高二数学下单元测试题一新人教

合集下载

高二数学(下)单元测试题答案

高二数学(下)单元测试题答案

高二数学(下)单元测试题答案(一) 9.1—9.4 空间的直线与平面1.C 2. B 3. C 4. A 5. D 6. D. 7. C 8. D 9. D10. A 11. B12. A 解析:连AB l ,AC ,B l C ,BD .由于BD l 在平面ABCD 内的射影为BD , 1..BD AC BD AC ⊥∴⊥同理: 1111,,BD B C BD AB ⊥⊥∴1BD ⊥平面AB l C .故P∈平面AB l C 时,AP ⊥BD l .而平面1AB C 平面,111C B B BCC =⋅故A 对.13. ②③ 14. (1)异面直线 (2)相交直线 (3)平行直线425 17. 证明: ∵△ABC 与△A′B ′c ′不全等,∴至少有一组对应边不相等,不妨设,//,AB A B AB A B ''''=/ 又,AB A B AA '''=∴⋅/与BB ′必交于一点O .,//,O AA AC A C '''∈ O ∴∈面AA ′C ′C ,同理0∈面BB ′C ′C .∴点O 在面AA ′C ′C 和面BB ′C ′C 的交线上,即0∈CC ′, ∴AA ′、BB ′、CC ′交于同一点O.18.证明:在线段AD 上取点H ,使,AH HD λ:=⋅则//,//HF SA HE ⋅//.HE AB ∴平面SAB ,HF∥平面SAB .又,HE HF H φ==/ ∴平面HEF∥平面SAB ,∴EF∥平面SAB .19. (1)见解析 解析: (1)证明:取AD 中点G ,连结A l G 、EG ,则1111//,AB A B E G ABE G ∴为平行四边形,则111////,B E AG FD B F D F ∴、、、四点共面,且B 1EDF 是平行四边形,又11,DF B B EDF ==∴是菱形. (2)过C 作CP ∥DE 交AD 于P ,连结A l P ,则∠A l CP 为异面直线A l C 和DE 所成的角或其补角.在△A l CP 中, 1,AC =,2CP a =1,2A P a =由余弦定理得1arccos 15ACP ∠=20. (1)(2)见解析(3)2x =MN取最小值为2解析: (1)证明:如图所示,过点M 作MR ⊥AD ,垂足为R ,则MR ⊥面ABCD ,连结RN ,则RN ⊥AD .过M 、N 分别作⊥MQ 1,,D D NP CD ⊥垂足分别为Q 、P ,连结PQ , 1,MD ND = ////,MQ RD NP MNPQ ∴∴为平行四边形,//.MN PQ ∴又⊂PQ 平面//,11MN C CDD ∴面CDD l C l .(2),AD RN ⊥ ∴由三垂线定理知.AD MN ⊥22222222(3)11)(1)(1)(22222MN MR RNBN x x x =+=+-=+-=-+ ∴当x =时,MN 21. MN 和PQ 是异面直线.证明: 证法一:.(反证法)假设MN 与PQ 共面于β,则点,N Q b M N P Q b N Q βββ∈⎫∈⇒⊂⎬∈⎭、、、、,、,,,O P c O c P c βββ∈∈⎫⇒⊂⎬∈∈⎭同理,a β⊂ ∴a 、b 、c 共面,与已知a 、b 、C 不共面矛盾,故MN 与PQ 为异面直线·证法二:故平面MON 内一点Q 与平面外一点P 的连结PQ 与平面内不过Q 点的直线MN 是异面直线·22. (1)(2)见解析(3)当2x a =时,BM 最小为.2a 解析: (1)证明:∵SA ⊥平面ABCD , ,,SA AD SA AB ∴⊥⊥SAB SAD ∆∆∴.是直角三角形,又,CD AD CD SD ⊥∴⊥ (三垂线定理),故△SDC 是直角三角形.在Rt △SAD 中,,SD ==在Rt△SDC 中, ,SC ==在Rt△SAB 中,.SB =在直角梯形ABCD 中, .BC == 222,SC BC SB ∴+=故△ SCB 是直角三角形.(2)证明: //,//CD AB CD ∴ 平面ABNM ,又CD ⊂平面SCD ,且平面SCD ∩平面,//,//,ABNM MN CD MN AB MN =∴∴又<MN ABNM AB CD ∴<,为梯形, ⊥∴⊥⊥AB AD AB SA AB ,, 平面,,SAD AB AM ∴⊥故四边形ABNM 为直角梯形.(3)在△SAM 中, 45,,,o ASM SA a SM x ∠===由余弦定理得222222cos45.o AM x a ax x a =+-=+在Rt △BAM 中,BM ===∴当2x =时,min .BM a =即当x 时,BM .