就是这组数据的众数. 特点:可以是一个也可以是多个. 用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量. 6、平均数、中位数、众数的区别: 平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义. ※典型例题: 考向1:算数平均数 1、数据-1,0,1,2,3的平均数是(C) A.-1 B.0 C.1 D.5

方差分析练习题

1.(20分)一研究者为了研究市场环境对企业战略行为的影响对MBA学员做了一个模拟实验。60名学员每人管理一个企业,以利润最大化为目标模拟经营。模拟一段时间后,市场环境发生变化。学员随机分为3组,其中第一组为对照组,第二组市场环境转变为恶性竞争,第三组市场环境为合作竞争。在新环境下继续模拟。研究者收集了每个学员在市场环境变化前后的市场份额和利润率数据,形成两个分析指标: Y1: 环境变化后市场份额/环境变化前市场份额*100(Y1=100意味着环境变化前后市场份额无变化) Y2: 环境变化后利润率/环境变化前利润率*100(Y2=100意味着环境变化前后该企业利润无变化) 然后,对这两个指标做多响应变量方差分析,并做LSD多重均值比较。研究者还担心MBA学员工作经历不同可能影响分析结果,特别设计了一个反映工作经历的指标EXP,作为协变量。SPSS输出结果如下。请回答下列问题: (1)解释以下各输出图表的含义 (2)从输出结果中你能得出什么结论?

2.(20分)为了帮助人们找到更好的工作,某市政府制定了一个培训计划。为了检验该计划是否达到预期目的,研究者收集了参加培训和未参加培训人员(对照组)样本数据,做了一个单因素分析。响应变量为incomes after the program,因素为培训状态变量prog,prog=0-未参加培训,prog=1-参加培训。考虑到培训前工资可能对结果产生影响,引入协变量:incbef (培训前工资)。软件分析输出结果如下: Tests of Between-Subjects Effects(协变量调 整前) Dependent Variable: Income after the program Source Type III Sum of Squares df Corrected Model 5136.897(a) 1 Intercept 277571.145 1 prog 5136.897 1 Error 16656.454 998 Total 297121.000 1000 Corrected Total 21793.351 999 a R Squared = .236 (Adjusted R Squared = .235) Tests of Between-Subjects Effects(协变量调 整后) Dependent Variable: Income after the program Source Type III Sum of Squares df Corrected Model 12290.741(a) 2 Intercept 131.400 1 incbef 7153.844 1 prog 4735.662 1 Error 9502.610 997 Total 297121.000 1000 Corrected Total 21793.351 999 a R Squared = .564 (Adjusted R Squared = .563) (1)分别对协变量调整前和协变量调整后的方差分析结果做假设检验, (2)你认为在此分析中是否应该引入协变量?为什么? (3)下表是协变量调整后方差分析的参数估计表,从该表中你能得出什么结论? Parameter Estimates Dependent Variable: Income after the program Parameter B Std. Error t Sig. 95% Confidence Interval Partial Eta

期望 方差公式的证明全集

期望与方差的相关公式的证明 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑ ∞ =1 <∞时, 则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑ ∞ =1 =∞,则数学期望不存在。 [] 1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量取值的

