有限元 1-2-杆单元
第六章杆系结构

第六章杆件系统结构有限元法杆件系统是由几何特征为长度比横梁面的两个尺寸大很多的杆件连接而成的结构体系。
起重机械和运输机械的动臂、汽车的车架、钢结构等,都是由金属的杆件组成的。
杆件系统的有限元法在机械、建筑、航空、造船等各个工程领域得到了广泛的应用。
若杆件之间由铰相连,并且外载荷都作用在铰节点上,则该体系称为桁架。
有限元中将桁架的单元称为杆单元,即桁架是由仅承受轴向拉压的杆单元的集合。
如果杆件之间是由刚性连接,则该体系是刚架,刚架的单元称为梁单元。
梁单元可以承受轴力、弯矩、剪力及扭矩的作用。
第一节等截面梁单元平面刚架结构——所有杆件的轴线以及所有外力作用线都位于同一平面内,并且各杆件都能在此平面内产生平面弯曲,从而结构的各个节点位移都将发生在这个平面内。
一、结构离散化原则:杆件的交叉点、边界点、集中力作用点、位移约束点、分布力突变的位置都要布置成节点,而不同横截面的分界面和不同材料的分界面都要成为单元的分界面。
平面桁架对于桁架结构,因每个杆件都是一个二力杆,故每个杆件可设置成一个单元。
平面桁架结构每个节点有2个自由度,分别是u 和v ,每个单元有4个自由度。
最大半带宽B=(2+1)×2=6。
一维单元和二维单元的混合应用:左边部分是平面问题的二维板件结构(黑线部分),右面框架部分是一维杆件结构(红线部分)。
xy采用平面4节点四边形单元模拟二维板件,用平面杆单元单元模拟一维杆件结构。
离散化后,共有37个节点,32个单元,其中4节点四边形单元16个,杆单元单元16个。
因为平面4节点四边形单元和平面杆单元单元每个节点都有2个自由度,4节点四边形单元的刚度矩阵是8×8,平面杆单元的刚度矩阵是4×4。
整体刚度矩阵刚[]k 的维数是227474n n ⨯=⨯。
其中部分总刚子块为[](1)(2)(3)(4)777777777722k k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=+++⎣⎦⎣⎦⎣⎦⎣⎦(4)(6)(19)11,1111,1111,1111,1122k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=++⎣⎦⎣⎦⎣⎦⎣⎦最大半带宽B=[(8-2) +1]×2=14。
2_杆系结构有限元分析1

( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e
e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为
2 杆系结构有限元法

{F } = [K ]{δ }
[K ]
称为对应于施加在系统上各节点力的刚度矩阵。
问题: 1、复杂结构其刚度矩阵是多少阶的? 2、如何求出? 3、为什么着重讨论系统的刚度矩阵? 系统的整体刚度矩阵-求出所受外力作 用下各杆件节点处的位移-计算各杆件的 受力和应力
2-2 弹簧系统的刚度矩阵
一、单个弹簧的刚度矩阵
0 u1 = 0 − kb u 2 k b u3
从而可得到定解。通过解上述方程可得到各个节点的位移,利用已求得的位 移就可计算出每个弹簧所受力的大小。
弹簧1-2受力 pa=ka×(弹簧1-2长度的变化量) pa=ka×(u2-u1)
有限元方法求解弹簧系统受力问题的基本步骤: ①形成每个单元的刚度矩阵
(b) F1c
u1=0
2-3 有压力kbu2 F2b = (k a + kb )u2 分别对两弹簧求静力平衡,有 F1b = −k a u 2 , F3b = − kbu2