(二)9.5—9.8 空间向量·夹角与距离1.B 2. B 3. C 4. D 5. A 6. D 7. C 8. D 9.B10. C 11.B 12.D13. 90o 14. 45o 15. (0o ,30o] 16. 0,{|(4,6,2),}.k k k k R =--∈c c 17. 122221121,,333333333PG BG AG =+-=-++=++⋅ i j k i j k i j k 18. (1)45o , 24(2)7PA = 解析:(1)过P 作PO ⊥平面ABC 于O ,由于,PAB PAC ∠=∠故0在∠CAB 的平分线上.设PA 与平面ABC 所成角为,θ则cos cos60cos 45.cos cos 452o o o PAB OAB θθ∠===∴⋅=∠即:PA 与平面ABC 所成角为45o.(2)若O 在BC 上,则1520,,77BO CO AO ==== 24.cos 7AO PA θ∴==即: 247PA =时,P 在平面ABC 内的射影在BC 边上.19. (1) 31(0,(2),(3)arccos 24CD AD BC π=-〈〉=-20. (1)答案见解析解析: (1)证明:连BD ,∵PD ⊥平面ABCD ,且DB ⊥ MN ,依三垂线定理,PB ⊥MN .若E 为C l C 中点,PE ⊥侧面BCC l B l ,BE 为斜线PB 在侧面BCC l B l 上的射影.111,,,Rt BCE Rt B BN EBC NB B BNB CEB ∆∆∠=∠∠=∠ ≌且1190,90,,o o EBC CEB EBC BNB BE B N ∠+∠=∴∠+∠=∴⊥由三垂线定理11,,PB B N MN B N N PB ⊥=∴⊥ 又平面B 1MN ,又PB ⊂平面PAB , ∴平面PAB 上平面B l MN .(2)由(1)知BE ⊥B l N ,设交点为Q ,∵MB ⊥平面BB l N ,BQ 为MQ 在B 1 BN 中的射影,BQ ⊥B l N ,由三垂线定理得: 1,MQ B N ⊥ ∴∠BQM 为二面角M-B 1 N-B 的平面角.设AB=1,则BC=1,NBQ ∠=在Rt △BNQ 中, cos BQ BN =⋅∠在Rt △ MBQ 中, tan sin MB MQB MQB BQ ∠==∴∠=故二面角M-B l N-B 的正弦值为321: (1)答案见解析(2)cos ,0MN AB <>= (3).2MN = 解析: (1)证明:如图所示,以BA、BC BE 、为单位正交基 底建立空间直角坐标系,则A(1,0,O)、D(1,1,O)、E(0,0,1)、B .(0,0,O).设.AN AE DM DB λ==::则MN MD DA AN BD DA AEλλ=++=++(1,1,0)(0,1,0)(1,0,1)(0,1,)λλλλ=+-+-=-01,10,0,λλλ<<∴-==// 且MN 的横坐标为0,∴MN平行于yBz 平面,即MN∥平面EBC . (2)(1,0,0),(0,1,)(1,0,0)0,AB MN AB λλ=-∴⋅=-⋅-= ,cos ,0.MN AB MN AB ∴⊥∴<>=(3)由(1)知,||MN === ∴当12λ=时,MN长度最小,最小值为222. (1)arctan (2)证明见解析解析: (1)如图所示,连结BP,∵AB_L 平面BCC l B l ,AP 与平面BCC l B l 所成的角就是.APB ∠114,4, CP CC CP ==∴=在Rt△PBC 中,∠PCB 为直角,4,1,BC CP BP ==∴=在Rt △ABP 中,∠APB 为直角,tan arctan 1717AP APB APB BP ∠==∴∠= 即直线AP 与平面BCC l B l 所成的角为 (2)连结A l C l 、B l D l ,∵四边形A l B l C l D l 是正方形, .111C A O D ⊥∴又∵AA l ⊥底面.,111111O D AA D C B A ⊥∴11111,AA A C A D O=∴⊥ 平面A l ACC l .由于AP ⊂平面.(),111AP D ACC A ⊥∴∵平面D l AP 的斜线D 1O 在这个平面内的射影是D l H ,∴D 1H ⊥AP(3)连结BC l ,在平面BCC l B l 中,过点P 作PQ ⊥BC l 于点Q .∵AB ⊥平面BCC l B l ,PQ ⊂平面BCC 1 B 1,∴PQ ⊥AB,∴PQ ⊥平面ABC l D l ,∴PQ 就是点P 到平面ABD l 的距离.在Rt△C l PQ 中, 11190,45,3,o o C QP PC Q PC ∠=∠==pQ ∴=即点P 到平面ABD l(三)9.9----9.10 简单多面体与球1.A 2. C 3. D 4. C 5. B 6. A 7. C 8. B9. D 10. D 11. A 12. C36π 15.2π 16. ① ④ 17. 