概率论与数理统计:协方差和相关系数

协方差和相关系数 对二维随机变量),(Y X ,我们除了讨论X 与Y 的期望和方差之外,还 需讨论X 与Y 之间相互关系的数字特征,本节主要讨论这方面的数字特征。 § 协方差和相关系数 协方差的定义与性质 定义 设(,)X Y 是二维随机变量.若{[()][()]}E X E X Y E Y --存在,则称它为随 机变量 X 与Y 的协方差,记为Cov(,)X Y ,即 Cov(,){[()][()]}X Y E X E X Y E Y =--. 常用下面的式子计算协方差 Cov(,){[()][()]}X Y E X E X Y E Y =--()()()E XY E X E Y =-. 注:(1)X 与Y 的协方差),(Y X Cov 实质上是二维随机变量X 与Y 的函数 )]([()]([(Y E Y X E X -?-的期望,它是一个常数。 (2)当),(Y X 为二维离散型随机变量时,其分布律为 }{),2,1,,2,1(,, =====j i y Y x X P P j i ij ,则 ij i i j i P Y E y X E x Y X Cov )]()][([),(1 1 --= ∑∑∞=∞ =; (3)当),(Y X 为二维连续型随机变量时,),(y x f 为),(Y X 的联合概率密度函数,则dxdy y x f Y E y X E x Y X Cov ),())(())((),(--= ?? +∞∞-+∞ ∞ -。 (4)利用期望的性质可得到协方差有下列计算公式: )()()(),(Y E X E XY E Y X Cov -= 证明: ) ()()( )()()()()()()( )] ()()()([ )] ())(([(),(Y E X E XY E Y E X E Y E X E Y E X E XY E Y E X E Y XE Y X E XY E Y E Y X E X E Y X Cov -=+--=+--=--= 此公式是计算协方差的重要公式,特别地取Y X =时,有

方差分析几个案例

方差分析方法 方差分析是统计分析方法中,最重要、最常用的方法之一。本文应用多个实例来阐明方差分析的应用。在实际操作中,可采用相应的统计分析软件来进行计算。 1. 方差分析的意义、用途及适用条件 1.1 方差分析的意义 方差分析又称为变异数分析或F检验,其基本思想是把全部观察值之间的变异(总变异),按设计和需要分为二个或多个组成部分,再作分析。即把全部资料的总的离均差平方和(SS)分为二个或多个组成部分,其自由度也分为相应的部分,每部分表示一定的意义,其中至少有一个部分表示各组均数之间的变异情况,称为组间变异(MS组间);另一部分表示同一组内个体之间的变异,称为组内变异(MS组内),也叫误差。SS除以相应的自由度(υ),得均方(MS)。如MS组间>MS组内若干倍(此倍数即F值)以上,则表示各组的均数之间有显著性差异。 方差分析在环境科学研究中,常用于分析试验数据和监测数据。在环境科学研究中,各种因素的改变都可能对试验和监测结果产生不同程度的影响,因此,可以通过方差分析来弄清与研究对象有关的各个因素对该对象是否存在影响及影响的程度和性质。 1.2 方差分析的用途 1.2.1 两个或多个样本均数的比较。 1.2.2 分离各有关因素,分别估计其对变异的影响。 1.2.3 分析两因素或多因素的交叉作用。 1.2.4 方差齐性检验。 1.3 方差分析的适用条件 1.3.1 各组数据均应服从正态分布,即均为来自正态总体的随机样本(小样本)。 1.3.2 各抽样总体的方差齐。 1.3.3 影响数据的各个因素的效应是可以相加的。 1.3.4 对不符合上述条件的资料,可用秩和检验法、近似F值检验法,也可以经过变量变换,使之基本符合后再按其变换值进行方差分析。一般属Poisson分布的计数资料常用平方根变换法;属于二项分布的百分数可用反正弦函数变换法;当标准差与均数之间呈正比关系,用平方根变换法又不易校正时,也可用对数变换法。 2. 单因素方差分析(单因素多个样本均数的比较) 根据某一试验因素,将试验对象按完全随机设计分为若干个处理组(各组的样本含量可相等或不等),分别求出各组试验结果的均数,即为单因素多个样本均数。 用方差分析比较多个样本均数的目的是推断各种处理的效果有无显著性差异,如各组方差齐,则用F检验;如方差不齐,用近似F值检验,或经变量变换后达到方差齐,再用变换值作F检验。如经F检验或近似F值检验,结论为各总体均数不等,则只能认为各总体均数之间总的来说有差异,但不能认为任何两总体均数之间都有差异,或某两总体均数之间有差异。必要时应作均数之间的两两比较,以判断究竟是哪几对总体均数之间存在差异。 在环境科学研究中,常常要分析比较不同季节对江、河、湖水中某种污染物的含量