ka
F2c
u2=0
kb
u3,F3c
3) 只允许节点3有位移u3,类似于情况1),有
F3c = kb u3 , F2 c = − F3c = −kbu3
0 0 0 k 2 22 2 0 k32
0 2 k 23 2 k33
三、方程求解(约束条件的引入)
由式(2-6)和式(2-8)可知,刚度矩阵是一个奇异阵,即它的行列 式的值为零,矩阵的逆不存在。 对应线性代数方程组式(2-7)和式(2-9)无定解。 物理概念解释:对整个系统的位移u1、 u2和 u3,没有加以限制,从而在 任何外力的作用下系统会发生刚体运动。
− ka k a + kb − kb
有限元法(杆系)

Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0
有限元(第二章-杆单元部分)tg

−
1 2 1 2 1 2 1 − 2
−
1 2 1 2 1 2 1 − 2
1 2 1 − 2 1 − 2 1 2
按节点号叠加得6×6阶总刚度矩阵
−1 1 0 0 1 0 1 − 1 0 1 + 2 2 [K ] = 0 0 − 1 2 2 0 0 − 1 2 2 1 0 −1 2 2 0 0 1 − 2 2 1 2 2 1 2 2 1 − 2 2 0 0 0 −1 1 1 − 2 2 2 2 1 1 2 2 2 2 1 1 − 2 2 2 2 1 1 − 1+ 2 2 2 2
2-10 刚度矩阵元素的带状分布
【例】对图(a)中结构分别采用图(b)、图 (c)两种编号方式以观察其刚度矩阵的带宽。
对于图(b)、(c) 编号方式的结构,总刚度矩阵 的非零元素分布分别如下图(a)、(b) 所示。
[K ]
e
λ2 AE λµ = L − λ2 − λµ
λµ µ2 − λµ − µ2
Fx1 1 Fy1 AE 0 = L − 1 F x2 Fy 2 0
即:
0 − 1 0 u1 0 0 0 v1 0 1 0 u 2 0 0 0 v 2
{F }= [K e ]{δ }
求各杆单元的λ和μ的值。Φ角是按 逆时针从x轴正向转到单元ij方向的
三杆受力桁架
单元⑴ 单元⑵ 单元⑶
ϕ = 0 o , λ = 1, µ = 0 ϕ = 90 o , λ = 0 , µ = 1 ϕ = 135 o , λ = −
1 1 ,µ = 2 2
单元刚度矩阵分别为
梁的有限元分析原理 - 考虑剪切变形影响的梁单元

代人
比较:弯曲梁 单元中的单刚
得到:
等截面梁单元有限元分析
8
长沙理工大学
小结
剪切变形的影响通过系数b反映在刚度矩阵中,使刚度减弱。 对矩形截面:
,当l >>h,b趋于0,可以忽略剪力变形的影响。
等截面梁单元有限元分析
9
长沙理工大学
Timoshenko梁单元
铁木辛柯梁单元——采用两个独立变量 挠度 w
几何关系,曲率
对比
等截面梁单元有限元分析
3
最小势能原理
长沙理工大学
k为截面剪切校正因子
1.经典梁单元 2.铁木辛柯梁单元
——C1型单元 ——C0型单元
等截面梁单元有限元分析
4
长沙理工大学
在经典梁单元基础上引入剪切变形的影响. 挠度叠加
结点位移
其中
采用不考虑剪切变形梁单元的w相同的Hermite插值; 采用2结点的Lagrange插值,即线性插值。
解决方法
假设剪切应变
代替插值函数
计算泛函的剪切应变能时,θ采用低一 阶,和dw/dx同阶插值函数代替原插值 函数
18
等截面梁单元有限元分析
长沙理工大学
等截面梁单元有限元分析
——考虑剪切变形的梁单元
2014.4.13
1
长沙理工大学
介绍.
