高三数学第一次月考数学(理)试题
2024届江苏省镇江市实验高级中学高三下学期第一次月考(数学试题-理)试卷

2024届江苏省镇江市实验高级中学高三下学期第一次月考(数学试题-理)试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3B .2C .1D .02.已知方程1x x y y +=-表示的曲线为()y f x =的图象,对于函数()y f x =有如下结论:①()f x 在()+-∞∞,上单调递减;②函数()()F x f x x =+至少存在一个零点;③()y f x =的最大值为1;④若函数()g x 和()f x 图象关于原点对称,则()y g x =由方程1y y x x +=所确定;则正确命题序号为( ) A .①③B .②③C .①④D .②④3.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .4.已知集合{}{}2340,13A x x x B x x =-->=-≤≤,则R ()A B =( )A .()1,3-B .[]1,3-C .[]1,4-D .()1,4-5.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC ∆的面为S ,且()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A .1B .2C D 6.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=,13PF =,24PF =,则双曲线C 的离心率为A .102B .5C .52D .57.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .108.已知数列{}n a 的首项1(0)a a a =≠,且+1n n a ka t =+,其中k ,t R ∈,*n N ∈,下列叙述正确的是( ) A .若{}n a 是等差数列,则一定有1k =B .若{}n a 是等比数列,则一定有0t =C .若{}n a 不是等差数列,则一定有 1k ≠D .若{}n a 不是等比数列,则一定有0t ≠9.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对10.已知复数z 满足i •z =2+i ,则z 的共轭复数是() A .﹣1﹣2i B .﹣1+2i C .1﹣2iD .1+2i11.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位12.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2e⎛⎫+∞⎪ ⎪⎝⎭B .(,)e +∞C .[,)e +∞D .,2e⎡⎫+∞⎪⎢⎪⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
2021-2022学年陕西省渭南市韩城市西庄中学高三(上)第一次月考数学试卷(理科)(解析版)

2021-2022学年陕西省渭南市韩城市西庄中学高三(上)第一次月考数学试卷(理科)一、选择题(共12小题,每小题5分,共60分).1.已知集合M={y|y=x2﹣1,x∈R},N={x|y=},则M∩N=()A.[﹣1,2]B.[﹣1,+∞)C.[2,+∞)D.∅2.已知a,b∈R,那么是3a<3b成立的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.设函数y=f(x)在x=x0处可导,且=1,则f′(x0)等于()A.﹣B.﹣C.1D.﹣14.函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.函数(﹣π≤x≤π且x≠0)的图象是()A.B.C.D.6.已知函数f(x)=,满足对任意x1≠x2,都有<0成立,则实数a的取值范围是()A.(0,1]B.(0,]C.(0,3]D.(0,)7.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,1)C.(1,+∞)D.(4,+∞)8.已知,则tanα=()A.B.C.D.9.sin20°sin10°﹣cos10°sin70°=()A.B.﹣C.D.﹣10.设,则a,b,c的大小关系为()A.b>a>c B.a>b>c C.c>b>a D.a>c>b11.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f (x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]12.已知f′(x)是奇函数f(x)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本题共4小题,每题5分,共计20分)13.已知P(﹣1,3)为角α终边上的一点,则=.14.函数y=的定义域是.15.已知f(x)在R上是奇函数,且满足f(x+2)=f(﹣x),当x∈(0,2)时,f(x)=2x2,则f(2019)等于.16.有下列说法:①α=﹣5是第一象限角;②函数y=a(x﹣1)+2(a>0,且a≠1)的图象恒过的定点是(0,1);③若α为第三象限角,则终边在二四象限;④终边在y轴上的角的集合是.其中,正确的说法是.三、解答题(本题共6小题,共70分)17.计算下列各值①;②;③sin cos+sin cos.18.设f(x)=log a(1+x)+log a(3﹣x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间[0,]上的最大值.19.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,(万元).在年产量不小于8万件时,(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(Ⅰ)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入﹣固定成本﹣流动成本)(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?20.已知函数f(x)=f'(0)e x+x2﹣(f(0)﹣1)x.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)﹣mx在[1,2]上单调递增,求m的取值范围.21.已知函数f(x)=x4﹣x3﹣x2+cx+1有三个极值点.(1)求c的取值范围;(2)若存在c=27,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.22.已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.参考答案一、选择题(共12小题,每小题5分,共60分).1.已知集合M={y|y=x2﹣1,x∈R},N={x|y=},则M∩N=()A.[﹣1,2]B.[﹣1,+∞)C.[2,+∞)D.∅【分析】求出M中y的范围确定出M,求出N中x的范围确定出N,找出两集合的交集即可.解:由M中y=x2﹣1≥﹣1,得到M=[﹣1,+∞),由N中y=,得到4﹣x2≥0,解得:﹣2≤x≤2,即N=[﹣2,2],则M∩N=[﹣1,2],故选:A.2.已知a,b∈R,那么是3a<3b成立的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【分析】直接利用集合间的关系,进一步利用充分条件和必要条件的应用求出结果.解:由于知a,b∈R,当,整理得0<a<b;故3a<3b,当3a<3b时,整理得:a<b,故那么是3a<3b成立的充分不必要条件,故选:C.3.设函数y=f(x)在x=x0处可导,且=1,则f′(x0)等于()A.﹣B.﹣C.1D.﹣1【分析】变形利用导数的运算定义即可得出.解:∵=(﹣)=(﹣)f′(x0)=1,∴f′(x0)=﹣,故选:A.4.函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【分析】对f(x)进行求导,得到其单调性,再利用零点定理进行判断;解:函数f(x)=x+lnx﹣3,(x>0)∴f′(x)=1+,可得f′(x)>0,f(x)为增函数,f(1)=1+0﹣3=﹣2<0,f(2)=2+ln2﹣3=ln2﹣1<0,f(3)=3+ln3﹣3=ln3>0,∵f(2)f(3)<0,所以f(x)的零点所在区间为(2,3),故选:C.5.函数(﹣π≤x≤π且x≠0)的图象是()A.B.C.D.【分析】判断函数的奇偶性排除选项,利用特殊值判断即可.解:函数(﹣π≤x≤π且x≠0),f(﹣x)=(﹣x+)(﹣sin x)=(x﹣)sin x=f(x),函数是偶函数,排除选项C、D.当x=时,f()=()×<0,排除A,故选:B.6.已知函数f(x)=,满足对任意x1≠x2,都有<0成立,则实数a的取值范围是()A.(0,1]B.(0,]C.(0,3]D.(0,)【分析】根据已知条件及减函数的定义知f(x)在R上是减函数,所以y=a x在(﹣∞,0)上是减函数,y=(a﹣3)x+4a在[0,+∞)上是减函数,所以a x>1,(a﹣3)x+4a≤4a≤1,这样即可得到,解该不等式组即得a的取值范围.解:由已知条件知f(x)在R上是减函数;∴;∴解得0<a;∴a的取值范围为(0,].故选:B.7.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,1)C.(1,+∞)D.(4,+∞)【分析】求出函数的定义域,利用复合函数单调性之间的关系进行求解即可.解:由x2﹣2x﹣8>0得x>4或x<﹣2,设t=x2﹣2x﹣8,则当x>4时,g(x)为增函数,此时y=lnt为增函数,则f(x)为增函数,即f(x)的单调递增区间为(4,+∞),故选:D.8.已知,则tanα=()A.B.C.D.【分析】利用诱导公式和同角的三角函数关系求出sinα、cosα的值,即可求得tanα.解:因为cos(α+)=﹣sinα=,所以sinα=﹣;又因为﹣<α<0,所以cosα==,所以tanα==﹣.故选:D.9.sin20°sin10°﹣cos10°sin70°=()A.B.﹣C.D.﹣【分析】已知利用诱导公式,两角差的正弦函数公式,特殊角的三角函数值即可计算得解.