38, 6 0o . 解析:取BC 的中点E ,则A l C=1,,,A B AB AC BE EC ==故有1,A E BC ⊥BC ∴⊥平面AEA 1故∠A l EA即为所求二面角的平面角,又16,AA AE ==11114tan 2A BC A E S AEA ∆∴=∴=⨯=∠= 160,o AEA ∴∠=即:这个截面面积为,38与底面ABC 所成的角为60o . 18. (1),2AOB π∠=(2)3解析; (1)如图所示,连结A0、B0、C0, 2.2AOB R ππ∠== (2)过A 、B 、C 的截面是△ABC 的外接圆,四面体0ABC 是顶点为0、侧面都是等腰直角三角形的正棱锥.设0′为截面圆圆心,则23AB BC CA O A '=====OO '==即O19. (1) 2a (2)90o 解析: (1)如图所示,取BC 中点D ,连结B l D 、AD . ∵△ABC 是边长为a 的正三角形, ,.AD BC AD ∴⊥=∵侧面BCC l B l ⊥底面ABC 且面BCC l B l ∩面ABC=BC, AD ⊂面ABC .∴AD ⊥面BCC 1B l .故AD 的长就是AA l 到侧面BCC l B l 的距离.又知,AD =∴侧棱A l A 到侧面B l BCC l .(2)过B l 作B l D l ⊥BC ,D l 为垂足,与(1)中的推导相同,可知B l D l ⊥平面ABC ,∴侧棱B 1B在底面ABC 上的射影在BC 上,∴∠B l BC 是侧棱B l B 与底面ABC 成的角.由已知么B l BC=60o ,又侧面BCC l B l 是菱形,∴B l B=CB ,∴△B l BC 是等边三角形,∴D l 为BC 中点,D 与D l 重合,于是AD 是AB l 在底面上的射影.又BC ⊥AD 1.∴BC ⊥ AB 1,即AB l 与BC 所成的角为90o . 20. 22.+解析:将侧面展开,化归为平面几何问题.将正三棱锥z 沿侧棱SA 剪开,然后将其侧面展开在一个平面上,如图所示.连结AA ′,设AA ′与SB 交于M ,交SC 于N 点.显然△AMN 的周长,l AM MN NA AA ''=++≥也就是说当)(,,'NA NA MN AM在一条直线上时,对应的截面三角形周长最短,则AA ′的长就是截面△AMN 周长的最小值. 1,SA SA '== 45,135,o o ASB BSC CSA ASA ''∠=∠=∠=∴∠=AA '∴==∴△AMN 周长最小值为.22+ 21. r 315解析:如图所示,球未取出水面高PC=h ,球取出后圆锥内水面高度PH=x ,轴截面ABP 为正三角形,OC=r ,PC=3r ,,AC =以AB 为底面直径的圆锥的体积为V =圆锥23314)33,.33r r V r πππ⋅==球球取出后,水面 降到EF ,水的体积21(),3V EH PH π=⋅水tan 30,,o EH PH x PH x ⋅⋅==又PH=321),39x V x ππ=⋅=水于是有3333343,15,39x r r x r πππ+=∴=即.153r x = 22. (2)N 点坐标为N 点到AB 、AP 的距离分别为l 解析: (1)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E 的坐标分别为(0,0,0),0)A B C 、、1(0,1,0),(0,0,2).(0,,1),2D PE 、从而,0),AC = 2).PB =- 设AC PB 与的夹角为,θ则cosAC PBAC PBθ⋅===∣∣∣⋅∣∴AC与PB所成角的余弦值为.73(2)由于N点在侧面PAB内,故可设N点坐标为(x,0,z),则1(,,1).2NE x z=--由NE⊥面PAC可得,NE APNE AC⎧⋅=⎪⎨⋅=⎪⎩即1(,,1)(0,0,2)021(,,1)02x zx z⎧--⋅=⎪⎪⎨⎪--⋅=⎪⎩化简得1012z-=⎧⎪⎨+=⎪⎩.61xz⎧=⎪∴⎨⎪=⎩即N点的坐标为(6从而N点到AB、AP的距离分别为l,6⋅(四) 10.1----10.4排列、组合和二项式定理1.C 2. C 3. D 4. A 5. D 6. D 7. B 8. A9. B 10. C 11. B 12. D13. 32 14. 54 15. 192 16. 36(729)17. (1)20个(2)1 0个解析: (1)先取十位数,有4种取法,再取个位数,有5种取法,由分步计数原理,共有5 × 4=20个不同数。