轴力构件 axial elements 杆单元
受弯构件 flexural elements 梁单元
考虑剪切变形的梁单元
等截面梁单元有限元分析
2
长沙理工大学 假设:梁内的横向剪切力Q所产生的剪切变形将引起梁的附加挠度, 并使原来垂直于中面的截面变形后不再和中面垂直,而且发生翘曲。 考虑剪切变形的梁单元 但在这里,假设原来垂直于中面的截面变形后仍保持为平面。 几何描述
有限元单元介绍

第二章单元在显式动态分析中可以使用下列单元:·LINK160杆·BEAM161梁·PLANE162平面·SHELL163壳·SOLID164实体·COMBI165弹簧阻尼·MASS166质量·LINK167仅拉伸杆本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。
除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。
因此,实体单元和壳体单元的缺省算法采用单点积分。
当然,这两种单元也可以采用全积分算法。
详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。
这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。
因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。
线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。
值得注意的是,显单元不直接和材料性能相联系。
例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。
如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。
参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。
也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。
2.1实体单元和壳单元2.1.1 SOLID164SOLID164单元是一种8节点实体单元。
缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。
单点积分的优点是省时,并且适用于大变形的情况下。
当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于SOLID164的详细描述,请参见《ANSYS Element Reference》和《LS-DYNA Theoretical Manual》中的§3.3节。
有限元分析基本步骤

• 截面参数由用另外提供,材料和温度等也另外 提供。
• 对特殊行业,也可建立管单元。
2
• 二维单元
– 分类:面单元和板单元
– 特点:厚度远小于长度和宽度
– 节点连接:节点处铰接,传递平面内的力,不能传递 弯矩
– 形状:三角形或四边形
• 载荷
– 平面单元和板单元只承受平面内的载荷,不能传递力 矩
– 壳单元在节点处固接,可承受垂直于平面的载荷,可 传递任意方向的力并可传递弯矩和扭矩
• 如模块盒底板可建立壳单元
• 厚度尺寸和其他参数另外提供
3
• 三维单元
– 不能简化为二维问题的连续体。节点处铰 接,只传递力不能传递扭矩。单元形状为 六面体、或四面体、五面体。
– 实际问题模型可由多种模型结合。
• 则节点载荷为
{ } [ ] P e = Pxi Pyi Pxj Pyj Pxm Pym T
20
体积力移置
21
l ds
22
23
σ e = Dε e = DBeδ e = S eδ e
{ε}= [B]{δ }e
5. 建立单元刚度矩阵
• 由虚功原理可导出节点力和节点位移的关系。
• 设节点力为
Ui
0
∂Nm
0
∂x
[B]
=
1 2A
0 ∂Ni
∂Ni ∂y ∂Ni
∂x 0 ∂N j
∂N j
∂y ∂N j
∂x 0 ∂Nm
∂Nm ∂y ∂Nm
=
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0
0
cm