解:sin20°sin10°﹣cos10°sin70°=cos70°•sin10°﹣cos10°sin70°=sin(10°﹣70°)=﹣sin60°=﹣.故选:B.10.设,则a,b,c的大小关系为()A.b>a>c B.a>b>c C.c>b>a D.a>c>b【分析】利用指数函数、对数函数的单调性直接求解.解:∵0=log31<a=log32<log33=1,log32<b=ln2<lne=1,c=>50=1,∴a,b,c的大小为c>b>a.故选:C.11.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f (x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.12.已知f′(x)是奇函数f(x)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)【分析】根据题意构造函数g(x)=,由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(﹣1)=0求出g(﹣1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.解:由题意设g(x)=,则g′(x)=∵当x>0时,有xf′(x)﹣f(x)>0,∴当x>0时,g′(x)>0,∴函数g(x)=在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,g(x)在(﹣∞,0)上递减,由f(﹣1)=0得,g(﹣1)=0,∵不等式f(x)>0⇔x•g(x)>0,∴或,即或,即有x>1或﹣1<x<0,∴使得f(x)>0成立的x的取值范围是:(﹣1,0)∪(1,+∞),故选:B.二、填空题(本题共4小题,每题5分,共计20分)13.已知P(﹣1,3)为角α终边上的一点,则=.【分析】由题意利用任意角的三角函数定义可求sinα,cosα的值,代入所求即可计算得解.解:P(﹣1,3)为α角终边上一点,可得sinα==,cosα=﹣,所以==.故答案为:.14.函数y=的定义域是{x|}.【分析】由根式内部的代数式大于等于0,然后求解三角不等式得答案.解:由2sin x+1≥0,得sin x.∴,k∈Z.∴函数y=的定义域是{x|}.故答案为:{x|}.15.已知f(x)在R上是奇函数,且满足f(x+2)=f(﹣x),当x∈(0,2)时,f(x)=2x2,则f(2019)等于﹣2.【分析】利用奇函数的定义以及已知的恒等式,求出函数的周期,然后利用周期转化f (2019)即可.解:因为f(x)在R上是奇函数,则f(﹣x)=﹣f(x),则f(x+2)=f(﹣x)=﹣f(x),所以f(x+4)=﹣f(x+2)=f(x),故函数f(x)的周期为4,所以f(2019)=f(505×4﹣1)=f(﹣1)=﹣f(1)=﹣2×1=﹣2.故答案为:﹣2.16.有下列说法:①α=﹣5是第一象限角;②函数y=a(x﹣1)+2(a>0,且a≠1)的图象恒过的定点是(0,1);③若α为第三象限角,则终边在二四象限;④终边在y轴上的角的集合是.其中,正确的说法是①③.【分析】利用任意角的概念和性质、指数型函数过定点的性质,逐项判断即可.解:对于①,α=﹣5≈﹣286.5°∈(﹣360°,﹣270°),是第一象限角,①正确;对于②,令x﹣1=0,得y=3,故函数y=a(x﹣1)+2(a>0,且a≠1)的图象恒过的定点(1,3),②错误;对于③,α为第三象限角,则,k∈Z,所以,当k为偶数时,终边落在第二象限,k为奇数时,终边落在第四象限,故③正确;对于④,当k为偶数时,(k∈Z)终边落在x轴上,故④错误.故答案为:①③.三、解答题(本题共6小题,共70分)17.计算下列各值①;②;③sin cos+sin cos.【分析】根据题意,直接计算可得答案.解:①原式=+×=25+4=29;②原式=dx+xdx=×π+=+;③原式=﹣sin cos+(﹣sin)(﹣cos)=(﹣×)+×=0.18.设f(x)=log a(1+x)+log a(3﹣x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间[0,]上的最大值.【分析】(1)由f(1)=2,求出a的值,由对数的真数大于0,求得x的取值范围,即得定义域;(2)化简f(x),考查f(x)在区间[0,]上的单调性,求出最大值.解:(1)∵f(x)=log a(1+x)+log a(3﹣x)(a>0,a≠1),∴f(1)=log a2+log a2=2log a2=2,∴a=2;∴f(x)=log2(1+x)+log2(3﹣x),∴,解得﹣1<x<3;∴f(x)的定义域是(﹣1,3).(2)∵f(x)=log2(1+x)+log2(3﹣x)=log2(1+x)(3﹣x)=log2[﹣(x﹣1)2+4],且x∈(﹣1,3);∴当x=1时,f(x)在区间[0,]上取得最大值,是log24=2.19.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,(万元).在年产量不小于8万件时,(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(Ⅰ)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入﹣固定成本﹣流动成本)(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【分析】(I)根据年利润=销售额﹣投入的总成本﹣固定成本,分0<x<8和当x≥8两种情况得到L与x的分段函数关系式;(II)当0<x<8时根据二次函数求最大值的方法来求L的最大值,当x≥8时,利用基本不等式来求L的最大值,最后综合即可.解:(I)因为每件产品售价为5元,则x(万件)商品销售收入为5x万元,依题意得:当0<x<8时,L(x)=5x﹣()﹣3=﹣x2+4x﹣3,当x≥8时,L(x)=5x﹣(6x+﹣38)﹣3=35﹣(x+),∴L(x)=.(II)当0<x<8时,L(x)=﹣(x﹣6)2+9,此时,当x=6时,L(x)取得最大值9;当x≥8时,L(x)=35﹣(x+)≤35﹣2=15,此时,当x=即x=10时,L(x)取得最大值15;∵9<15,∴年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润是15万元.20.已知函数f(x)=f'(0)e x+x2﹣(f(0)﹣1)x.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)﹣mx在[1,2]上单调递增,求m的取值范围.【分析】(1)求出原函数的导函数,取x=0求得f(0),进一步求得f′(0),则函数解析式可求;(2)把问题转化为g'(x)=e x+2x﹣m≥0在[1,2]上恒成立,分离参数m,再求出函数y=e x+2x在[1,2]上的最小值,则答案可求.解:(1)∵f(x)=f′(0)e x+x2﹣(f(0)﹣1)x,∴f′(x)=f′(0)e x+2x﹣f(0)+1,令x=0,解得f(0)=1,则f(x)=f′(0)e x+x2,令x=0,得f′(0)=f(0)=1,∴f(x)=e x+x2.(2)∵g(x)=f(x)﹣mx=e x+x2﹣mx在[1,2]上单调递增,∴g'(x)=e x+2x﹣m≥0在[1,2]上恒成立,∴m≤e x+2x在[1,2]上恒成立.又∵函数y=e x+2x在[1,2]上单调递增,∴y min=e+2,∴m≤e+2,故m的取值范围为(﹣∞,e+2].21.已知函数f(x)=x4﹣x3﹣x2+cx+1有三个极值点.(1)求c的取值范围;(2)若存在c=27,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.【分析】(1)利用极值点的定义,将问题转化为f'(x)=x3﹣3x2﹣9x+c=0有三个不等的实根,构造函数g(x)=x3﹣3x2﹣9x+c,利用导数研究其性质,列出不等式,求解即可;(2)当c=27时,利用导数求出函数f(x)的单调递减区间,结合题意,列出关于a的不等关系,求解即可.解:(1)因为函数有三个极值点,则f'(x)=x3﹣3x2﹣9x+c=0有三个不等的实根,设g(x)=x3﹣3x2﹣9x+c,则g'(x)=3x2﹣6x﹣9=3(x﹣3)(x+1),当x∈(﹣∞,﹣1)或(3,+∞)时,g'(x)>0,g(x)单调递增,当x∈(﹣1,3)时,g'(x)<0,g(x)单调递减,故,即,解得﹣5<c<27,所以c的取值范围为(﹣5,27);(2)当c=27时,f'(x)=x3﹣3x2﹣9x+27=(x﹣3)2(x+3),由f'(x)<0,可得x<﹣3,所以f(x)在(﹣∞,﹣3)上单调递减,又函数f(x)在区间[a,a+2]上单调递减,所以a+2≤﹣3,故a的取值范围为(﹣∞,﹣5].22.已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【分析】(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可;(II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可.解:(I)当k=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.。
西安中学202届高三数学上学期第一次月考试题理含解析

A。 0B。 4
C. -4D。 -2
【答案】C
【解析】
分析】
分离参数,求齐次式 的最大值。
【详解】由 得 ,而 ( 时取等号),
所以 ,因此要使 恒成立,应有 ,即实数 的最小值等于 .
故选: C。
【点睛】多参数不等式,先确定主元,次元唯一转化为函数问题,次元不唯一可以用基本不等式,也可以降元(分式的分子分母为齐次式是降元的主要特征)。
A。 98项B。 97项C。 96项D。 95项
【答案】B
【解析】
【分析】
由于能被3除余1且被7除余1的数就只能是被21除余1的数,故 ,然后由 可求出 的取值范围,从而可得结果
【详解】能被3除余1且被7除余1的数就只能是被21除余1的数,故 ,
由 得 ,又 ,故此数列共有97项.
故选:B
【点睛】此题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查计算能力,属于基础题
(1)求 、 的通项公式;
(2)数列 中, ,且 ,求 的通项公式.