高二数学单元测试题一

高二数学单元测试题一

高二数学单元测试题一一:选择题:1.下列语句正确的是()A.x+3=y-2B.d=d+2C.0=xD.x-y=52: 将二进制数10101(2)化为十进制为()A.21 B. 20 C.19 D. 183:将十进制数111化为五进制数是()A.421(5) B. 521(5) C.423(5) D. 332(5)4: 用程序框图表示“秦九韶算法”将用到()A、顺序结构B、条件结构C、顺序结构和循环结构D、三种差不多逻辑结构5:用冒泡法对6,5,3,1,2,7,9,8进行排序,需要()趟排序A.3 B.4 C. 5 D. 66:用更相减损术求138和92的最大公约数()A .23 B.42 C .56 D.467: 用辗转相除法求228,1995的最大公约数()A.35 B.46 C.57 D.688: 下列数是“回文数”的个数是()123,456,121,14541A. 0B.1C.2D.3二:填空题9.课本中显现了两种排序的方法,它们是:___________________;_______________________10.算法的差不多结构是______________ __________________ __________________11.用秦九韶算法为x=5时,多项式f(x)=3x 5-4x 4+6x 3-2x 2-5x-2的值为____________12.下列程序运行的结果是_____________N=15SUM=0I=1WHILE I ≦NSUM=SUM+II=I+2WENDPRINT “SUM=”;SUMEND三.解答题13.请编写出一个“求满足10003212222>++++n 的n 最小值”的程序。

