用分式方程解决实际问题
分式方程与实际问题的技巧

分式方程与实际问题的技巧分式方程在实际问题中的应用非常广泛,例如在物理学、化学、工程学等领域中都有广泛的应用。
解决分式方程的问题需要一定的技巧和方法,本文将从以下几个方面介绍分式方程与实际问题的技巧。
一、理解分式方程的基本概念分式方程是指含有分式的方程,即等号两边至少有一个项是分式。
分式方程的一般形式为:A/B = C/D,其中A、B、C、D 均为整式,且B≠0。
二、分式方程的解法1. 消去分母法消去分母法是将分式方程转化为整式方程求解的方法。
具体步骤如下:(1)将分式方程转化为整式方程;(2)解整式方程;(3)检验所得解是否为原分式方程的解。
2. 换元法换元法是将原分式方程中的未知数用另一个变量表示,从而将原分式方程转化为一个新的整式方程求解的方法。
具体步骤如下:(1)设一个新的变量u,使得原分式方程可以表示为关于u的整式方程;(2)解关于u的整式方程;(3)将所得解代入原分式方程,求出原未知数的值。
3. 分离变量法分离变量法是将原分式方程中的未知数与常数分离,从而将原分式方程转化为一个关于未知数的一元一次方程求解的方法。
具体步骤如下:(1)将原分式方程中的未知数与常数分离;(2)对分离后的一元一次方程进行求解;(3)将所得解代入原分式方程,求出原未知数的值。
三、实际问题中的分式方程技巧1. 确定未知数和已知条件在解决实际问题时,首先要明确题目中的未知数和已知条件。
未知数通常是需要求解的量,而已知条件则是题目给出的关于未知数的信息。
例如,某物体的速度v与其时间t的关系可以表示为v = at^2 + bt + c,其中a、b、c为已知常数,v、t为未知数。
2. 建立分式方程模型根据题目中的已知条件,建立相应的分式方程模型。
例如,某物体的速度v与其时间t的关系可以表示为v = at^2 + bt + c/t,其中a、b、c为已知常数,v、t为未知数。
3. 选择合适的解法求解分式方程根据所建立的分式方程模型,选择合适的解法求解分式方程。
分式方程的工程问题和路程问题思路

分式方程是高中数学中的一个重要知识点,它在工程问题和路程问题中有着广泛的应用。
通过分式方程,可以解决诸如管道工程、水利工程、交通运输等方面的实际问题。
本文将从工程问题和路程问题两个方面来探讨分式方程的应用思路。
一、工程问题中的分式方程应用1.1 管道工程在管道工程中,经常会遇到液体或气体在管道中流动的问题。
假设一个长为L的管道中有两个孔,已知从第一个孔流出液体的速度为V1,从第二个孔流出液体的速度为V2,要求求出流出液体的总量。
我们可以建立如下的分式方程来解决这个问题:$\frac{x}{V1} + \frac{L-x}{V2} = T$其中,x表示从第一个孔流出液体的时间,L-x表示从第二个孔流出液体的时间,T表示总时间。
通过解这个分式方程,可以求出流出液体的总量。
1.2 水利工程在水利工程中,经常需要计算水库的注水和排水问题。
假设一个水库的注水管每分钟注入水量为A,排水管每分钟排水量为B,如果注水管和排水管同时开启,求出水库的水位变化规律。
我们可以建立如下的分式方程来解决这个问题:$\frac{dV}{dt} = A - B$其中,dV/dt表示水库水位随时间的变化率。
通过解这个分式方程,可以求出水库水位随时间的变化规律。
1.3 其他工程问题除了管道工程和水利工程,分式方程还可以应用于其他工程问题,如风力发电机组的发电功率问题、地基沉降速度问题等。
在解决这些问题时,我们可以根据实际情况建立相应的分式方程,然后通过求解方程得出问题的答案。
二、路程问题中的分式方程应用2.1 交通运输在交通运输中,经常需要计算车辆的行驶时间和行驶距离。
假设一辆车以速度V1从A地出发到B地,再以速度V2从B地返回A地,已知车辆的往返总时间为T,求出车辆的行驶距离。
我们可以建立如下的分式方程来解决这个问题:$\frac{2x}{V1} + \frac{2(L-x)}{V2} = T$其中,x表示车辆往返的时间,L-x表示车辆返回的时间,T表示总时间。
用分式方程解决实际问题