【答案】(1) , ;(2) 。
【解析】
【分析】
(1)由已知条件结合等差数列和等比数列的通项公式列出方程组
求出公差和公比,从而可求出 、 的通项公式;
(2)先求出 ,而 ,所以 ,然后利用累加法可求出 的通项公式
【详解】(1)设 的公差为 , 的公比为 ,则依题意有
【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程及其应用,旨在考查运算求解能力.
二、填空题:(本大题共4小题,每小题5分)
13. 已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为________。
高三数学理科月考1

12.若函数 的定义域为 ,则实数 的值等于()
A. 1 B.-1 C.-2 D.
二、填空题(每题5分,共20分)
13.设向量 ,向量 ,且 ,则 =
14.观察式子 , , ,则可以归纳出 ___.
15.若 ,则 的值为.
16.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为
(1)求 的分布列和数学期望;
(2)求“ ”的概率。
19.(本题12分)已知二项式 的展开式中前三项的系数成等差数列.
(1)求 的值;
(2)设 .求 的值;
20.(本题12分)一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
2.已知全集 集合 , ,则 为
(A){2,3,4,6} (B){2,4,5,6} (C){2,3,4,6} (D){1,2,3,4}
3.已知等差数列 的通项公式为 ,则 的展开式中含 项的系数是该数列的()
A.第20项B.第19项C.第17项D.第16项
4.箱中有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第四次取球之后停止的概率为()
2013—2014学年度第一学期
高三理科数学第一次阶段考试题
一.选择题(每题5分,共60分)
1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()
A.假设三内角都大于60度;B.假设三内角都不大于60度;
C于60度。
三.解答题(共70分):
2020届江西省信丰中学高三上学期第一次月考数学(理)试题(解析版)

2020届江西省信丰中学高三上学期第一次月考数学(理)试题一、单选题1.全集U =R ,集合{}1,2,3,4,5A =,[)3,B =+∞,则图中阴影部分所表示的集合为( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1【答案】C【解析】根据图中阴影部分所表示的集合为RAB ,然后根据全集U =R ,[)3,B =+∞,求得B R ,再利用交集运算求解.【详解】由图知:图中阴影部分所表示的集合为RA B ,因为全集U =R ,[)3,B =+∞, 所以(),3RB =-∞,又集合{}1,2,3,4,5A =, 所以{}1,2RA B ⋂=,所以图中阴影部分所表示的集合为{}1,2, 故选:C 【点睛】本题主要考查ven 图以及集合的基本运算,还考查了数形结合的思想,属于基础题. 2.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不【答案】A【解析】试题分析:由1k =时,圆心到直线:1l y x =+的距离2d =..所以11222OAB S ∆=⨯=.所以充分性成立,由图形的对成性当1k =-时, OAB ∆的面积为12.所以不要性不成立.故选A. 【考点】1.直线与圆的位置关系.2.充要条件.3.已知集合{}|A x x a =<,{}|12B x x =≤<,且()RA B R =,则实数a 的取值范围是( ) A .1a ≤ B .1a < C .2a ≥ D .2a >【答案】C【解析】先由题意,求出B R,根据()RAB R =,即可得出结果.【详解】因为{}|12B x x =≤<,所以{1RB x x =<或}2x ≥,又{}|A x x a =<,()RA B R =,所以,只需2a ≥. 故选:C. 【点睛】本题主要考查由并集和补集的结果求参数,属于基础题型. 4.已知i 是虚数单位,若32i 2ii i 12iz ++=+-所对应的点位于复平面内 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【解析】由题意计算可得13z i =-,据此确定其所在的象限即可. 【详解】 因为232i 2i (32i)i (2i)(12i)i i 23i i i 13i i 12i i (12i)(12i)z +++++=+=+=-+⋅=---+, 所以该复数位于第四象限,故选D .复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.5.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④【答案】C【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y >不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.【考点】1、不等式的基本性质;2、真值表的应用.6.已知集合{}2|4120A x x x =--<,(){}2|log 10B x x =-<,则AB =( )A .{}|6x x <B .{}|12x x <<C .{}|62x x -<<D .{}|2x x <【答案】B【解析】先解不等式,化简两集合,再求交集,即可得出结果. 【详解】因为{}{}2|4120|26A x x x x x =--<=-<<,(){}{}{}2|log 10|011|12B x x x x x x =-<=<-<=<<,所以{}|12A B x x ⋂=<<. 故选:B. 【点睛】本题主要考查求集合的交集,涉及一元二次不等式的解法,以及对数不等式的解法,属于基础题型.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75C .0.6D .0.45【答案】A【解析】【详解】试题分析:记A =“一天的空气质量为优良”,B =“第二天空气质量也为优良”,由题意可知()()0.75,0.6P A P AB==,所以()()()4|5P ABP B AP A==,故选A.【考点】条件概率.8.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π【答案】B【解析】设正方形边长为a,则圆的半径为2a,正方形的面积为2a,圆的面积为2π4a.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.9.设m,n是不同的直线,α,β,γ是三个不同的平面,有以下四个命题:()①若mα⊥,nβ⊥,则//m n;②若mαγ=,nβγ=,//m n,则//αβ;③若//αβ,//βγ,mα⊥,则mγ⊥;A .①③B .②③C .③④D .①④【答案】A【解析】根据空间线面位置关系的性质和判定定理判断或举出反例说明. 【详解】对①,由于垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,∵////αβγ,当m α⊥时,m γ⊥,故③正确.对④,当三个平面,,αβγ两两垂直时,显然结论不成立,故④错误. 故选:A. 【点睛】本题考查空间线面位置关系的判断,属于中档题.10.设映射f :22x x x →-+是实数集M 到实数集P 的映射,若对于实数t P ∈,t 在M 中不存在原象,则t 的取值范围是( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞【答案】A【解析】根据二次函数的性质,求出22y x x =-+的值域,再由题意,即可求出结果. 【详解】因为映射f :22x x x →-+是实数集M 到实数集P 的映射, 由22y x x =-+,x ∈R 可得()2111y x =--+≤,即集合P 要包含(],1-∞,又对于实数t P ∈,t 在M 中不存在原象, 所以(],1t ∉-∞,因此1t >. 故选:A. 【点睛】本题主要考查映射的相关计算,考查二次函数的值域,属于基础题型.11.已知0a >且1a ≠,函数()(log a f x x =在区间(),-∞+∞上既是奇函A .B .C .D .【答案】A【解析】根据奇函数求出1b =,根据增函数可知1a >,进而判断函数()g x 的图象. 【详解】 解:函数()(2log a f x x x b =++在区间(),-∞+∞上是奇函数,∴()00f =,则1b =,又函数()(2log a f x x x b =+在区间(),-∞+∞上是增函数,∴1a >.所以()log 1a g x x =-,当1x >时,()()log 1a g x x =-为增函数,排除B ,D 选项;当01x <<时,()()log 1a g x x =-为减函数,排除C . 故选:A. 【点睛】本题考查奇函数的特性,复合函数的增减性,对数函数的性质,考查数形结合的思想,分析问题能力,属于基础题.12.设()221x f x x =+,()()520g x ax a a =+->,若对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x = 成立,则a 的取值范围是( )555【答案】C【解析】先对函数()f x 分0x =和0x ≠,运用二次函数的值域求法,可得()f x 的值域,运用一次函数的单调性求出函数()g x 的值域,由题意可得()f x 的值域包含在()g x 的值域内,可得a 的不等式组,解不等式可得a 的取值范围.【详解】∵()221x f x x =+,当0x =时,()0f x =,当0x ≠时,()22111112422x xx f x ==⎛⎫++- ⎪⎝⎭,由01x <≤,即11x ≥,所以2111224x ⎛⎫+-≥ ⎪⎝⎭, ∴()01f x <≤,故()01f x ≤≤, 又因为()()520g x ax a a =+->,且()052g a =-,()15g a =-. 由()g x 递增,可得()525a g x a -≤≤-,对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x =成立, 可得[][]0,152,5a a ⊆--,可得52051a a -≤⎧⎨-≥⎩∴5,42a ⎡⎤∈⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查函数恒成立问题以及函数值域的求法,注意运用转化思想,是对知识点的综合考查,属于中档题.二、填空题13.已知集合{}1,2aA =,{},B a b =.