十年真题(2010_2019)高考数学真题分类汇编专题06平面向量文(含解析)

合集下载

2010—2019“十年高考”数学真题分类汇总 平面向量专题解析版 (可下载)

2010—2019“十年高考”数学真题分类汇总 平面向量专题解析版 (可下载)

2010—2019“十年高考”数学真题分类汇总平面向量专题(附详细答案解析)一、选择题。

1.(2019全国Ⅰ文8)已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3 D .5π6【答案】B .【解析】因为()-⊥a b b ,所以()22cos ,0-⋅⋅-=⋅<>-=a b b =a b b a b a b b ,所以22cos ,2<>===⋅bba b a bb又因为0,]π[<>∈,a b ,所以π,3<>=a b .故选B . 2.(2019全国Ⅱ文3)已知向量a =(2,3),b =(3,2),则|a –b |= AB .2C .D .50 【答案】A .【解析】因为(2,3)=a ,(3,2)=b ,所以-(1,1)=-a b ,所以-==a b A.3.(2018全国卷Ⅰ)在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A.【解析】法一、通解 如图所示,CB AD DB ED EB 2121+=+= ()()AC AB AC AB -++⨯=212121 3144=-AB AC .故选A .CB法二、优解111()222=-=-=-⨯+EB AB AE AB AD AB AB AC 3144=-AB AC .故选A . 4.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .0【答案】B.【解析】2(2)22(1)3⋅-=-⋅=--=a a b a a b ,故选B .5.(2018天津)在如图的平面图形中,已知1OM =,2ON =,120MON ∠=,2BM MA =, 2CN NA =,则·BC OM 的值为 A .15- B .9- C .6- D .0【答案】C.【解析】由2BM MA =,可知||2||BM MA =,∴||3||BA MA =. 由2CN NA =,可知||2||CN NA =,∴||3||CA NA =,故||||3||||BA CA MA NA ==,连接MN ,则BC MN ∥,且||3||BA MN =, ∴33()BC MN ON OM ==-,∴23()3()BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-23(||||cos120||)6ON OM OM =-=-.故选C .6.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430-⋅+=b e b ,则||-a b 的最小值是A 1B 1C .2D .2 【答案】A.【解析】解法一 设O 为坐标原点,OA =a ,(,)OB x y ==b ,=(1,0)e ,由2430-⋅+=b e b 得22430x y x +-+=,即22(2)1x y -+=,所以点B 的轨迹是以(2,0)C 为圆心,l 为半径的圆.NMOCBA因为a 与e 的夹角为3π,所以不妨令点A在射线y =(0x >)上,如图,数形结合可知min ||||||31CA CB -=-=-a b .故选A .解法二 由2430-⋅+=b e b 得2243()(3)0-⋅+=-⋅-=b e b e b e b e .设OB =b ,OE =e ,3OF =e ,所以EB -=b e ,3FB -b e =,所以0EB FB ⋅=,取EF 的中点为C .则B 在以C 为圆心,EF 为直径的圆上,如图.设OA =a ,作射线OA ,使得3AOE π∠=,所以|||(2)(2)|-=-+-≥a b a e e b|(2)||(2)|||||31CA BC ---=-≥a e e b .故选A .7.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A.【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.8.(2017浙江)如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =, AC 与BD 交于点O ,记1I OA OB =⋅,2·I OB OC =,3·I OC OD =,则 OABCDA .1I <2I <3IB .1I <3I <2IC .3I < 1I <2ID .2I <1I <3I【答案】C 。

十年高考真题汇编(北京卷,含解析)之平面向量

十年高考真题汇编(北京卷,含解析)之平面向量