14.某班50人参加考试。

请设计一个算法统计出80分以上的人数,并画出程序框图。

15.2000年世界人口50亿,按年增长率8%0运算,多青年后,世界人口超过100亿,请设计出一个算法,并画出程序框图。

【高二数学试题精选】高二数学下册第一章解三角形单元综合测试题及答案

【高二数学试题精选】高二数学下册第一章解三角形单元综合测试题及答案

高二数学下册第一章解三角形单元综合测试题及答案
5 c (数学5必修)第一解三角形
[提高训练c组]
一、选择题
1 为△ABc的内角,则的取值范围是()
A B c D
2 在△ABc中,若则三边的比等于()
A B c D
3 在△ABc中,若,则其面积等于()
A B c D
4 在△ABc中,,,则下列各式中正确的是()
A B c D
5 在△ABc中,若,则()
A B c D
6 在△ABc中,若,则△ABc的形状是()
A 直角三角形
B 等腰或直角三角形 c 不能确定 D 等腰三角形
二、填空题
1 在△ABc中,若则一定大于,对吗?填_________(对或错)
2 在△ABc中,若则△ABc的形状是______________
3 在△ABc中,∠c是钝角,设
则的大小关系是___________________________
4 在△ABc中,若,则 ______
5 在△ABc中,若则B的取值范围是_______________
6 在△ABc中,若,则的值是_________
三、解答题
1 在△ABc中,若,请判断三角形的形状
2 如果△ABc内接于半径为的圆,且求△ABc的面积的最大值
3 已知△ABc的三边且,求。

高二数学 下册单元章节精品测试题12 新人教A版

高二数学 下册单元章节精品测试题12 新人教A版

[原创]人教版高二数学下册单元章节测试题12一、选择题1.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( )A .42B .22C .41D .212.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )A .2,2a b ==B .2a b ==C .2,1a b ==D .a b =3.已知x x f 26log )(=,那么)8(f 等于( )A .34B .8C .18D .214.函数lg y x =( )A . 是偶函数,在区间(,0)-∞ 上单调递增B . 是偶函数,在区间(,0)-∞上单调递减C . 是奇函数,在区间(0,)+∞ 上单调递增D .是奇函数,在区间(0,)+∞上单调递减5.已知函数=-=+-=)(.)(.11lg )(a f b a f x xx f 则若( )A .bB .b -C .b 1D .1b -6.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上() A .递增且无最大值 B .递减且无最小值C .递增且有最大值D .递减且有最小值二、填空题1.若a x f x x lg 22)(-+=是奇函数,则实数a =_________。

2.函数()212()log 25f x x x =-+的值域是__________.3.已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。

4.设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 。

5.计算:()()5log 22323-+ 。

6.函数x x e 1e 1y -=+的值域是__________. 三、解答题1.比较下列各组数值的大小:(1)3.37.1和1.28.0;(2)7.03.3和8.04.3;(3)25log ,27log ,23982.解方程:(1)192327x x ---⋅= (2)649x x x +=3.已知,3234+⋅-=x x y 当其值域为[1,7]时,求x 的取值范围。

人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。

高二数学单元测试一

高二数学单元测试一

高二年级第八章测验题班 号姓名 2001.11 一.选择题(每题5分,共40分)1.过平面外一直线可以作该平面的平行平面 ( )(A)1个 (B)至多1个 (C)0个 (D)至少1个2.已知m,n 是不重合的两条直线,α、β是不重合的两个平面,对于以下四个命题:①若m ∥α, n ∥β, α∥β, 则m ∥n ②若m ∥n, m ⊂α, n ⊥β,则α⊥β ③若α∩β=m, m ∥n, 则n ∥α且n ∥β④若m ⊥n, α∩β=m, 则n ⊥α或n ⊥β其中正确的命题是 ( ) (A)①或② (B)②或③ (C)仅② (D)仅④ 3.异面直线a,b 所成的角为700, P 为空间一定点,则过点P 且与a,b 所成角都是600的直线的条数为 ( ) (A)1条 (B)2条 (C)3条 (D)4条4.经过ΔABC 所在平面α外一点P ,作PO ⊥α, 交于平面α于O ,若PA 、PB 、PC 与α成等角,则O 是ΔABC 的 ( ) (A)内切 (B)外心 (C)重心 (D)垂心5.直线a,b 不在平面α内,设a,b 在α内的射影分别为a ’,b ’,下列命题中正确的是 ( ) (A)若a ’⊥b ’,则a ⊥b (B)若a ⊥b ,则a ’⊥b ’(C)若a ∥b ,则a ’与b ’不垂直 (D)若a ’∥b ’,则a 与b 不垂直6.若直线与平面所成的角为3π,则直线与平面内的直线所成的最大角为( )(A)π (B)π32 (C)2π (D)3π7.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为P 1, P 2, P 3, 若屋顶斜面与水平面所成的角都是α,则 ( ) (A)P 3>P 2>P 1 (B)P 3>P 2=P 1 (C)P 3=P 2>P 1 (D)P 3=P 2=P 18.下列命题①垂直于某平面斜线射影的直线必垂直于此斜线②过二面角棱上一点作与棱垂直的两条射线这两条射线所组成的角就是二面角的平面角③过平面外一点,有且仅有一个平面与这个平面垂直④a,b 为平面M 外的两条直线,且a ∥平面M ,那么a ∥b 是b ∥平面M 的充要条件。