若12A B ⎧⎫=⎨⎬⎩⎭,则A B =______.【答案】11,,12⎧⎫-⎨⎬⎩⎭【解析】根据交集的定义得,a b 的值,即可得答案; 【详解】12A B ⎧⎫=⎨⎬⎩⎭,∴112122a A a ∈⇒=⇒=-,∴12b =,∴{}111,21,,1,22aA B ⎧⎫⎧⎫===-⎨⎬⎨⎬⎩⎭⎩⎭, ∴11,,12AB ⎧⎫=-⎨⎬⎩⎭,故答案为:11,,12⎧⎫-⎨⎬⎩⎭. 【点睛】本题考查集合的并运算,考查运算求解能力,属于基础题.14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________. 【答案】16【解析】十个数中任取七个不同的数共有C 种情况,七个数的中位数为6,那么6只有处在中间位置,有C 种情况,于是所求概率P ==.15.二项式6(2x x展开式中含2x 项的系数是________. 【答案】192-【解析】试题分析:通项为()6116322166212rrr r r r r r T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以1r =,系数为()151612192C -=-.【考点】二项式展开式.16.若函数()()y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-,函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]7,7-内零点的个数有_______个. 【答案】12【解析】先由题意,将函数零点个数问题,转化为函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像在区间[]7,7-内交点的个数问题;画出图像,由图像,即可得出结果. 【详解】由()()()0h x f x g x =-=得()()f x g x =,因此函数()()()h x f x g x =-在区间[]7,7-内零点的个数,即为函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像在区间[]7,7-内交点的个数;因为函数()()y f x x R =∈满足()()2f x f x +=,所以()f x 以2为周期; 又[]1,1x ∈-时,()21f x x =-,在同一直角坐标系内,画出()y f x =与()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩的图像如下,由图像可得,函数()y f x =与函数()()()7log 010x x g x x x ⎧>⎪=⎨-<⎪⎩图像共有12个交点,则函数()()()h x f x g x =-在区间[]7,7-内零点的个数有12个.【点睛】本题主要考查判定函数零点的个数,根据数形结合的方法求解即可,属于常考题型.三、解答题17.设命题p :实数x 满足()()30x a x a --<,其中0a >,命题q :实数x 满足302x x -≤-. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)()2,3;(2)12a <≤.【解析】(1)若1a =,分别求出p ,q 成立的等价条件,利用且p q ∧为真,求实数x 的取值范围;(2)利用p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件,求实数a 的取值范围. 【详解】解:由()()30x a x a --<,其中0a >,得3a x a <<,0a >,则p :3a x a <<,0a >.由302x x -≤-解得23x <≤.即q :23x <≤. (1)若1a =,则p :13x <<,若p q ∧为真,则p ,q 同时为真,即2313x x <≤⎧⎨<<⎩,解得23x <<,∴实数x 的取值范围()2,3.(2)若p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件, ∴332a a >⎧⎨≤⎩,即12a a >⎧⎨⎩,解得12a <≤.【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将p ⌝是q ⌝的充分不必要条件,转化为q 是p 的充分不必要条件是解决本题的关键,属于基础题. 18.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:{sin ,x t C y t αα== (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB 最大值.【答案】(Ⅰ)()330,0,,2⎛⎫ ⎪ ⎪⎝⎭;(Ⅱ)4. 【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为22230x y x +-=.联立222220,{230,x y y x y x +-=+-=解得0,{0,x y ==或3,2{3,2x y ==所以2C 与1C 交点的直角坐标为(0,0)和33(,)2. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为.所以2sin 23AB αα=-4()3sin πα=-,当56πα=时,AB 取得最大值,最大值为4.【考点】1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值.19.已知函数()3f x x a x =--+,a R ∈.(1)当1a =-时,解不等式()1f x ≤;(2)若对于[]0,3x ∈时,()4f x ≤恒成立,求a 的取值范围.【答案】(1)5|2x x ⎧⎫≥-⎨⎬⎩⎭;(2)77a -≤≤.【解析】(1)当1a =-时,不等式为131x x +-+≤,分三段3x <-,31x -≤≤-,1x >-分别讨论求解不等式; (2)当[]0,3x ∈时,原问题转化为772a x -≤≤+对于[]0,3x ∈恒成立,由不等式的恒成立思想可得答案.【详解】解:(1)当1a =-时,不等式为131x x +-+≤,当3x <-时,()()131x x -+--+≤⎡⎤⎣⎦,即21≤,所以x ∈∅;当31x -≤≤-时,()()131x x -+-+≤,即241x --≤,解得52x ≥-,∴512x -≤≤-; 当1x >-时,()()131x x +-+≤,即21-≤,所以1x >-; ∴不等式的解集为5|2x x ⎧⎫≥-⎨⎬⎩⎭.(2)当[]0,3x ∈时,()4f x ≤即437a x x x -≤++=+,即()77x a x x -+≤-≤+对于[]0,3x ∈恒成立,即772a x -≤≤+对于[]0,3x ∈恒成立,而当[]0,3x ∈时,77213x ≤+≤,∴77a -≤≤.【点睛】本题考查绝对值不等式的解法,由不等式恒成立求参数的范围,属于中档题.20.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域为集合A ,关于x 的不等式()3122x a xa R +⎛⎫>∈ ⎪⎝⎭的解集为B ,集合501x C x x ⎧⎫-=≥⎨⎬+⎩⎭,集合{}()|1210D x m x m m =+≤<->.(1)若A B B ⋃=,求实数a 的取值范围;(2)若D C ⊆,求实数m 的取值范围.【答案】(1)(),4-∞-;(2)(]0,3.【解析】(1)根据指数函数性质,先求出[]2,1A =-,解指数不等式,求出,4a B ⎛⎫=-∞- ⎪⎝⎭,根据A B B ⋃=得A B ⊆,由此列出不等式求解,即可得出结果; (2)先解分式不等式,求出(]1,5C =-,根据D C ⊆,分别讨论121m m +≥-,121m m +<-两种情况,即可得出结果.【详解】(1)由对数函数的单调性可得,()4log f x x =在1,416⎡⎤⎢⎥⎣⎦上单调递增, 所以其值域()[]1,42,116A f f ⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦, 又由()3122x a x a R +⎛⎫>∈ ⎪⎝⎭可得:()322x a x -+>,即:3x a x -->,所以4a x <-, 所以,4a B ⎛⎫=-∞-⎪⎝⎭, 又A B B ⋃=所以可得:A B ⊆, 所以14a ->,所以4a ,即实数a 的取值范围为(),4-∞-. (2)因为501x x -≥+,所以有501x x -≤+,所以15x -<≤,所以(]1,5C =-, 对于集合{}|121D x m x m C =+≤<-⊆有:①当121m m +≥-时,即02m <≤时D =∅,满足D C ⊆;②当121m m +<-时,即2m >时D ≠∅,所以有:1123215m m m +>-⎧⇒-<≤⎨-≤⎩, 又因为2m >,所以23m <≤,综上:由①②可得:实数m 的取值范围为(]0,3.【点睛】本题主要考查由并集的结果求参数,考查由集合的包含关系求参数,涉及指数函数与对数函数的性质,以及分式不等式解法,属于常考题型.21.生产某种产品的年固定成本为250万元,每生产x 千件,需要另投入成本为()C x ,当年产量不足80千件时,()3120360C x x x =+(万元),当年产量不小于80千件时,()10000511450C x x x=+-(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式(利润=销售额-成本);(2)年产量为多少千件时,生产该商品获得的利润最大.【答案】(1)3130250080360()10000120080x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)100 千件. 【解析】(1)根据题意,得到x 千件..商品销售额为0.051000x ⨯万元,分别求出080x ≤<和80x ≥两种情况,即可求出函数解析式;(2)根据(1)的结果,用导数的方法和基本不等式,分别求出两段的最值,即可得出结果.【详解】(1)因为每件..商品售价为0.05万元,则x 千件..商品销售额为0.051000x ⨯万元,依题意得,当080x ≤<时,()()310.05100020250360L x x x x =⨯---3130250360x x =-+-; 当80x ≥时,1000010000()(0.051000)5114502501200L x x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭. 即3130250080360()10000120080x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)当080x ≤<时,()3130250360L x x x =-+-. ()21'300120L x x =-+=,60x =±. 