十年高考真题(2011-2020)(北京卷)专题06平面向量本专题考查的知识点为:平面向量,历年考题主要以选择填空题型出现,重点考查的知识点为:平面向量的坐标表示,平面向量的数量积,平面向量基本定理,平面向量与充分必要条件综合问题等,预测明年本考点题目会比较稳定,备考方向以平面向量的数量积,平面向量基本定理为重点较佳.1.【2019年北京理科07】设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.【2018年北京理科06】设a →,b →均为单位向量,则“|a →−3b →|=|3a →+b →|”是“a →⊥b →”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.【2017年北京理科06】设m →,n →为非零向量,则“存在负数λ,使得m →=λn →”是“m →•n →<0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.【2016年北京理科04】设a →,b →是向量,则“|a →|=|b →|”是“|a →+b →|=|a →−b →|”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.【2015年北京理科13】在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →,若MN →=x AB →+y AC →,则x = ,y = .6.【2014年北京理科10】已知向量a →,b →满足|a →|=1,b →=(2,1),且λa →+b →=0→(λ∈R ),则|λ|= . 7.【2013年北京理科13】向量a →,b →,c →在正方形网格中的位置如图所示,若c →=λa →+μb →(λ,μ∈R ),则λμ=.8.【2012年北京理科13】已知正方形ABCD 的边长为1,点E 是AB 边上的动点.则DE →⋅CB →的值为 .9.【2011年北京理科10】已知向量a →=(√3,1),b →=(0,﹣1),c →=(k ,√3).若a →−2b →与c →共线,则k = .10.【2020年北京卷15】已知正方形ABCD 的边长为2,点P 满足AP ⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ),则|PD ⃑⃑⃑⃑⃑ |=_________;PB ⃑⃑⃑⃑⃑ ⋅PD ⃑⃑⃑⃑⃑ =_________.1.【2020届北京市丰台区高三一模】已知向量a ⃗=(x,2),b ⃑⃗=(−2,1),满足a ⃗//b ⃑⃗,则x =() A .1B .−1C .4D .−42.【2020届北京市第八中学高三下学期自主测试(二)】已知向量a ⃗=(1,√3),b ⃑⃗=(−1,0),c ⃗=(√3,k).若a ⃗−2b ⃑⃗与c ⃗共线,则实数k =() A .0B .1C .√3D .33.【北京市石景山区2019届高三第一学期期末】已知向量a ⃗=(−12,√32),b⃑⃗=(√32,−12),则下列关系正确的是( ) A .(a ⃗+b ⃑⃗)⊥b ⃑⃗ B .(a ⃗+b ⃑⃗)⊥a ⃗ C .(a ⃗+b ⃑⃗)⊥(a ⃗−b⃑⃗) D .(a ⃗+b ⃑⃗)//(a ⃗−b⃑⃗) 4.【北京市通州区2020届高考一模】在平面直角坐标系中,O 为坐标原点,已知两点A(cosα,sinα),B(cos(α+π3),sin(α+π3)).则|OA ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗|=() A .1B .√3C .2D .与α有关5.【北京市人大附中2020届高三(6月份)高考数学考前热身】a ⃗,b ⃑⃗为非零向量,“a ⃑⃗|b ⃑⃗|=b ⃑⃗|a⃑⃗|”为“a ⃗,b ⃑⃗共线”的() A .充分必要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件6.【2020届北京市中国人民大学附属中学高三下学期数学统练二】已知非零向量a ⃗,b ⃑⃗满足|a ⃗|=2|b ⃑⃗|,且(a ⃗–b ⃑⃗)⊥b ⃑⃗,则a ⃗与b ⃑⃗的夹角为 A .π6B .π3C .2π3D .5π67.【北京市平谷区2020届高三第二学期阶段性测试(二模)】设a ⃗,b ⃑⃗是向量,“|a ⃗|=|a ⃗+b ⃑⃗|”是“|b ⃑⃗|=0”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.【北京市中国人民大学附属中学2020届高三3月月考】向量l 在正方形网格中的位置如图所示.若向量λa ⇀+b ⇀与c ⇀共线,则实数λ=()A .−2B .−1C .1D .29.【北京市昌平区新学道临川学校2019-2020学年高三上学期期末】设向量a ⇀,b ⇀满足a ⇀+b ⇀=(3,1),a ⇀⋅b ⇀=1,则|a ⇀−b ⇀|=() A .2B .√6C .2√2D .√1010.【2020届北京市陈经纶中学高三上学期8月开学】已知平面向量a ⃗,b ⃑⃗的夹角为60°,a ⃗=(√3,1),|b ⃑⃗|=1则|a ⃗+2b⃑⃗|=() A .2B .