cm bm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章杆系单元和杆系结构整体分析2.1杆系单元2.2杆系结构整体分析第2章杆系单元和杆系结构整体分析2.1杆系单元2.2杆系结构整体分析对象、任务对象任务对象:研究有限大小的个体(element)对象研究有限大小的个体任务:1. 建立应变与结点位移分量之间的关系;2. 建立应力与结点位移分量之间的关系;33. 建立结点力与结点位移分量之间的关系;4. 把作用在单元内的外载转化成结点荷载,即单元等效节点力。
一、分离单元1 结构离散取杆件与杆件交点、集中力作用点、杆件与支承的交点为节点。
相邻两节点间的杆件段是单元。
节点编号时力求单元两端点号差最小。
YX2 坐标系有限元中的标系有体标系和局部标系有限元中的坐标系有整体坐标系和局部坐标系。
对于一个结构,整体坐标系一般只有一个;而局部坐标系有很多个,一个单元就有一个局部坐标。
并标系有很多个个单元就有个局部标并且局部坐标系每一个单元的规定都是相同的,这样,同类型单元刚度矩阵相同。
YX杆系结构单元主要有铰接杆单元和梁单元两种类型。
它们都只有2个节点i 、j 。
¾约定:单元坐标系的原点置于节点i ;节点i 到j 的杆轴(形心轴)方向为单元坐标系中x 轴的正向。
y 轴、z 轴都与x 轴垂直,并符合右手螺旋法则。
¾对于梁单元,y 轴和z 轴分别为横截面上的两个惯性主轴惯性主轴。
·x yj·z i土木工程学院有限单元法二、杆单元单元分析维杆单元下图示出了一维铰接杆单元,横截面积为A ,长1、一维杆单元度为l ,弹性模量为E ,轴向分布载荷为p x 。
单元有2,单元坐标为一维坐标轴个结点i ,j ,单元坐标为维坐标轴x 。
··i j x p x u ju i l LINK土木工程学院有限单元法P-8··i x p x j l u ju i LINK⎫⎧=i e u ⎧单元结点位移向量{}⎭⎬⎩⎨j u δ单元结点力向量:⎬⎫⎨=j i e F F F }{⎭⎩(1)位移模式和形函数①位移模式因为只有2个结点,每个结点位移只有1个自由度,因此单元的位移模式可设为:12u a a x =+(3)式中a 1、a 2为待定常数,可由结点位移条件时x =x i 时,u =u ix =x j 时,u =u j确定。
(4)单元刚度方程()虚功原(1) 虚功原理变形体的虚功原理可表述为:设变形体在力系作用下处于平衡状态,又设设变形体在力系作用下处于平衡状态又设变形体由于其他原因产生符合约束条件的微小连续变形则外力在位移上所作外虚功续变形,则外力在位移上所作外虚功T恒等于各个微段的应力合力在变形上所作的内虚功W。
设单元在杆端力为简便计不考虑节间力){F}(为简便计,不考虑节间力) 的作用下处于平衡状态,在某种可能的虚位移影响下,相应的虚应变为杆端虚位移为{d}*,相应的虚应变为{ε}*。
由虚功原理:外力虚功的总和为:T={d}*T {F} {}{}实际应力{σ}在虚应变上所做的内力虚功总和为:∫=VTdVW }{}{*σε将{ε}和{σ}的表达式代入上式得}){]][[][}({*d dV B D B d W VTT ∫=由虚功原理(T W )并考虑到T=W ),并考虑到{d}*T 为任意已知虚位移,整理可得:}){]][[][(}{d dV B D B F T=简写成:V∫式中ee e d K F }{][}{=为单元刚度矩阵的一般表达式。
dVB D B K VTe∫=]][[][][1一维拉杆例1 维拉杆图示阶梯形直杆图示阶梯形直杆,各段长度均为,横截面积分别为3A ,2A ,A ,材料重度为γ,弹性模求结点位移和各量E 。
求结点位移和各段杆中内力。
u525⎧⎤⎫⎧⎡−⎫平面¾2、平面桁架杆单元(2D LINK1)y看成局部坐标下的拉压杆δδδ12δ34ij xl(1)单元坐标单元位移向量⎧⎪⎫⎪1δy {}⎪⎬⎪⎨=32δδδeδ1δ2δδ4ij x⎪⎪⎭⎪⎪⎩4δ313、空间杆单元(3D LINK8)y δ1δ2δ5ij xlzδ4δ3δ6(1)单元坐标单元位移向量{}[]Te654321δδδδδδδ=(18)(2)形函数2 梁单元1、两端承受剪力、弯矩的平面梁单元y yδF i j xi j xδ24lF 24lδ1δ3F1F3(1)局部坐标下单元位移和单元力①单元位移TTev v θθδδδδδ==(24){}[][]j j i i 4321其中其中,v——y(2)位移函数和形函数梁单元内一点有2个位移:v 、θ=d 仅一个位y δδ因为,θd v /d x ;仅个位移是独立的,取v 。