统计案例分析典型例题

统计案例分析及典型例题 §抽样方法 1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是 . 答案 200个零件的长度 2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 . 答案①②③ 3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 . 答案3,9,18 4.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= . 答案80 例1某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请 用抽签法和随机数表法设计抽样方案. 解抽签法: 第一步:将18名志愿者编号,编号为1,2,3, (18) 第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的编号; 基础自测

第五步:所得号码对应的志愿者,就是志愿小组的成员. 随机数表法: 第一步:将18名志愿者编号,编号为01,02,03, (18) 第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读; 第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09. 第四步:找出以上号码对应的志愿者,就是志愿小组的成员. 例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k= 10 0001=100将总体均分为10段,每段含100个工人. (5)从第一段即为0001号到0100号中随机抽取一个号l. (6)按编号将l ,100+l ,200+l,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人 的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法并写出具体过程. 解 应采取分层抽样的方法. 3分 过程如下: (1)将3万人分为五层,其中一个乡镇为一层. 5分 (2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300× 15 2 =40(人); 300×155=100(人);300×15 2=40(人); 300× 15 3=60(人), 10分 因此各乡镇抽取人数分别为60人,40人,100人,40人,60人. 12分 (3)将300人组到一起即得到一个样本. 14分

最新方差分析实例

让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异? 1、确定类型 由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。 2、用方差分析方法对三个总体平均数差异进行综合性地F检验 检验步骤如下: 第一步,提出假设: 第二步,计算F检验统计量的值: 因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。 ①根据表6.4的数据计算各种平方和为: 总平方和: 组间平方和: 区组平方和: 误差平方和:

②计算自由度 总自由度: 组间自由度: 区组自由度: 误差自由度: ③计算方差 组间方差: 区组方差: 误差方差: ④计算F值 第三步,统计决断 根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的值为,即P(F >10.9)<0.01, 样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。 3、用q检验法对逐对总体平均数差异进行检验 检验步骤如下: 第一步,提出假设: 第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值:

在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即: 以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示: 第三步,统计决断 为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为: A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。 根据,得到当a=2时,q检验的临界值为 ; 当a=3时,q检验的临界值为;将表(6.5)中的q检验统计量的值与q临界值进行比较,得到表(6.6)中的3次测验成绩各对平均数之间的比较结果:表6.6 3次测试各对样本平均数之差q值的比较结果

方差分析公式

方差分析公式 (20PP-06-2611:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analPsisofvarianee ,简写为ANOV或ANOV A可用于两个或两个以 上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态 分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完 全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的卩1,卩2,……卩k是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6完全随机设计的多个样本均数比较的方差分析公式 GC=(艺G) 2/N=艺ni , k为处理组数 方差分析计算的统计量为F,按表19-7所示关系作判断。 例19.9某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有 无差别? 表19-8某湖水不同季节氯化物含量(mg/L)

SS 加刖=丄 和 ' 10619.265^ 170 HO:湖水四个季节氯化物含量的总体均数相等,即 卩仁卩2=卩3=卩4 H1:四个总体均数不等或不全相等 a =0.05 先作表19-8下半部分的基础计算。 C=(艺 G ) 2/N= (588.4) 2/32=10819.205 SS 总=艺 G2-C=11100.84-10819.205=281.635 V 总=N-仁31 (工吋 “ 1 广_ (】6二口尸斗/」期.匸尸千 K .IT N "一 - ? r . —I b K V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28 MS 组间二SS 组间 /v 组间=141.107/3=47.057