√7C .2√7D .2√311.【北京市中国人民大学附属中学2019届高三上学期月考(二)】已知平面向量a ⇀=(1,−3),b ⇀=(−2,0),则|a ⇀+2b ⇀|=() A .3√2B .3C .2√2D .512.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)】在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=π3,∠ACB ≠π2,BC=1,P 为BC 中点.过点P 作PQ⊥BC 交AC 所在直线于Q ,则AQ ⃑⃑⃑⃑⃑⃗在BC ⃑⃑⃑⃑⃑⃗方向上投影的最大值是( ) A .13B .12C .√33D .2313.【北京市海淀区2020届高三年级第二学期期末练习(二模)】对于非零向量a ⃗,b ⃑⃗,“(a ⃗+b ⃑⃗)⋅a ⃗=2a ⃗2”是“a ⃗=b ⃑⃗”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件14.【北京市2020届高考数学预测卷】已知|a ⃗|=1,则“a ⃗⊥(a ⃗+b ⃑⃗)”是“a ⃗⋅b ⃑⃗=−1”的() A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分非必要条件15.【北京市东城区2020届高三第二学期二模】已知向量a ⃗=(0,5),b ⃑⃗=(4,−3),c ⃗=(−2,−1),那么下列结论正确的是() A .a ⃗−b ⃑⃗与c ⃗为共线向量 B .a ⃗−b⃑⃗与c ⃗垂直 C .a ⃗−b⃑⃗与a ⃗的夹角为钝角 D .a ⃗−b⃑⃗与b ⃑⃗的夹角为锐角 16.【2020届北京市顺义牛栏山第一中学高三3月高考适应性测试】已知正ΔABC 的边长为4,点D 为边BC 的中点,点E 满足AE ⃑⃑⃑⃑⃑⃗=ED ⃑⃑⃑⃑⃑⃗,那么EB ⃑⃑⃑⃑⃑⃗⋅EC ⃑⃑⃑⃑⃑⃗的值为( ) A .−83B .−1C .1D .317.【2020届北京市首都师范大学附属中学高三北京学校联考】在平行四边形ABCD 中,AD =2,∠BAD =60°,E 为CD 的中点.若AC ⃑⃑⃑⃑⃑⃗⋅BE ⃑⃑⃑⃑⃑⃗=3,则AB 的长为() A .12B .1C .2D .318.【2020届北京市朝阳区六校高三四月联考】已知向量a ⃗=(2,2√3),若a⃗⋅b ⃑⃗=−163,则b ⃑⃗在a ⃗上的投影是() A .34B .−34C .43D .−4319.【2020届北京市顺义牛栏山第一中学西校区高三下学期4月月考】若两个非零向量a ⃗、b ⃑⃗满足(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,且|a ⃗+b ⃑⃗|=2|a ⃗−b ⃑⃗|,则a ⃗与b ⃑⃗夹角的余弦值为() A .35B .±35C .12D .±1220.【北京师范大学附属中学2019届高三(下)四月份月考】已知ΔABC 中,AB =10,AC =6,BC =8,M 为AB 边上的中点,则CM ⇀⋅CA ⇀+CM ⇀⋅CB ⇀=() A .0B .25C .50D .10021.【2020届北京市八一学校高三第一学期高三10月月考】已知向量a ⇀=(2,1),a ⇀⋅b ⇀=10,|a ⇀+b ⇀|=5√2,则|b⇀|=________. 22.【北京师范大学附属实验中学2019届高三下学期第一次质量评估】已知向量a ⇀=(2,4),b ⇀=(−1,m).若a ⇀//b ⇀,则a ⇀⋅b ⇀=__________.23.【2020届北京市顺义区高三二模】已知向量a ⃗=(−1,2),b ⃑⃗=(x,1),若a ⃗⊥b ⃑⃗,则实数x =___________. 24.【2020届北京市高考适应性测试】已知向量a ⃗=(1,m),b ⃑⃗=(2,1),且a ⃗⊥b ⃑⃗,则m =________. 25.如图所示,平面内有三个向量OA ⃑⃑⃑⃑⃑⃗、OB ⃑⃑⃑⃑⃑⃗、OC ⃑⃑⃑⃑⃑⃗,其中OA ⃑⃑⃑⃑⃑⃗与OB ⃑⃑⃑⃑⃑⃗的夹角为120°,OA⃑⃑⃑⃑⃑⃗与OC ⃑⃑⃑⃑⃑⃗的夹角为30°,且|OA ⃑⃑⃑⃑⃑⃗|=|OB ⃑⃑⃑⃑⃑⃗|=1,|OC ⃑⃑⃑⃑⃑⃗|=2√3.若OC ⃑⃑⃑⃑⃑⃗=λOA ⃑⃑⃑⃑⃑⃗+μOB⃑⃑⃑⃑⃑⃗(λ,μ∈R),则λ+μ的值为______.26.【北京市西城区2019-2020学年高三上学期期末】已知向量a ⇀=(−4,6),b ⇀=(2,x)满足a ⇀//b ⇀,其中x ∈R ,那么|b⇀|=_____________ 27.【北京市海淀区清华大学附属中学2019-2020学年高三上学期10月月考】在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60∘,点E 和点F 分别在线段BC 和CD 上,且BE ⃑⃑⃑⃑⃑⃗=23BC ⃑⃑⃑⃑⃑⃗,DF ⃑⃑⃑⃑⃑⃗=16DC ⃑⃑⃑⃑⃑⃗,则AE ⃑⃑⃑⃑⃑⃗⋅AF⃑⃑⃑⃑⃑⃗的值为. 28.