最新-高二数学下学期单元测试题-人教版[原创] 精品

最新-高二数学下学期单元测试题-人教版[原创] 精品

高二数学下学期单元测试题一。

选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.二面角的平面角是指( ).A .分别在两面内引棱的两条垂线所成的B .过棱上任一点引棱的两条垂线所成的角C .过棱上任一点分别在两面内作的两条射线所成的角D .过棱上任一点分别在两面内作与棱垂直的两条射线所成的角 2.若平面α∥β,a ⊂α,b ⊂β,则a 与b( )A.平 行B.异面C.平行或异面D.以上都不对 3.使平面α和平面β平行的条件是( )A.平面α内有无穷多条直线都与平面β平行B.直线a ∥α,a ∥β,且直线a 不在平面α内也不在平面β内C.直线a ⊂α直线b ⊂β,且a ∥β,b ∥βD.平面α内的任何直线都与平面β平行 4.下列命题中错误的是( )A.若一直线垂直于一平面,则此直线必垂直于这平面上的所有直线B.若一平面过另一平面的垂线,则这两个平面互相垂直C.若一直线垂直于一个平面的一条垂线,则此直线平行于这个平面D.若平面内的一条直线和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直 5.若二面角α -l -β 的一个半平面α 上有一个点A ,点A 到棱l 的距离是它到另一个平面β 的距离的2倍,则这个二面角的大小为( ).A .90°B .60°C .45°D .30° 6.已知三条直线m 、n 、l ,三个平面γβα、、.下面四个命题中,正确的是( ).A .βαγβγα//⇒⎩⎨⎧⊥⊥ B .ββ⊥⇒⎩⎨⎧⊥l m l m // C .n m n m //////⇒⎩⎨⎧γγD .n m n m //⇒⎩⎨⎧⊥⊥γγ7.下列命题中正确的是( ).A .平面α 和β 分别过两条互相垂直的直线,则α ⊥βB .若平面α 内的一条直线垂直于平面β 内的两条平行直线,则α ⊥βC .若平面α 内的一条直线垂直于平面β 内的两条相交直线,则α ⊥βD .若平面α 内的一条直线垂直于平面β 内的无数条直线,则α ⊥β 8.设两个平面互相垂直,则( ).A .一个平面内的任何一条直线都垂直于另一个平面B .过交线上一点垂直于一个平面的直线必在另一个平面上C .过交线上一点垂直于交线的直线,必垂直于另一个平面D .分别在两个平面内的两条直线互相垂直9.设a 、b 是两条异面直线,那么下列四个命题中的假命题是( ) A.经过直线a 有且只有一个平面平行于直线b B.经过直线a 有且只有一个平面垂直于直线bC.存在分别经过直线a 和b 的两个互相平行的平面D.存在分别经过直线a 和b 的两个互相垂直的平面10.二面角βα--l 为60°,直线α⊂m ,且直线m 与l 成60°角,那么直线m 与平面β所成角的正弦值为( ). A .43 B .23 C .43D .21 11.已知二面角α—AB —β是直二面角.P 为棱AB 上一点,PQ 、PR 分别在平面α、β内,且∠QPB =∠RPB =45°,则∠QPR 等于( )A.60°B.45°C.120°D.150°12.已知AB 、CD 是夹在两平行平面α、β间的两条线段,AB ⊥CD ,|AB |=2,AB 与平面α成30°的角,则线段CD 的长度范围是( )A.(332,23) B.[332,+∞] C.(1,332) D.[1,+∞]二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.把等腰直角三角形ABC 沿斜边BC 上的高线AD 折成一个二面角,此时∠BAC =60°,那么此二面角的大小是 .14.夹在两平行平面α 、β 间的线段AB =8,AB 与α 所成的角为45°,那么α 、β 间的距离等于________.15.有一倾斜度为30°的山坡,如果在斜坡所在的平面上有一条与斜坡底线成45°角的直路上走了100m ,那么升高了 m.16.如图1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,则遮阳棚ABC 与地面成角为 ,才能保证所遮影面ABD 面积最大。