①位移模式i j xδ24l32xa x a x a a x v +++=(28)设单元坐标位移模式为1δ34321)(②形函数由单元两端点的节点位移条件,解出式(28)再代入该式可将位移模式写中的a 1、a 2、a 3、a 4。
再代入该式,可将位移模式写为以下形式:e=N x v }]{[)(δ(29)式中][][4321N N N N N =(30)−=3323N ⎪⎪⎫+−=+232221/)2(/)23(l x lx x l N l x lx l (31)⎪⎪⎬−−=−=2323323//)23(l x lx N l x lx N ⎭4)((3)应变矩阵的关系①单元弯曲应变εb 与节点位移{δ}e的关系。
梁单元上任一点的应变和该点挠度之间关系为:2 d veN x v }]{[)(δ=2vd εy(5)(5)等效节点力对于梁上作用的集中力或集中力矩,在划分单元时可将其作用点取为结点,按结构的节点载荷处理。
这里仅考虑把单元上的横向分布载荷转化为等价节点力问题。
yp y (x)x i j l(36)}dxx N F Tle∫={[]p yp y)(0将形函数矩阵[N]代入上式,积分可得分布荷载的等效结点力表给出了几种特殊情况的等价节点力等效结点力。
表1给出了几种特殊情况的等价节点力。
几种横向分布荷载等价节点力表1荷载分布Q iM i Q j M j q l /2q l 2/12q l /2-q l 2/12i j q3q l /20q l 2/307q l /20-q l 2/20q i j q l /45q l 2/96q l /4-5q l 2/96qij(6) 单元坐标单元刚度矩阵梁单元刚度矩阵公式为[][][][][]dA dxB B E dv B D B k lT Te⎟⎞⎜⎛==][将式(4-34)代入上式进行积分,并注意到A v∫∫∫∫∫∫⎠⎝0∫∫=Az dAy I 2(37)I z ——梁截面对Z 轴(主轴)的惯性矩得单元坐标单元刚度矩阵[k]e:例4 变截面梁4有一变截面梁,一端固定,另一端铰支。
梁长为2l,16h铰支端的截面尺寸为固支端的截面尽寸为b×1.6h,铰支端的截面尺寸为b×h。
求梁端的约束反力。
梁上作用均布载荷pyx离散化荷载等效结点力向量2/20⎪⎫⎪⎧−l p 2/20⎥⎤⎢⎡−−l p 212/12/}{200)1(⎪⎪⎬⎪⎪⎨−−=l p l p F d 322/12/}{200)1(⎥⎥⎥⎢⎢⎢−=l p l p F d 12/0⎪⎭⎪⎩l p 12/0⎦⎣l p ¾约束反力向量1 2 3{}TB A A e R M R F 000}{=⎧⎪⎪⎫⎪⎪⎧−−⎪⎪⎫⎪⎪⎧−−⎪⎪⎫⎪⎪12/2/12/2/200200l p M l p R l p l p M R A A A A ¾总荷载向量⎪⎪⎬⎪⎪⎨−−=⎪⎪⎬⎪⎪⎨−−+⎪⎪⎬⎪⎪⎨=+=0000}{}{}{00l p l p F F F d e ⎪⎪⎭⎪⎪⎩⎪⎪⎭⎪⎪⎩⎪⎪⎭⎪⎪⎩12/2/12/2/0200200l p l p R l p l p R B B00===v v θ引入边界条件,,架单二、用能量原理推导平面刚架,BEAM3θθ]θθ杆端力与杆端位移之间的关系ee[]{}ed K F =}{e即为要推导的单元刚度矩阵[]K 自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。
这些方程通常称为控制方程(Governing equation )。
g q杆端位移列向量Te j j j i i i v u v u d ][} {ϕϕ=杆端力列向量Te M Q N M Q N F =j j j i i i Q Q ][}{杆端力与杆端位移之间的关系eee=[]{}d K F }{即为要推导的单元刚度矩阵[]eK22. 设定单元位移函数位移函数概念由于有限元法采用能量原理进行单元分析,因而必须事先设定位移函数。
“位移函数”也称“位移模式”,是单元内部位移变化的数学表达式,设为坐标的函数。
一般地,位移函数选取会影响甚至严重影响计算结果的精度。
弹性力学中,恰当选取位移函数不是一件容易的事情;但在有限元中,当单元划分得足够小时,把位移函数设定为简单的多项式就可以获得相当好的精确度。
这正是有限单元法具有的重要优势之一。
的精确度这正是有限单元法具有的重要优势之。