【2020届北京市石景山区高三4月统一测试】已知向量BA⃑⃑⃑⃑⃑⃗=(12,√32),BC ⃑⃑⃑⃑⃑⃗=(√32,12),则∠ABC =______. 29.【2020届北京市高三高考模拟】已知向量a ⃗=(1,1),b ⃑⃗=(−3,m),若向量2a ⃗−b ⃑⃗与向量b ⃑⃗共线,则实数m =__________.30.【2020届北京市第十一中学高三一模】平面向量a ⃗=(1,2),b ⃑⃗=(4,2),c ⃗=ma ⃗+b ⃑⃗(m ∈R ),且c ⃗与a ⃗的夹角等于c ⃗与b ⃑⃗的夹角,则m =.1.【2019年北京理科07】设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )C .充分必要条件D .既不充分也不必要条件 【答案】解:点A ,B ,C 不共线,“AB →与AC →的夹角为锐角”⇒“|AB →+AC →|>|BC →|”, “|AB →+AC →|>|BC →|”⇒“AB →与AC →的夹角为锐角”,∴设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件. 故选:C .2.【2018年北京理科06】设a →,b →均为单位向量,则“|a →−3b →|=|3a →+b →|”是“a →⊥b →”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】解:∵“|a →−3b →|=|3a →+b →|” ∴平方得|a →|2+9|b →|2﹣6a →•b →=9|a →|2+|b →|2+6a →•b →, 即1+9﹣6a →•b →=9+1+6a →•b →, 即12a →•b →=0, 则a →•b →=0,即a →⊥b →,则“|a →−3b →|=|3a →+b →|”是“a →⊥b →”的充要条件, 故选:C .3.【2017年北京理科06】设m →,n →为非零向量,则“存在负数λ,使得m →=λn →”是“m →•n →<0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】解:m →,n →为非零向量,存在负数λ,使得m →=λn →,则向量m →,n →共线且方向相反,可得m →•n →<0. 反之不成立,非零向量m →,n →的夹角为钝角,满足m →•n →<0,而m →=λn →不成立. ∴m →,n →为非零向量,则“存在负数λ,使得m →=λn →”是m →•n →<0”的充分不必要条件. 故选:A .4.【2016年北京理科04】设a →,b →是向量,则“|a →|=|b →|”是“|a →+b →|=|a →−b →|”的( )C .充分必要条件D .既不充分也不必要条件【答案】解:若“|a →|=|b →|”,则以a →,b →为邻边的平行四边形是菱形; 若“|a →+b →|=|a →−b →|”,则以a →,b →为邻边的平行四边形是矩形; 故“|a →|=|b →|”是“|a →+b →|=|a →−b →|”的既不充分也不必要条件; 故选:D .5.【2015年北京理科13】在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →,若MN →=x AB →+y AC →,则x = ,y = .【答案】解:由已知得到MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →−AC →)=12AB →−16AC →; 由平面向量基本定理,得到x =12,y =−16;故答案为:12,−16.6.【2014年北京理科10】已知向量a →,b →满足|a →|=1,b →=(2,1),且λa →+b →=0→(λ∈R ),则|λ|= . 【答案】解:设a →=(x ,y ).∵向量a →,b →满足|a →|=1,b →=(2,1),且λa →+b →=0→(λ∈R ), ∴λa →+b →=λ(x ,y )+(2,1)=(λx +2,λy +1), ∴{√x 2+y 2=1λx +2=0λy +1=0,化为λ2=5.解得|λ|=√5. 故答案为:√5.7.【2013年北京理科13】向量a →,b →,c →在正方形网格中的位置如图所示,若c →=λa →+μb →(λ,μ∈R ),则λμ= .【答案】解:以向量a →、b →的公共点为坐标原点,建立如图直角坐标系可得a →=(﹣1,1),b →=(6,2),c →=(﹣1,﹣3) ∵c →=λa →+μb →(λ,μ∈R)∴{−1=−λ+6μ−3=λ+2μ,解之得λ=﹣2且μ=−12因此,λμ=−2−12=4故答案为:48.【2012年北京理科13】已知正方形ABCD 的边长为1,点E 是AB 边上的动点.则DE →⋅CB →的值为 . 【答案】解:因为DE →⋅CB →=DE →⋅DA →=|DE →|⋅|DA →|cos <DE →⋅DA →>=DA →2=1. 