高二数学单元测试题一

高二数学单元测试题一

高二数学单元测试题《解三角形》一、选择题(每题5分,共30分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60°D .60°或1202. 在A B C ∆中,一定成立的等式是( )A .sin sin aB b A = B .cos cos a B b A =C .tan tan a B b A =D .sin sin a A b B = 3. 满足条件a=4,b=32,A=45°的A B C ∆的个数是( )A .一个B .两个C .无数个D .零个4. 在A B C ∆中,已知a =3,b =4,c C ∠为( )A .900B .600C .450D .300 5.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23B .-23C .14D .-146. △ABC 中,8b =,c =ABC S = ,则A ∠等于 ( )A 30B 60C 30 或150D 60 或120二、填空题(每题5分,共40分)7. 在A B C ∆中,已知()()()a c a c b b c +-=+,则A ∠为8. 在A B C ∆中,A ∠=600,AB =2,且2ABC S ∆=,则BC 边的长为9. △ABC 中,若60A =,a =sin sin sin a b cA B C +-+-等于10.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________.11.已知A B C ∆满足sin 2cos sin A B C =,则这个三角形的形状是12.两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距13.已知钝角A B C∆的三边的长是3个连续的自然数,其中最大角为A∠,则c o s A=_____三、解答题(每题10分,共30分)15.三角形的一边长为14,这条边所对的角为600,另两边之比为8:5,求这个三角形的面积.16.已知a=33,c=2,B=150°,求边b的长及S△.17.在A B Cx-+=的两个根,且∆中,已知B C a=,A C b=,,a b是方程220+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学下单元测试题一新人教
一:选择题:
1.下列语句正确的是()
A.x+3=y-2
B.d=d+2
C.0=x
D.x-y=5
2: 将二进制数10101(2)化为十进制为()
A.21 B. 20 C.19 D. 18
3:将十进制数111化为五进制数是()
A.421(5) B. 521(5) C.423(5) D. 332(5)
4: 用程序框图表示“秦九韶算法”将用到()
A、顺序结构
B、条件结构
C、顺序结构和循环结构
D、三种基本逻辑结构
5:用冒泡法对6,5,3,1,2,7,9,8进行排序,需要()趟排序
A.3 B.4 C. 5 D. 6
6:用更相减损术求138和92的最大公约数()
A .23 B.42 C .56 D.46
7: 用辗转相除法求228,1995的最大公约数()
A.35 B.46 C.57 D.68
8: 下列数是“回文数”的个数是()
123, 456, 121, 14541
A. 0
B.1
C.2
D.3
二:填空题
9.课本中出现了两种排序的方法,它们是:___________________;_______________________
10.算法的基本结构是______________ __________________ __________________
11.用秦九韶算法为x=5时,多项式f(x)=3x5-4x4+6x3-2x2-5x-2的值为____________
12.下列程序运行的结果是_____________
N=15
SUM=0
I=1
WHILE I ≦N
SUM=SUM+I
I=I+2
WEND
PRINT “SUM=”;SUM
END
三.解答题
13.请编写出一个“求满足10003212222>++++n 的n 最小值”的程序。

14.某班50人参加考试。

请设计一个算法统计出80分以上的人数,并画出程序框图。

15.2000年世界人口50亿,按年增长率8%0计算,多少年后,世界人口超过100亿,请设计出一个算法,并画出程序框图。

16.求100到999中的水仙花数,所谓水仙花数是一个三位数,它的各位数字的立方之和等于该数,例如153
是一个水仙花数,因为153=13+53+33。

试编一段程序,找出所有的水仙花数。

相关文档
最新文档