用分式方程解决实际问题
假设我们要解决以下问题,甲乙两人合作做某件工作,如果甲独立做需要5个小时,乙独立做需要6个小时。
问他们合作做需要多长时间?
首先,我们可以设甲、乙合作做这件工作需要x个小时。
根据工作的性质,我们知道甲、乙合作做一小时的工作量分别是1/5和
1/6。
因此,他们合作做一小时的工作量就是1/5 + 1/6,即5/30 + 6/30,等于11/30。
根据工作量与时间的关系,工作量等于工作量与时间的乘积。
因此,甲、乙合作做x个小时的工作量就是x 11/30。
而这个工作量又等于1,因为他们最终完成了整个工作。
因此,我们可以得到方程式,x 11/30 = 1。
通过解这个分式方程,我们可以得到x的值,从而知道甲、乙合作做这件工作需要的时间。
通过这个例子,我们可以看到分式方程是解决实际问题的有力
工具。
在实际应用中,我们可以根据具体情况建立分式方程,然后通过代数运算来解决问题。
这种方法在解决配比、速度、工作效率等实际问题时非常有效。
希望这个例子可以帮助你更好地理解如何用分式方程解决实际问题。
八年级上册数学15.3第2课时列分式方程解决实际问题

课堂练习
7.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以 体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球 ,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价 格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买 足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?
.
甲队 乙队
工作时间(月) 工作效率
1 1
1
2
3
1
1
2
x
工作总量(1)
(1 1 ) 1 23
11 2x
探索新知
知识点 列分式方程解决实际问题
等量关系: 甲队完成的工作总量+乙队完成的工作总量=“1”
(1 1 ) 1
11
23
2x
列得分式方程:1 1 1 1 1 1.
2 3 2 x
探索新知
解得 x sv
.
50
检验:由v,s都是正数,得 x sv
时,x(x+v)≠0.
50
所以,原分式方程的解为 x sv
.
50
答:提速前列车的平均速度为 sv
50
km/h.
探索新知
知识点 列分式方程解决实际问题
列分式方程解决实际问题的一般步骤 1.审:审清题意,分清题中的已知量、未知量; 2.找:找出题中的相等关系, 3.设:设出恰当的未知数,注意单位和语言的完整性; 4.列:根据题中的相等关系,正确列出分式方程; 5.解:解所列分式方程;
.
﹣
=30
课堂练习
6.某网店开展促销活动,其商品一律按8折销售,促销期间用400元 在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每 件多少元?
15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++

能力提升
7.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.
3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.
解:设运输公司用大货车 辆,小货车 辆,依题意 由②得 ,把④代入③得 解得 .方案一:当 时, ,费用为 元;方案二:当 时, ,费用为 元, 方案二费用最低,最低运输费用是15 900元.
中考链接
8.(2022·北部湾经济区)《千里江山图》是宋代王希孟的作品,它的局部画面装裱前是一个长为 ,宽为 的矩形,装裱后,整幅画宽与长的比是 ,且四周边衬宽度相等,则边衬的宽度应是多少米?设边衬的宽度为 ,根据题意可列方程( ) .
5.某瓶装饮料每箱价格是26元,某商店对该饮料进行“买一送三”的促销活动,即买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,该品牌饮料每瓶多少元?设该品牌饮料每瓶是 元,则可列方程为_ _____________.
6.自行车运动深受市民的喜爱.A地、B地间有一条自行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.
(1)小明和小军相约上午8时同时从各自出发地出发,匀速骑行,到上午10时,他们相距 ,到中午12时,两人又相距 .求A,B两地间的自行车道的距离.
分式方程的应用问题

分式方程的应用问题分式方程是包含了分数形式的方程,可以用来解决很多与比例、比率和分数有关的实际问题。
在本文中,将探讨分式方程在不同应用问题中的实际应用。
1. 比例问题比例问题是分式方程的一种常见应用。
比如,假设小明每小时跑步的速度是x米,而小红每小时跑步的速度是y米,我们可以得到以下方程:x / y = 4 / 5其中4 / 5是两者速度的比例。
通过解这个分式方程,我们可以计算出小明和小红的速度。
这种应用问题通常涉及到多个变量之间的比例关系。
2. 比率问题比率问题是另一种使用分式方程的应用。
比如,假设一个容器中有3升柠檬汁和2升橙汁,我们可以得到以下方程:3 / 2 = x / 10其中3 / 2是柠檬汁和橙汁的比率,而10是容器中液体的总量。
通过解这个分式方程,我们可以计算出柠檬汁的数量x。
这种应用问题通常涉及到比率和总量之间的关系。
3. 速度、时间和距离问题在许多速度、时间和距离相关的问题中,分式方程也经常被使用。
假设小华以每小时60公里的速度行驶,并且需要2个小时到达目的地。
我们可以得到以下方程:60 * 2 / x = 1其中60 * 2是小华总共行驶的距离,而x是小华的速度。
通过解这个分式方程,我们可以计算出小华的速度。
这种应用问题通常涉及到速度、时间和距离之间的关系。
4. 货币兑换问题货币兑换问题也可以使用分式方程进行建模和解决。
假设1美元可以兑换85日元,而小明用400美元兑换了多少日元。
我们可以得到以下方程:1 / 85 = 400 / x其中1 / 85是兑换比率,而400是小明用来兑换的美元数量。
通过解这个分式方程,我们可以计算出小明兑换的日元数量。
这种应用问题通常涉及到不同货币之间的比率关系。
通过以上几个例子,我们可以看到分式方程在比例、比率、速度、时间、距离以及货币兑换等方面的广泛应用。
通过建立适当的数学模型,并解决相应的分式方程,我们能够更好地理解和解决各种实际问题。
分式方程的应用问题不仅能够提高学生的数学能力,还能够加深对实际问题的理解和分析能力。
八年级数学上册《列分式方程解决工程实际问题》教案、教学设计