故答案为:19.【2011年北京理科10】已知向量a →=(√3,1),b →=(0,﹣1),c →=(k ,√3).若a →−2b →与c →共线,则k = .【答案】解:a →−2b →=(√3,3) ∵a →−2b →与c →共线, ∴√3×√3=3k 解得k =1. 故答案为1.10.【2020年北京卷15】已知正方形ABCD 的边长为2,点P 满足AP⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ),则|PD ⃑⃑⃑⃑⃑ |=_________;PB ⃑⃑⃑⃑⃑ ⋅PD ⃑⃑⃑⃑⃑ =_________. 【答案】√5−1【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点A (0,0)、B (2,0)、C (2,2)、D (0,2), AP ⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ )=12(2,0)+12(2,2)=(2,1), 则点P (2,1),∴PD⃑⃑⃑⃑⃑ =(−2,1),PB ⃑⃑⃑⃑⃑ =(0,−1), 因此,|PD⃑⃑⃑⃑⃑ |=√(−2)2+12=√5,PB ⃑⃑⃑⃑⃑ ⋅PD ⃑⃑⃑⃑⃑ =0×(−2)+1×(−1)=−1. 故答案为:√5;−1.1.【2020届北京市丰台区高三一模】已知向量a ⃗=(x,2),b ⃑⃗=(−2,1),满足a ⃗//b ⃑⃗,则x =() A .1 B .−1 C .4 D .−4【答案】D 【解析】向量a⃗=(x,2),b ⃑⃗=(−2,1), ∵a ⃗//b ⃑⃗,∴x =2×(−2)=−4 故选:D2.【2020届北京市第八中学高三下学期自主测试(二)】已知向量a ⃗=(1,√3),b ⃑⃗=(−1,0),c ⃗=(√3,k).若a ⃗−2b ⃑⃗与c ⃗共线,则实数k =() A .0 B .1C .√3D .3【答案】B 【解析】a ⃗−2b⃑⃗=(3,√3)因为a ⃗−2b ⃑⃗与c ⃗共线,所以3k −√3×√3=0,解得:k =1 故选:B3.【北京市石景山区2019届高三第一学期期末】已知向量a ⃗=(−12,√32),b⃑⃗=(√32,−12),则下列关系正确的是( ) A .(a ⃗+b ⃑⃗)⊥b ⃑⃗ B .(a ⃗+b ⃑⃗)⊥a ⃗ C .(a ⃗+b ⃑⃗)⊥(a ⃗−b ⃑⃗) D .(a ⃗+b ⃑⃗)//(a ⃗−b⃑⃗) 【答案】C 【解析】解:a ⃗+b⃑⃗=(√3−12,√3−12); ∴(a ⃗+b⃑⃗)•b ⃑⃗=3−√34−√3−14=2−√32≠0;∴a ⃗+b ⃑⃗不与b ⃑⃗垂直; ∴A 错误;(a ⃗+b ⃑⃗)•a ⃗=1−√34+3−√34=2−√32≠C ;∴a ⃗+b ⃑⃗不与a ⃗垂直; ∴B 错误;又(a ⃗+b ⃑⃗)•(a ⃗−b ⃑⃗)=a ⃗2−b ⃑⃗2=1−1=0; ∴(a ⃗+b ⃑⃗)⊥(a ⃗−b ⃑⃗); ∴C 正确,D 错. 故选C .4.【北京市通州区2020届高考一模】在平面直角坐标系中,O 为坐标原点,已知两点A(cosα,sinα),B(cos(α+π3),sin(α+π3)).则|OA ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗|=() A .1 B .√3C .2D .与α有关【答案】B 【解析】根据题意,A(cosα,sinα),B(cos(α+π3),sin(α+π3)). 则OA ⃑⃑⃑⃑⃑⃗=(cosα,sinα),OB ⃑⃑⃑⃑⃑⃗=(cos(α+π3),sin(α+π3)), 则有OA⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗=(cosα+cos(α+π3),sinα+sin(α+π3)),故|OA ⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗|2=[cosα+cos(α+π3)]2+[sinα+sin(α+π3)]2 =2+2cosαcos(α+π3)+2sinαsin(α+π3)=2+2cos π3=3,则|OA⃑⃑⃑⃑⃑⃗+OB ⃑⃑⃑⃑⃑⃗|=√3; 故选:B.5.【北京市人大附中2020届高三(6月份)高考数学考前热身】a ⃗,b⃑⃗为非零向量,“a⃑⃗|b ⃑⃗|=b ⃑⃗|a⃑⃗|”为“a ⃗,b⃑⃗共线”的() A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .即不充分也不必要条件【答案】B 【解析】a⃑⃗|b ⃑⃗|,b ⃑⃗|a ⃑⃗|分别表示与a ⃗,b ⃑⃗同方向的单位向量, a⃑⃗|b⃑⃗|=b⃑⃗|a ⃑⃗|,则有a ⃗,b ⃑⃗共线, 而a ⃗,b ⃑⃗共线,则a ⃑⃗|b ⃑⃗|,b⃑⃗|a ⃑⃗|是相等向量或相反向量, “a ⃑⃗|b ⃑⃗|=b⃑⃗|a ⃑⃗|”为“a ⃗,b ⃑⃗共线”的充分不必要条件. 