此时,当60x =时,()L x 取得最大值()60950L =(万元).当80x ≥时,10000()120012001000L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当10000x x=,即100x =时,()L x 取得最大值1000(万元). 因为9501000<,所以当年产量为100千件时,生产该商品获利润最大.答:当年产量为100 千件时,生产该商品获利润最大.【点睛】本题主要考查函数模型的应用,考查导数的应用,涉及基本不等式求最值,属于常考题型.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I )求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .15012.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.【答案】(I )200,150;(II )(i )0.6826;(ii )68.26. 【解析】试题分析:(I )由频率分布直方图可估计样本特征数众数、中位数、均值、方差.若同一组的数据用该组区间的中点值作代表,则众数为最高矩形中点横坐标.中位数为面积等分为12的点.均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值.(II )(i )由已知得,Z ~(200,150)N ,故()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=;(ii )某用户从该企业购买了100件这种产品,相当于100次独立重复试验,则这100件产品中质量指标值位于区间()187.8,212.2的产品件数(100,0.6826)X B ~,故期望1000.682668.26EX =⨯=.试题分析:(I )抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.22x =⨯+⨯+⨯+2000.332100.242200.08⨯+⨯+⨯+2300.02⨯200=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(II )(i )由(I )知,Z 服从正态分布(200,150)N ,从而()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=.(ii )由(i )可知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826,依题意知(100,0.6826)X B ~,所以1000.682668.26EX =⨯=.【考点定位】1、频率分布直方图;2、正态分布的3σ原则;3、二项分布的期望.。
高三数学第一次月考试卷及解答试题

卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。
第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。
陕西省宝鸡市重点高中2023届高三上学期第一次月考 数学(理)试题

2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(理)试卷 Word版含解析

2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(理科)一、选择题(共10小题,每小题5分)1.设i为虚数单位,复数z满足zi=2+i,则z等于()A. 2﹣i B.﹣2﹣i C. 1+2i D. 1﹣2i2.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=() A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)3.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=() A. 4 B. 3 C. 2 D. 14.某程序框图如图所示,该程序运行后输出的结果是()A. B. C. D.5.已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π) C. D.7.设变量x,y 满足约束条件.目标函数z=ax+2y仅在(1,0)处取得最小值,则a的取值范围为()A.(﹣1,2) B.(﹣2,4) C.(﹣4,0] D.(﹣4,2)8.在航天员进行的一项太空试验中,要先后实施6个程序,其中程序A只能消灭在第一步或最终一步,程序B和C实施时必需相邻,请问试验挨次的编排方法共有()A. 24种 B. 48种 C. 96种 D. 144种9.如图,F1,F2是双曲线C :(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C. 2 D.10.定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b∈[a,b],已知向量,若不等式恒成立,则称函数f(x)在[a,b]上“k 阶线性近似”.若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为() A. [0,+∞) B. C. D.二、填空题(共5小题,每小题5分)11.若在的开放式中,第4项是常数项,则n= .12.随机变量X~N(1,б2),若P(|X﹣1|<1)=,则P(X≥0)= .13.已知||=1,||≤1,且S△OAB=,则与夹角的取值范围是.14.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,π),曲线C的参数方程为(α为参数),则过点M与曲线C相切的直线方程为.15.设函数f(x)=x|x|+bx+c,给出以下四个命题:①当c=0时,有f(﹣x)=﹣f(x)成立;②当b=0,c>0时,方程f (x)=0,只有一个实数根;③函数y=f(x)的图象关于点(0,c)对称④当x>0时,函数f(x)=x|x|+bx+c,f(x)有最小值是c﹣.其中正确的命题的序号是.三、解答题(共6小题,共75分,解答时需要写出必要的文字说明、证明过程或演算步骤.)16.已知函数f(x)=sin2x+cos2x+3(Ⅰ)求f(x)的最小正周期与单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.17.乒乓球赛规定:一局竞赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的竞赛中,每次发球,发球方得1分的概率为,各次发球的胜败结果相互独立,甲、乙的一局竞赛中,甲先发球.(Ⅰ)求开头第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开头第4次发球时乙的得分,求ξ的分布列与数学期望.18.如图,ABCD 是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求二面角F﹣BE﹣D的余弦值;(Ⅱ)设M是线段BD上的一个动点,问当的值为多少时,可使得AM∥平面BEF,并证明你的结论.19.已知P为抛物线C:y2=2px(p>0)的图象上位于第一象限内的一点,F为抛物线C的焦点,O为坐标原点,过O、F、P三点的圆的圆心为Q,点Q到抛物线的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)过点N(﹣4,0)作x轴的垂线l,S、T为l上的两点,满足OS⊥OT,过S及T分别作l的垂线与抛物线C分别相交于A与B,直线AB与x轴的交点为M,求证:M是定点,并求出该点的坐标.20.已知函数f(x)=x(x﹣a)2+b在x=2处有极大值.(Ⅰ)求a的值;(Ⅱ)若过原点有三条直线与曲线y=f(x)相切,求b的取值范围;(Ⅲ)当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,求b的取值范围21.已知数列{a n}满足a1=1,a n+1=2a n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}滿足,证明:数列{b n}是等差数列;(Ⅲ)证明:.2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分)1.设i为虚数单位,复数z满足zi=2+i,则z等于()A. 2﹣i B.﹣2﹣i C. 1+2i D. 1﹣2i考点:复数代数形式的乘除运算.专题:计算题.分析:将zi=2+i变形,可求得z,再将其分母实数化即可.解答:解:∵zi=2+i,∴z====1﹣2i,故选D.点评:本题考查复数代数形式的乘除运算,将其分母实数化是关键,属于基础题.2.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规章解出A∩(∁R B)即可得出正确选项解答:解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,娴熟把握运算规章是解解题的关键3.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=() A. 4 B. 3 C. 2 D. 1考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:利用a4•a14=(a9)2,各项为正,可得a9=2,然后利用对数的运算性质,即可得出结论.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为2,∴a4•a14=(2)2=8,∵a4•a14=(a9)2,∴a9=2,∴log2a7+log2a11=log2a7a11=log2(a9)2=3,故答案为:3.点评:本题考查等比数列的通项公式和性质,涉及对数的运算性质,属基础题.4.某程序框图如图所示,该程序运行后输出的结果是()A. B. C. D.考点:程序框图.专题:图表型.分析:由题意可知,该程序的作用是求解n=的值,然后利用裂项求和即可求解解答:解:由题意可知,该程序的作用是求解n=的值,而.故选C.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构推断出框图的计算功能5.已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:计算题.分析:由于“|a+b|=|a|+|b|”,说明ab同号,但是有时a=b=0也可以,从而进行推断;解答:解:若ab>0,说明a与b全大于0或者全部小于0,∴可得“|a+b|=|a|+|b|”,若“|a+b|=|a|+|b|”,可以取a=b=0,此时也满足“|a+b|=|a|+|b|”,∴“ab>0”⇒“|a+b|=|a|+|b|”;∴“|a+b|=|a|+|b|”是“ab>0”必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题;6.