2.学生分享自己的学习心得,提出在学习和练习过程中遇到的问题和困惑,教师给予解答。
3.教师对本节课的教学进行反思,针对学生的反馈,调整教学方法,为下一节课做好准备。
3.小组合作完成一道拓展题(见附件),要求运用本节课所学的分式方程知识,并结合其他相关知识点进行解答。此题旨在培养同学们的团队合作精神和综合运用知识的能力。
4.请同学们撰写一篇学习心得,总结自己在学习分式方程解决实际问题过程中的收获和困惑。心得体会不少于300字,要求真实、具体、有深度。
5.预习下一节课的内容,提前了解涉及到的知识点,为课堂学习做好准备。
2.培养学生敢于面对困难、勇于挑战的精神,通过解决实际问题,增强学生的自信心。
3.培养学生的团队合作意识,让学生学会倾听、表达、沟通、协作,提高人际交往能力。
4.培养学生具有责任感和使命感,明确学习数学的目的不仅是为了解决实际问题,更是为了服务社会、为国家的发展做出贡献。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的代数运算和方程求解方法。在此基础上,学生对分式方程的学习将更具挑战性。他们对实际问题有一定的认知,但将实际问题抽象为数学模型的能力还有待提高。此外,学生在解决实际问题时,往往对数据的处理和分析存在困难,需要教师在教学中加以引导和培养。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个实际问题,讨论如何将其转化为分式方程,并求解。
师:“现在请同学们分组讨论,每组选择一个实际问题,试着将其转化为分式方程,并求解。注意,在讨论过程中,要明确等量关系,列出正确的方程。”
八下数学课件: 分式方程( 利用解分式方程解决实际问题)

3
=2
解得: = 100
经检验: = 100是原方程的解,
∴高铁的平均速度是每小时3×100=300千米.
答:高铁的平均速度是每小时300千米.
情景引入(销售问题)
某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购
进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是
解得a=
检验,由S、v都是正数,当a=
所以,原分式方程的解为a=
≠0
。答:略
练一练(距离问题)
小刚家(点A)、王老师家(点B)、学校(点C)在同一条路上,小刚家到王老师家的
路程为3千米,王老师家到学校的路程为1千米。为了使小刚能按时到校,王老师每天
骑自行车接小刚上学。已知王老师骑自行车的速度是步行的3倍,每天比平时步行上
1)本题等量关系为_______________________________________;
2)设提速前平均速度为a km/h。
S
3)提速前行驶距离___________,提速前时间表示为____________;
+
S+50
4)提速后行驶距离___________,提速后时间表示为____________;
解:设第一次该干果的进货价是每千克x元,
则第二次购进干果的进货价是每千克(x+5)元,
9000
5000
1.5
根据题意得: × = +5
,
解得:x=25,
经检验,x=25是所列方程的解.
答:该种干果的第一次进价是每千克25元.
课后回顾
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文案
精彩文档数学学科导学案(第次课)
教师: 学生: 年级: 八日期: 星期: 时段: 课题分式方程的应用学情分析
教学目标与考点分析1、能够根据实际问题中的数量关系,准确列分式方程解决问题;
2、会将有关实际问题转化成分式方程来解决,感悟分式方程是反映现实数量关系的一种模型;
3、培养学生的逻辑思维和灵活运用所学知识点解决问题的能力。
教学重点用分式方程解决实际问题;
教学方法讲练结合法、归纳总结法
学习内容与过程
1、解分式方程应用题的步骤
分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。
一般地,列分式方程(组)解应用题的一般步骤:
1.审清题意;
2.设未知数;
3.根据题意找等量关系,列出分式方程;
4.解分式方程,并验根;
5.检验分式方程的根是否符合题意,并根据检验结果写出答案.
2、常见的实际问题中等量关系
1.工程问题
1.工作量=工作效率×工作时间,,;
2.完成某项任务的各工作量的和=总工作量=1.
基础练习:。