故选:B.6.【2020届北京市中国人民大学附属中学高三下学期数学统练二】已知非零向量a ⃗,b ⃑⃗满足|a ⃗|=2|b ⃑⃗|,且(a ⃗–b ⃑⃗)⊥b ⃑⃗,则a ⃗与b ⃑⃗的夹角为 A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为(a ⃗−b ⃑⃗)⊥b ⃑⃗,所以(a ⃗−b ⃑⃗)⋅b ⃑⃗=a ⃗⋅b ⃑⃗−b ⃑⃗2=0,所以a ⃗⋅b ⃑⃗=b ⃑⃗2,所以cosθ=a ⃑⃗⋅b ⃑⃗|a ⃑⃗|⋅|b ⃑⃗|=|b ⃑⃗|22|b⃑⃗|2=12,所以a ⃗与b ⃑⃗的夹角为π3,故选B .7.【北京市平谷区2020届高三第二学期阶段性测试(二模)】设a ⃗,b ⃑⃗是向量,“|a ⃗|=|a ⃗+b ⃑⃗|”是“|b ⃑⃗|=0”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】当a⃗=−12b⃑⃗时,|a⃗+b⃑⃗|=|−12b⃑⃗+b⃑⃗|=12|b⃑⃗|=|a⃗|,推不出|b⃑⃗|=0当|b⃑⃗|=0时,b⃑⃗=0⃑⃗,则|a⃗+b⃑⃗|=|a⃗+0⃑⃗|=|a⃗|即“|a⃗|=|a⃗+b⃑⃗|”是“|b⃑⃗|=0”的必要不充分条件故选:B8.【北京市中国人民大学附属中学2020届高三3月月考】向量l在正方形网格中的位置如图所示.若向量λa⇀+b⇀与c⇀共线,则实数λ=()A.−2B.−1C.1D.2【答案】D【解析】由题中所给图像可得:2a⃗+b⃑⃗=c⃗,又c⃗=,所以λ=2.故选D9.【北京市昌平区新学道临川学校2019-2020学年高三上学期期末】设向量a⇀,b⇀满足a⇀+b⇀=(3,1),a⇀⋅b⇀=1,则|a⇀−b⇀|=()A.2B.√6C.2√2D.√10【答案】B【解析】由题意结合向量的运算法则可知:|a⇀−b⇀|=√(a⇀+b⇀)2−4a⇀⋅b⇀=√32+12−4×1=√6.本题选择B选项.10.【2020届北京市陈经纶中学高三上学期8月开学】已知平面向量a⃗,b⃑⃗的夹角为60°,a⃗=(√3,1),|b⃑⃗|=1则|a⃗+2b⃑⃗|=()A.2B.√7C.2√7D.2√3【答案】D【解析】|a⃗+2b⃑⃗|=√(a⃗+2b⃑⃗)2=√a⃗2+4a∙⃑⃑⃑⃑⃗b⃑⃗+4b⃑⃗2=√4+4×2×1×12+4=2√3,故选D. 11.【北京市中国人民大学附属中学2019届高三上学期月考(二)】已知平面向量a⇀=(1,−3),b⇀=(−2,0),则|a ⇀+2b ⇀|=() A .3√2 B .3C .2√2D .5【答案】A 【解析】因为a ⃗=(1,−3),b ⃑⃗=(−2,0), 所以a ⃗+2b ⃑⃗=(−3,−3), 因此|a ⃗+2b ⃑⃗|=√9+9=3√2. 故选A12.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)】在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=π3,∠ACB ≠π2,BC=1,P 为BC 中点.过点P 作PQ⊥BC 交AC 所在直线于Q ,则AQ ⃑⃑⃑⃑⃑⃗在BC ⃑⃑⃑⃑⃑⃗方向上投影的最大值是( ) A .13 B .12C .√33D .23【答案】C 【解析】建立如图所示的平面直角坐标系,则B (-12,0),C (12,0),P (0,0),由∠BAC =π3可知,ABC 三点在一个定圆上,且弦BC 所对的圆周角为π3,所以圆心角为2π3.圆心在BC 的中垂线即y 轴上,且圆心到直线BC 的距离为12BC tanπ3=√36,即圆心为(0,√36),半径为√(12)2+(√36)2=√33. 所以点A 的轨迹方程为:x 2+(y −√36)2=13,则x 2≤13,则−√33≤x <0,由AQ ⃑⃑⃑⃑⃑⃗在BC ⃑⃑⃑⃑⃑⃗方向上投影的几何意义可得:AQ ⃑⃑⃑⃑⃑⃗在BC ⃑⃑⃑⃑⃑⃗方向上投影为|DP|=|x|, 则AQ⃑⃑⃑⃑⃑⃗在BC ⃑⃑⃑⃑⃑⃗方向上投影的最大值是√33,故选C.13.【北京市海淀区2020届高三年级第二学期期末练习(二模)】对于非零向量a⃗,b⃑⃗,“(a⃗+b⃑⃗)⋅a⃗=2 a⃗2”是“a⃗=b⃑⃗”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】(a⃗+b⃑⃗)⋅a⃗=2a⃗2,则a⃗2+a⃗⋅b⃑⃗=2a⃗2,即a⃗⋅b⃑⃗=a⃗2,取|b⃑⃗|=2|a⃗|,〈a⃗,b⃑⃗〉=π,此时满足(a⃗+b⃑⃗)⋅a⃗=2a⃗2,而a⃗≠b⃑⃗;3当a⃗=b⃑⃗时,(a⃗+b⃑⃗)⋅a⃗=2a⃗2.故“(a⃗+b⃑⃗)⋅a⃗=2a⃗2”是“a⃗=b⃑⃗”的必要而不充分条件.故选:B.14.