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π) C. D.考点:由三视图求面积、体积.专题:计算题.分析:几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,做出圆锥的高,依据圆锥和圆柱的体积公式得到结果.解答:解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.点评:本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不简洁看出直观图,需要认真观看.7.设变量x,y 满足约束条件.目标函数z=ax+2y仅在(1,0)处取得最小值,则a的取值范围为()A.(﹣1,2) B.(﹣2,4) C.(﹣4,0] D.(﹣4,2)考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义求最值,只需利用直线之间的斜率间的关系,求出何时直线z=ax+2y过可行域内的点(1,0)处取得最小值,从而得到a的取值范围即可.解答:解:作出不等式组对应的平面区域如图:当a=0时,明显成立.当a>0时,直线ax+2y﹣z=0的斜率k=﹣>k AC=﹣1,解得a<2.当a<0时,k=﹣<k AB=2解得a>﹣4.综合得﹣4<a<2,故选:D.点评:本题主要考查线性规划的应用,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.8.在航天员进行的一项太空试验中,要先后实施6个程序,其中程序A只能消灭在第一步或最终一步,程序B和C实施时必需相邻,请问试验挨次的编排方法共有()A. 24种 B. 48种 C. 96种 D. 144种考点:计数原理的应用.专题:计算题.分析:本题是一个分步计数问题,A只能消灭在第一步或最终一步,从第一个位置和最终一个位置选一个位置把A排列,程序B和C实施时必需相邻,把B和C看做一个元素,同除A外的3个元素排列,留意B和C之间还有一个排列.解答:解:本题是一个分步计数问题,∵由题意知程序A只能消灭在第一步或最终一步,∴从第一个位置和最终一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必需相邻,∴把B和C看做一个元素,同除A外的3个元素排列,留意B和C之间还有一个排列,共有A44A22=48种结果依据分步计数原理知共有2×48=96种结果,故选C.点评:本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,留意排列过程中的相邻问题,利用捆绑法来解,不要忽视被捆绑的元素之间还有一个排列.9.如图,F1,F2是双曲线C :(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C. 2 D.考点:双曲线的简洁性质.专题:计算题.分析:依据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.解答:解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+=,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,=+=62+42=52,又=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选A.点评:本题考查双曲线的简洁性质,求得a与c的值是关键,考查转化思想与运算力量,属于中档题.10.定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b∈[a,b],已知向量,若不等式恒成立,则称函数f(x)在[a,b]上“k 阶线性近似”.若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为() A. [0,+∞) B. C. D.考点:函数与方程的综合运用.专题:压轴题;新定义.分析:本题求解的关键是得出M、N横坐标相等,将恒成立问题转化为求函数的最值问题.解答:解:由题意,M、N 横坐标相等,恒成马上k 恒大于等于,则k ≥的最大值,所以本题即求的最大值.由N在AB线段上,得A(1,0),B(2,)AB方程y=(x﹣1)由图象可知,MN=y1﹣y2=x ﹣﹣(x﹣1)=﹣(+)≤(均值不等式)故选D.点评:解答的关键是将已知条件进行转化,同时应留意恒成立问题的处理策略.二、填空题(共5小题,每小题5分)11.若在的开放式中,第4项是常数项,则n= 18 .考点:二项式系数的性质.专题:计算题.分析:利用的开放式的通项公式T r+1=•(﹣1)r••x﹣r,由第4项是常数项即可求得n的值.解答:解:设的开放式的通项公式为T r+1,则T r+1=•(﹣1)r••x﹣r=(﹣1)r••,∵第4项是常数项,∴(n﹣3)﹣3=0,∴n=18.故答案为:18.点评:本题考查二项式系数的性质,着重考查二项开放式的通项公式,属于中档题.12.随机变量X~N(1,б2),若P(|X﹣1|<1)=,则P(X≥0)= .考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:依据X~N(1,σ2),可得图象关于x=1对称,利用P(|X﹣1|<1)=,即可求得结论.解答:解:∵P(|X﹣1|<1)=,∴P(0<X<2)=,∵X~N(1,σ2),∴图象关于x=1对称,∴P(X<0)=∴P(X≥0)=1﹣=,故答案为:点评:本题考查正态分布的特点,是一个基础题,解题时留意正态曲线的对称性和概率之和等于1的性质.13.已知||=1,||≤1,且S△OAB =,则与夹角的取值范围是.考点:数量积表示两个向量的夹角;三角形的面积公式;平面对量数量积的运算.专题:平面对量及应用.分析:设与夹角为θ,(θ∈[0,π]),由于,且,可得=,化为=,再利用,可得.进而解出.解答:解:设与夹角为θ,(θ∈[0,π]),∵,且,∴=,∴=,∵,∴.∴,∴θ.故答案为:点评:本题考查了三角形的面积公式、向量的数量积和夹角公式和计算力量,属于中档题.14.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,π),曲线C的参数方程为(α为参数),则过点M与曲线C相切的直线方程为7x ﹣24y+68=0和x=4 .考点:参数方程化成一般方程.专题:坐标系和参数方程.分析:把参数方程化为直角坐标方程,求出圆心和半径,分切线的斜率不存在、存在两种状况,分别求得切线的方程.解答:解:依据点M的极坐标为(4,π),可得点M的直角坐标为(4,4),把曲线C的参数方程为(α为参数),消去参数化为直角坐标方程为(x﹣1)2+y2=9,表示以(1,0)为圆心、半径等于3的圆.当切线的斜率不存在时,切线的方程为x=4,当切线的斜率存在时,设切线的方程为y﹣4=k(x﹣4),即 kx﹣y+4﹣4k=0,由圆心到切线的距离等于半径,可得 6k2﹣24k﹣13=0,求得k=,故切线的方程为 7x﹣24y+68=0,综上可得,圆的切线方程为:7x﹣24y+68=0和x=4,故答案为:7x﹣24y+68=0和x=4.点评:本题主要考查把参数方程化为直角坐标方程的方法,直线和圆相切的性质,点到直线的距离公式的应用,体现了分类争辩的数学思想,属于基础题.15.设函数f(x)=x|x|+bx+c,给出以下四个命题:①当c=0时,有f(﹣x)=﹣f(x)成立;②当b=0,c>0时,方程f(x)=0,只有一个实数根;③函数y=f(x)的图象关于点(0,c)对称④当x>0时,函数f(x)=x|x|+bx+c,f(x)有最小值是c﹣.其中正确的命题的序号是①②③.考点:命题的真假推断与应用.专题:探究型;函数的性质及应用.分析:①c=0,f(﹣x)=﹣x|﹣x|﹣bx=﹣x|x|﹣bx=﹣f(x),由奇函数的定义推断②b=0,c>0,f(x)=x|x|+c=,依据函数的图象可得结论;③由于f(x)=|x|x+bx为奇函数,所以图象关于(0,0)对称,而f(x)=|x|x+bx+c是把f(x)=|x|x+bx 向上或向下平移了|c|各单位,故可得结论;④当x>0时,函数f(x)=x|x|+bx+c=x2+bx+c,若b≤0,则f(x)有最小值.解答:解:①c=0,f(x)=x|x|+bx,f(﹣x)=﹣x|﹣x|+b(﹣x)=﹣f(x),故①正确;②b=0,c>0,f(x)=x|x|+c=,由于c>0,所以当x>0时,函数顶点在x轴上方且开口向上,图象与x轴无交点,当x<0时,图象顶点在x轴上方且开口向下,图象与x轴只有一个交点,故方程f(x)=0只有一个实数根,命题②正确;③由于f(x)=|x|x+bx为奇函数,所以图象关于(0,0)对称,而f(x)=|x|x+bx+c是把f(x)=|x|x+bx向上或向下平移了|c|各单位,所以y=f(x)的图象关于点(0,c)对称,故命题③正确;④当x>0时,函数f(x)=x|x|+bx+c=x2+bx+c,若b≤0,则f(x )有最小值,故④不正确综上,正确的命题的序号是①②③故答案为:①②③点评:本题综合考查了函数的奇偶性、对称性及函数图象在解题中的运用,要求考生娴熟把握函数的性质,并能机敏运用性质求解.三、解答题(共6小题,共75分,解答时需要写出必要的文字说明、证明过程或演算步骤.)16.已知函数f(x)=sin2x+cos2x+3(Ⅰ)求f(x)的最小正周期与单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦定理.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)利用两角和公式对函数解析式整理后,利用三角函数周期公式求得最小周期,然后利用三角函数性质求得函数的单调增区间.(Ⅱ)利用f(A)的值,求得A,进而利用正弦定理分别表示出b和c,然后利用两角和公式整理后,利用三角函数的性质求得b+c的最大值.解答:解:(Ⅰ)=2sin(2x+)+3 ∴f(x)的最小正周期T==π由得∴f(x )的单调递减区间为,(Ⅱ)由f(A)=4得2sin(2A+)+3=4,sin(2A+)=∵0<A<π,∴<2A+<,∴2A+=,A=,∴又∵===2,∴=∴当时,b+c最大为2点评:本题主要考查两角和公式的运用,正弦定理的应用,三角函数的性质等学问点.考查了同学对三角函数基础学问的综合运用.17.乒乓球赛规定:一局竞赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的竞赛中,每次发球,发球方得1分的概率为,各次发球的胜败结果相互独立,甲、乙的一局竞赛中,甲先发球.