典型例题分析

典型例题-G-方差分析-2 某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。通过对每个工人生产的产品数进行方差分析,得到如下表所示的结果。 每个工人生产产品数量的方差分析表 (2)若显著性水平为α=0.05,检验三种方法组装的产品数量之间是否有显著差异。 解: (1)完成方差分析表,以表格中所标的①、②、③、④、⑤、⑥为顺序,来完成表格,具体步骤如下: ①求k -1 根据题目中“该企业准备用三种方法组装一种新的产品”可知,因素水平(总体)的个数k =3,所以第一自由度df 1=k -1=3-1=2,即SSA 的自由度。 ②求n -k 由“随机抽取了30名工人”可知,全部观测值的个数n =30,因此可以推出第二自由度df 2=n -k =30-3=27,即SSE 的自由度。 ③求组间平方和SSA 已知第一自由度df 1=k -1=3-1=2,MSA =210 根据公式 1-= = k SSA MSA 自由度组间平方和 所以,SSA =MSA ×(k -1)=210×2=420 ④求总误差平方和SST 由上面③中可以知道SSA =420;此外从表格中可以知道:组内平方和SSE =3836,根据公式SST =SSA +SSE 可以得出SST =420+3836=4256,即总误差平方和SST=4256 ⑤求SSE 的均方MSE 已知组内平方和SSE =3836,SSE 的自由度n -k =30-3=27 根据公式 0741 .142273836 ==-== k n SSE MSE 自由度组内平方和 所以组内均方MSE =142.0741 ⑥求检验统计量F 已知MSA =210,MSE =142.0741 根据 4781.10741.142210 === MSE MSA F 所以F=1.4781

方差分析案例

“地域”与“抑郁” 朱平辉改编自西南财大网(案例分析者刘玲同学) 一、案例简介 美国人作了一项调查,研究地理位置与患抑郁症之间的关系。他们选择了60个65岁以上的健康人组成一个样本,其中20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。对中选的每个人给出了测量抑郁症的一个标准化检验,搜集到表1中的资料,较高的得分表示较高的抑郁症水平。 研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。这种身体状况的人也选出60个组成样本,同样20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。这个研究记录 央视主持人崔永元对外公开其患有抑郁症后,使人们对这种精神疾病有了更多的关注。通过对以上两个数据集统计分析,你能从中看出什么结论?你对该疾病有什么认识? 二、抑郁症的相关知识 抑郁症有两种含义,广义的抑郁症包括情感性精神病、抑郁性神经症、反应性抑郁症、更年期抑郁症等;狭义的则仅指情感性精神病抑郁症。抑郁症在国外是一种十分常见的精神

疾病,据报告,其患病率最高竟占人群的10%左右,而且社会经济情况较好的阶层,患病率越高。世界卫生组织预测,抑郁症将成为21世纪人类的主要杀手。全世界患有抑郁症的人数在不断增长,而抑郁症患者中有10—15%面临自杀的危险……引起抑郁症的原因有很多,为了了解地理位置对抑郁症是否有影响,我们做如下的案例分析: 三、地理位置与患抑郁症之间是否有关系 作为对65岁以上的人长期研究的一部分,在纽约洲北部地区的Wentworth医疗中心的社会学专家和内科医生进行了一项研究,以调查地理位置与患抑郁症之间的关系。选择了60个相当健康的人组成一个样本,其中20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。对中选的人给出了测量抑郁症的一个标准化实验,搜集到表1中的资料,较高的分表示较高的抑郁症水平。 研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。这种状况的人也选出60个组成样本,同样20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。 要求根据所给的样本数据,做出以下管理报告: 描述统计学方法概括说明两部分研究的资料,关于抑郁症的得分,你的初步观测结果是什么? 对两个数据集使用方差分析方法,陈述每种情况下被检验的假设,你的结论是什么? 用推断法说明单个处理均值的合理性 讨论这个研究的推广和你认为有用的其他分析 四、有关统计方法 本案例是通过单因素的方差分析,对各个地区的抑郁症得分均值进行假设检验。分别检验地理位置对健康人群和慢性病患者是否有影响,以及影响程度,进而得出结论。 五、案例分析 首先:数据资料中的数据,并不能直接看出地区与患抑郁症之间有联系与否。我们可以根据所给的样本资料,得到以下信息: (一)健康的被调查者中:佛罗里达地区平均得分=5.55 纽约地区平均得分=8 北卡罗米纳地区平均得分=7.05 (二)患抑郁症的被调查者中:佛罗里达地区平均得分=13.6 纽约地区平均得分=15.25 北卡罗米纳地区平均得分=13.95 (三)我们给出不同地区所有被调查者的平均得分情况 佛罗里达地区平均得分=9.575 纽约地区平均得分=11.625 北卡罗米纳地区平均得分=10.5

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

相关文档
最新文档