【北京市2020届高考数学预测卷】已知|a⃗|=1,则“a⃗⊥(a⃗+b⃑⃗)”是“a⃗⋅b⃑⃗=−1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】C【解析】由a⃗⊥(a⃗+b⃑⃗),则a⃗⋅(a⃗+b⃑⃗)=0⇒a⃗2+a⃗⋅b⃑⃗=0又|a⃗|=1,所以a⃗⋅b⃑⃗=−1若a⃗⋅b⃑⃗=−1,且|a⃗|=1,所以a⃗2+a⃗⋅b⃑⃗=0,则a⃗⊥(a⃗+b⃑⃗)所以“a⃗⊥(a⃗+b⃑⃗)”是“a⃗⋅b⃑⃗=−1”的充要条件故选:C15.【北京市东城区2020届高三第二学期二模】已知向量a⃗=(0,5),b⃑⃗=(4,−3),c⃗=(−2,−1),那么下列结论正确的是()A.a⃗−b⃑⃗与c⃗为共线向量B.a⃗−b⃑⃗与c⃗垂直C.a⃗−b⃑⃗与a⃗的夹角为钝角D.a⃗−b⃑⃗与b⃑⃗的夹角为锐角【答案】B【解析】解:∵a⃗=(0,5),b⃑⃗=(4,−3),c⃗=(−2,−1),∴a ⃗−b⃑⃗=(−4,8), ∵−4×(−1)−(−2)×8≠0,则a ⃗−b ⃑⃗与c ⃗不是共线向量, ∵(a ⃗−b ⃑⃗)⋅c ⃗=−4×(−2)+8×(−1)=0,则a ⃗−b ⃑⃗与c ⃗垂直, ∵(a ⃗−b ⃑⃗)⋅a ⃗=−4×0+8×5=40>0,则a ⃗−b ⃑⃗与a ⃗的夹角为锐角, ∵(a ⃗−b ⃑⃗)⋅b ⃑⃗=−4×4+8×(−3)=−40<0,则a ⃗−b ⃑⃗与b ⃑⃗的夹角为钝角, 故选:B .16.【2020届北京市顺义牛栏山第一中学高三3月高考适应性测试】已知正ΔABC 的边长为4,点D 为边BC 的中点,点E 满足AE ⃑⃑⃑⃑⃑⃗=ED ⃑⃑⃑⃑⃑⃗,那么EB ⃑⃑⃑⃑⃑⃗⋅EC ⃑⃑⃑⃑⃑⃗的值为( ) A .−83B .−1C .1D .3【答案】B 【解析】由已知可得:EB=EC=√7, 又tan∠BED =BD ED=√3=2√33所以cos∠BEC =1−tan 2∠BED 1+tan 2∠BED=−17所以EB ⃑⃑⃑⃑⃑⃗⋅EC ⃑⃑⃑⃑⃑⃗=|EB ⃑⃑⃑⃑⃑⃗‖EC ⃑⃑⃑⃑⃑⃗|cos∠BEC =√7×√7×(−17)=−1 故选B .17.【2020届北京市首都师范大学附属中学高三北京学校联考】在平行四边形ABCD 中,AD =2,∠BAD =60°,E 为CD 的中点.若AC ⃑⃑⃑⃑⃑⃗⋅BE ⃑⃑⃑⃑⃑⃗=3,则AB 的长为() A .12 B .1 C .2 D .3【答案】C 【解析】因为平行四边形ABCD 中,AD =2,∠BAD =60°,E 为CD 的中点, 设AB =x ,由AC ⃑⃑⃑⃑⃑⃗⋅BE⃑⃑⃑⃑⃑⃗=3得,(AB⇀+BC ⇀)⋅(BC ⇀+12BA ⇀) =(AB⇀+AD ⇀)⋅(AD ⇀−12AB ⇀) =AD ⃑⃑⃑⃑⃑⃗2+12AB ⃑⃑⃑⃑⃑⃗⋅AD ⃑⃑⃑⃑⃑⃗−12AB ⃑⃑⃑⃑⃑⃗2=4+12|AB ⇀|×2×cos60∘−12AB ⇀2 =4−12x 2+12x =3即x 2−x −2=0解得x =2或x =−1(舍去); 故选:C.18.【2020届北京市朝阳区六校高三四月联考】已知向量a ⃗=(2,2√3),若a ⃗⋅b ⃑⃗=−163,则b ⃑⃗在a ⃗上的投影是() A .34B .−34C .43D .−43【答案】D 【解析】由题意b ⃑⃗在a ⃗上的投影为a⃑⃗⋅b ⃑⃗|a ⃑⃗|=−163√22+(2√3)2=−43.故选:D.19.【2020届北京市顺义牛栏山第一中学西校区高三下学期4月月考】若两个非零向量a ⃗、b ⃑⃗满足(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,且|a ⃗+b ⃑⃗|=2|a ⃗−b ⃑⃗|,则a ⃗与b ⃑⃗夹角的余弦值为() A .35B .±35C .12D .±12【答案】A 【解析】设平面向量a ⃗与b ⃑⃗的夹角为θ,∵(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=a ⃗2−b ⃑⃗2=|a ⃗|2−|b ⃑⃗|2=0,可得|a ⃗|=|b ⃑⃗|, 在等式|a ⃗+b ⃑⃗|=2|a ⃗−b ⃑⃗|两边平方得a ⃗2+2a ⃗⋅b ⃑⃗+b ⃑⃗2=4a ⃗2−8a ⃗⋅b ⃑⃗+4b ⃑⃗2,化简得cosθ=35. 故选:A.20.【北京师范大学附属中学2019届高三(下)四月份月考】已知ΔABC 中,AB =10,AC =6,BC =8,M 为AB 边上的中点,则CM ⇀⋅CA ⇀+CM ⇀⋅CB ⇀=() A .0B .25C .50D .100【答案】C 【解析】由勾股定理逆定理可知三角形为直角三角形,CM 为斜边上的中线,所以|CM ⃑⃑⃑⃑⃑⃑⃗|=5, 原式=CM ⃑⃑⃑⃑⃑⃑⃗·(CA ⃑⃑⃑⃑⃑⃗+CB ⃑⃑⃑⃑⃑⃗)=CM ⃑⃑⃑⃑⃑⃑⃗·2CM ⃑⃑⃑⃑⃑⃑⃗=2×25=50. 故选C.21.【2020届北京市八一学校高三第一学期高三10月月考】已知向量a ⇀=(2,1),a ⇀⋅b ⇀=10,|a ⇀+b ⇀|=5√2,则|b ⇀|=________. 【答案】5 【解析】因为a ⃗=(2,1),所以|a ⃗|2=5,因为|a ⃗+b ⃑⃗|=5√2,所以|a ⃗+b ⃑⃗|2=|a ⃗|2+|b ⃑⃗|2+2a ⃗⋅b ⃑⃗=50, 即5+|b⃑⃗|2+20=50,|b ⃑⃗|=5。