(Ⅰ)求开头第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开头第4次发球时乙的得分,求ξ的分布列与数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)记A i为大事“第i次发球,甲胜”,i=1,2,3,则P(A1)=P(A2)=,P(A3)=.“开头第4次发球时,甲、乙的比分为1比2”为大事+A 2+,由此能求出开头第4次发球时,甲、乙的比分为1比2的概率.(2)由题意ξ=0,1,2,3.分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出Eξ.解答:解:(1)记A i为大事“第i次发球,甲胜”,i=1,2,3,则P(A1)=P(A2)=,P(A3)=.“开头第4次发球时,甲、乙的比分为1比2”为大事+A 2+,其概率为P (+A 2+)=2×××+××=,即开头第4次发球时,甲、乙的比分为1比2的概率为.…(6分)(2)由题意ξ=0,1,2,3.P(ξ=0)=××=,P(ξ=1)=2×××+()3=,P(ξ=2)=2×××+××=,P(ξ=3)==,∴ξ的分布列为:ξ 0 1 2 3P所以Eξ=0×+1×+2×+3×=.…(12分)点评:本题考查离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,认真解答,留意概率学问的合理运用.18.如图,ABCD 是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求二面角F﹣BE﹣D的余弦值;(Ⅱ)设M是线段BD 上的一个动点,问当的值为多少时,可使得AM∥平面BEF,并证明你的结论.考点:用空间向量求平面间的夹角;直线与平面平行的判定.专题:计算题;综合题.分析:(Ⅰ)说明DA,DC,DE两两垂直,以D为原点,DA,DC,DE分别为x,y,z轴建立空间直角坐标系D﹣xyz如图所示.求出A,F,E,B,C的坐标,设平面BEF 的法向量为=(x,y,z),利用,求出,说明为平面BDE 的法向量,通过,求出二面角F﹣BE﹣D的余弦值.(Ⅱ)设M(t,t,0).通过AM∥平面BEF ,通过,求出点M坐标为(2,2,0),即可得到的值.解答:解:(Ⅰ)由于DE⊥平面ABCD,所以DE⊥AC.由于ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.所以DA,DC,DE两两垂直,以D为原点,DA,DC,DE分别为x,y,z轴建立空间直角坐标系D﹣xyz如图所示.由于BE与平面ABCD所成角为60°,即∠DBE=60°,所以.由AD=2可知DE=,AF=.则A(3,0,0),F(3,0.),E(0,0,3),B(3,3,0),C(0,3,0),所以,,(8分)设平面BEF 的法向量为=(x,y,z ),则,即,令z=,则=(4,2,).由于AC⊥平面BDE ,所以为平面BDE 的法向量,=(3,﹣3,0),所以==.由于二面角为锐角,所以二面角F﹣BE﹣D 的余弦值为.(8分)(Ⅱ)解:点M是线段BD上一个动点,设M(t,t,0).则,由于AM∥平面BEF ,所以,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),符合题意.(12分)点评:本题考查用空间向量求平面间的夹角,直线与平面平行的判定,空间向量与空间直角坐标系的应用,考查计算力量.19.已知P为抛物线C:y2=2px(p>0)的图象上位于第一象限内的一点,F为抛物线C的焦点,O为坐标原点,过O、F、P三点的圆的圆心为Q,点Q 到抛物线的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)过点N(﹣4,0)作x轴的垂线l,S、T为l上的两点,满足OS⊥OT,过S及T分别作l的垂线与抛物线C分别相交于A与B,直线AB与x轴的交点为M,求证:M是定点,并求出该点的坐标.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)由题意得,由此能示出抛物线C的方程.(Ⅱ)设,由题意推导出A (4,4),B(4,﹣4),直线AB过定点(4,0),由此能证明M为定点(4,0).解答:(Ⅰ)解:由题意得:点Q 的横坐标为,则所以抛物线C的方程为y2=4x.(Ⅱ)证明:设,所以由题意,,当y1+y2=0时,y1=﹣y2,则y1=4,y2=﹣4,A(4,4),B(4,﹣4),直线AB过定点(4,0),当直线AB方程为y﹣y1=.即M(4,0),综上过定点M(4,0).点评:本题考查抛物线方程的求法,考查直线与x轴的交点为定点的证明,解题时要认真审题,留意函数与方程思想的合理运用.20.已知函数f(x)=x(x﹣a)2+b在x=2处有极大值.(Ⅰ)求a的值;(Ⅱ)若过原点有三条直线与曲线y=f(x)相切,求b的取值范围;(Ⅲ)当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,求b的取值范围考点:等比关系的确定;利用导数争辩函数的极值.专题:计算题.分析:(Ⅰ)通过对函数f(x)求导,依据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而依据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知﹣64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,进而可知x3﹣12x2+36x+b<1+45x﹣9x2在x∈[﹣2,4]时恒成立,整理可得关于b的不等式,令h(x)=﹣x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(﹣1),h(3),h(4),进而可知h(x)在[﹣2,4]上的最小值是,进而求得b的范围.解答:解:(Ⅰ)f(x)=x(x﹣a)2+b=x3﹣2ax+a2x+b,f'(x)=3x2﹣4ax+a2,f'(2)=12﹣8a+a2=0,解得a=2,a=6,当a=2时,函数在x=2处取得微小值,舍去;当a=6时,f'(x)=3x2﹣24x+36=3(x﹣2)(x﹣6),函数在x=2处取得极大值,符合题意,∴a=6.(Ⅱ)f(x)=x3﹣12x2+36x+b,设切点为(x0,x03﹣12x02+36x0+b),则切线斜率为f'(x)=3x02﹣24x0+36,切线方程为y﹣x03+12x02﹣36x0﹣b=(3x02﹣24x0+36)(x﹣x0),即y=(3x02﹣24x0+36)x﹣2x03+12x02+b,∴﹣2x03+12x02+b=0∴b=2x03﹣12x02.令g(x)=2x3﹣12x2,则g'(x)=6x2﹣24x=6x(x﹣4),由g'(x)=0得,x1=0,x2=4.函数g(x )的单调性如下:∴当﹣64<b<0时,方程b=g(x)有三个不同的解,过原点有三条直线与曲线y=f(x)相切.(Ⅲ)∵当x∈[﹣2,4]时,函数y=f(x)的图象在抛物线y=1+45x﹣9x2的下方,∴x3﹣12x2+36x+b<1+45x﹣9x2在x∈[﹣2,4]时恒成立,即b<﹣x3+3x2+9x+1在x∈[﹣2,4]时恒成立.令h(x)=﹣x3+3x2+9x+1,则h'(x)=﹣3x2+6x+9=﹣3(x﹣3)(x+1),由h'(x)=0得,x1=﹣1,x2=3.∵h(﹣2)=3,h(﹣1)=﹣4,h(3)=28,h(4)=21,∴h(x)在[﹣2,4]上的最小值是﹣4,b<﹣4.点评:本题主要考查了用导函数求函数的单调性和极值问题.综合性强,难度大,属中档题.21.已知数列{a n}满足a1=1,a n+1=2a n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}滿足,证明:数列{b n}是等差数列;(Ⅲ)证明:.点评:本小题主要考查数列、不等式等基本学问,考查化归的数学思想方法,考查综合解题力量.考点:等差关系的确定;数列递推式.专题:计算题;综合题;压轴题.分析:(Ⅰ)整理题设递推式得a n+1+1=2(a n+1),推断出{a n+1}是等比数列,进而求得a n+1,则a n可求.(Ⅱ)依据题设等式可推断出2[(b1+b2+…+b n)﹣n]=nb n和2[(b1+b2+…+b n+b n+1)﹣(n+1)]=(n+1)b n+1.两式相减后整理求得b n+2﹣b n+1=b n+1﹣b n进而推断出{b n}是等差数列.(Ⅲ)利用(Ⅰ)中数列{a n}的通项公式,利用不等式的传递性,推断出,进而推断出;同时利用不等式的性质推断出,进而代入证明原式.解答:解:(Ⅰ)∵a n+1=2a n+1(n∈N*),∴a n+1+1=2(a n+1),∴{a n+1}是以a1+1=2为首项,2为公比的等比数列.∴a n+1=2n.即a n=2n﹣1∈N*).(Ⅱ)证明:∵∴.∴2[(b1+b2+…+b n)﹣n]=nb n,①2[(b1+b2+…+b n+b n+1)﹣(n+1)]=(n+1)b n+1.②②﹣①,得2(b n+1﹣1)=(n+1)b n+1﹣nb n,即(n﹣1)b n+1﹣nb n+2=0,nb n+2﹣(n+1)b n+1+2=0.③﹣④,得nb n+2﹣2nb n+1+nb n=0,即b n+2﹣2b n+1+b n=0,∴b n+2﹣b n+1=b n+1﹣b n(n∈N*),∴{b n}是等差数列.(Ⅲ)证明:∵,k=1,2,n,∴.∵,k=1,2,…,n,∴,∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南内乡一高高三数学第一次月考数学(理)试题一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. (注意:在试题卷上作答无效)1..已知集合{}1|23,|lg 4x x A y y B x y x -⎧⎫==+==⎨⎬-⎩⎭,则A B =( )A. ∅B.()3,+∞C.()3,4 D. ()4.+∞2.若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为( )A .1B .2 C1 D2 3.命题“存在0x ∈R ,02x ≤0”的否定是w.w.w.k.s.5.u.c.o.m ( )(A )不存在0x ∈R, 02x>0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x>04.“α,β,γ成等差数列”是“sin(α+γ)=sin2β成立”的( )条件A.必要而不充分B.充分而不必要C.充分必要D.既不充分又不必要5.定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,则( ). A. B. C. D.6.设<b,函数的图像可能是( ) ()7.已知函数是上的偶函数,若对于,都有, 且当时,,则(2009)(2010)f f -+的值为A .B .C .D .)(x f (4)()f x f x -=-(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-(11)(80)(25)f f f <<-(25)(80)(11)f f f -<<a 2()()y x a x b =--()f x (,)-∞+∞0x ≥(2()f x f x +=)[0,2)x ∈2()log (1f x x =+)2-1-128.已知O 是ABC 所在平面内一点,D 为BC 的中点,且++=2OA OB OC 0那么( ) (A )=AO OD (B )=AO 2OD (C )=AO 3OD (D )=2AO OD 9.等比数列的前n 项和为,且4,2,成等差数列。
若=1,则=(A )7 (B )8 (C )15 (D )1610.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )A 2πB 83πC 4πD 8π11.公差不为零的等差数列的前项和为.若是的等比中项,,则等于( )A. 18B. 24C. 60D. 90 w.w.w.k.s.5.u.c.o.m12.定义在R 上的函数f(x)满足f(x)=,则f ()的值为( )A.-1B. 0C.1D. 2二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上 (注意:在试题卷上作答无效)13.设,,,,则数列的通项公式= .14.已知⎡⎤π++=∈⎢⎥⎣⎦3sin x cos x a 0在x 0,2内有两相异实根αβα+β=,,则 15.设非零向量、、满足,则cos 16.下列命题中,正确命题的序号是 ①函数y sin x 不是周期函数。
=②函数y tan x =在定义域内是增函数。
③函数1y cos 2x 2=+的周期是2π。
{}n a n s 1a 2a 3a 1a 4s {}n a n nS 4a 37a a 与832S =10S ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x 12a =121n n a a +=+21n n n a b a +=-*n N ∈{}n b nb a bc c b a c b a =+==|,|||||>=<b a ,④函数5y sin(x )2π=+是偶函数。
⑤函数1sin x cos xy 1sin x cos x +-=++是奇函数。
三、解答题:共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (注意:在试题卷上作答无效)17.(10分)已知51cos sin ,02=+<<-x x x π.(I )求sinx -cosx 的值;(Ⅱ)求x x x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.18.(12分)已知定义域为R 的函数12()2x x bf x a +-+=+是奇函数。
(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围; 19.(12分)已知点(1,)是函数且)的图象上一点, 等比数列的前项和为,数列的首项为,且前项和 满足-=+().(1)求数列和的通项公式;(2)若数列{前项和为,问>的最小正整数是多少?w.w.w.k.s.5.u.c.o.m20.(12分)已知2sincos12cos 222θθθ+=,其中)2,0(πθ∈(1)求θsin 和θcos 的值31,0()(>=a a x f x1≠a }{n a n c n f -)(}{n b )0(>n b c n nS n S 1-n S nS 1+n S 2n ≥}{n a }{n b }11+n n b b n n T n T20091000n(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值21、(12分)已知数列的前n 项和(n 为正整数)。
(Ⅰ)令,求证数列是等差数列,并求数列的通项公式;(Ⅱ)令,, 若对于任意2,2n n N x x T +∈+>恒成立,求实数x 的取值集合。
22.(12分)已知函数其中当时,求曲线处的切线的斜率;当时,求函数的单调区间与极值。
{}n a 11()22n n n S a -=--+2n n nb a ={}n b {}n a 1n n n c a n +=12........nn T c c c=+++22()(23)(),xf x x ax a a e x R =+-+∈a R ∈0a =()(1,(1))y f x f =在点23a ≠()f x河南内乡一高高三数学第一次月考数学(理)试题 (参考答案)-9-271选C. 2选B 3解析:由题否定即“不存在Rx ∈0,使020≤x ”,故选择D 。
4答案 B 5选 D. 6[解析]:,由得,∴当时,取极大值0,当时取极小值且极小值为负。
故选C 。
7选C 8选.A 。
9选C. 10【解析】由已知,周期为2,2==w w ππ ,则结合平移公式和诱导公式可知平移后是偶函数,xx 2cos ]4)(2sin[±=++πϕ,故选D11选C 12【解析】:由已知得,,,,,,,,所以函数f(x)的值以6为周期重复性出现.,所以f ()= f (6)=0,故选B13解:由条件得且所以数列是首项为4,公比为2的等比数列,则14答案:π23 ; 15答案-12; 16答案 ① ④17. 解(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得即224492sin x cos x .(sin x cos x)12sin x cos x .2525=--=-=又x 0,sin x 0,cos x 0,sin x cos x 0,2π-<<∴<>-<故.57cos sin -=-x x (Ⅱ)x x x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-/()(32)y x a x a b =---/0y =2,3a bx a x +==x a =y 23a b x +=y 2(1)log 21f -==(0)0f =(1)(0)(1)1f f f =--=-(2)(1)(0)1f f f =-=-(3)(2)(1)1(1)0f f f =-=---=(4)(3)(2)0(1)1f f f =-=--=(5)(4)(3)1f f f =-=(6)(5)(4)0f f f =-=111112222222111n n n n nn n n a a a b b a a a ++++++++====---14b ={}n b 11422n n n b -+=⋅=121108sin x cos x (2cos x sin x)()(2)255125=--=-⨯-=- 18解:(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++ 又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++(Ⅱ)由(Ⅰ)知11211()22221x x xf x +-==-+++,易知()f x 在(,)-∞+∞上为减函数。
又因()f x 是奇函数,从而不等式: 22(2)(2)0f t t f t k -+-< 等价于222(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得: 2222t t k t ->-.即对一切t R ∈有:2320t t k -->,从而判别式14120.3k k ∆=+<⇒<- 19。
解:(1),,,.又数列成等比数列, ,所以;又公比,所以;又,;数列构成一个首相为1公差为1,当,;();()113f a ==()13xfx ⎛⎫∴= ⎪⎝⎭()1113a f c c =-=-()()221a f c f c =---⎡⎤⎡⎤⎣⎦⎣⎦29=-()()323227a f c f c =---=-⎡⎤⎡⎤⎣⎦⎣⎦{}n a 22134218123327a a ca ===-=--1c =2113a q a ==12112333n nn a -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭*n N ∈1n n S S --==()2n ≥0n b >0>1=()111n n+-⨯=2n S n =2n ≥()221121n n n b S S n n n -=-=--=-21n b n ∴=-*n N ∈(2);由得,满足的最小正整数为112.20【解析】(1)由已知得 sin 2cos θθ=又∵2sin cos 1θθ+=, ∴224cos cos 1θθ+=,即21cos 5=,∴24sin 5θ=又(0,)sin 2πθθ∈∴=,cos θ=(2) ∵5cos()5(cos cos sin sin )θϕθϕθϕ-=+ϕϕ=+θ=cos sin ϕϕ∴= ,222cos sin 1cos ϕϕϕ∴==- ,即21cos 2ϕ=又<<ϕ02π,∴cos ϕ=21分析:(I )在中,令n=1,可得,即 当时,, ..又数列是首项和公差均为1的等差数列.于是.(II)由(I )得,所以由①-②得12233411111n n n T b b b b b b b b +=++++()1111133557(21)21n n =++++⨯⨯⨯-⨯+1111111111112323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭11122121n n n ⎛⎫=-= ⎪++⎝⎭1000212009n n T n =>+10009n >10002009n T >11()22n n n S a -=--+1112n S a a =--+=112a =2n ≥21111111()2()22n n n n n n n n n S a a S S a a ------=--+∴=-=-++,11n 1112a (),212n n n n n a a a ----∴=+=+n 即2112,1,n 21nn n n n n b a b b b --=∴=+≥-=n 即当时,b 1121,b a ==∴}{nb 1(1)12,2n n n n n nb n n a a =+-⋅==∴=11(1)()2nn n n c a n n +==+23111123()4()(1)()2222nn T n =⨯+⨯+⨯+++2341111112()3()4()(1)()22222n n T n +=⨯+⨯+⨯+++231111111()()()(1)()22222n n n T n +=++++-+∵易得11,3n n n T T T T +>∴≤<,依题意得223x x +≥,解得{}31x x x ≤-≥或 22(I )解:(II )以下分两种情况讨论。