(2010-2019)十年高考数学真题分类汇编:函数(含解析)

(2010-2019)十年高考数学真题分类汇编:函数(含解析)

(2010-2019)十年高考数学真题分类汇编:函数(含解析)1.(2019•天津•理T8)已知a ∈R ,设函数f(x)={x 2-2ax +2a ,x ≤1,x -alnx ,x >1.若关于x 的不等式f(x)≥0在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e] 【答案】C【解析】(1)当a ≤1时,二次函数的对称轴为x=a.需a 2-2a 2+2a ≥0.a 2-2a ≤0.∴0≤a ≤2. 而f(x)=x-aln x ,f'(x)=1-a x =x -a x >0此时要使f(x)=x-aln x 在(1,+∞)上单调递增,需1-aln 1>0.显然成立.可知0≤a ≤1.(2)当a>1时,x=a>1,1-2a+2a ≥0,显然成立.此时f'(x)=x -a x ,当x ∈(1,a),f'(x)<0,单调递减,当x ∈(a ,+∞),f'(x)>0,单调递增.需f(a)=a-aln a ≥0,ln a ≤1,a ≤e ,可知1<a ≤e.由(1)(2)可知,a ∈[0,e],故选C.2.(2019•天津•文T8)已知函数f(x)={2√x ,0≤x ≤1,1x ,x >1.若关于x 的方程f(x)=-14x+a(a ∈R)恰有两个互异的实数解,则a 的取值范围为( )A.54,94B.54,94C.54,94∪{1}D.54,94∪{1} 【答案】D【解析】当直线过点A(1,1)时,有1=-14+a ,得a=54.当直线过点B(1,2)时,有2=-14+a ,a=94.故当54≤a≤94时,有两个相异点.当x>1时,f'(x 0)=-1x 02=-14,x 0=2.此时切点为2,12,此时a=1.故选D.3.(2019•浙江•T9)设a ,b ∈R ,函数f(x)={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f(x)-ax-b 恰有3个零点,则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>0【答案】C【解析】当x<0时,由x=ax+b ,得x=b 1-a ,最多一个零点取决于x=b 1-a 与0的大小,所以关键研究当x≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g(x).画出三次函数g(x)的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系.①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x≥0时g(x)单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g(x)与y=b 可以有两个交点,且此时要求x=b 1-a <0,故-1<a<1,b<0,选C.4.(2019•北京•文T3)下列函数中,在区间(0,+∞)上单调递增的是( )A.y=x 12B.y=2-xC.y=lo g 12xD.y=1x【答案】A【解析】函数y=2-x ,y=lo g 12x ,y=1x 在区间(0,+∞)上单调递减,函数y=x 12在区间(0,+∞)上单调递增,故选A.5.(2019•全国1•理T11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数 ②f(x)在区间(π2,π)内单调递增③f(x)在[-π,π]有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③【答案】C【解析】因为函数f(x)的定义域为R ,关于原点对称,且f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确; 当π2<x<π时,f(x)=2sin x ,它在区间(π2,π)内单调递减,故②错误;当0≤x ≤π时,f(x)=2sin x ,它有两个零点0和π;当-π≤x ≤0时,f(x)=sin(-x)-sin x=-2sin x ,它有两个零点-π和0;故f(x)在区间[-π,π]上有3个零点-π,0和π,故③错误;当x ∈[2k π,2k π+π](k ∈N *)时,f(x)=2sin x;当x ∈(2k π+π,2k π+2π](k ∈N *)时,f(x)=sin x-sin x=0.又f(x)为偶函数,所以f(x)的最大值为2,故④正确;综上可知①④正确,故选C.6.(2019•全国3•理T11文T12)设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f (log 314)>f(2-32)>f(2-23)B.f (log 314)>f(2-23)>f(2-32)C.f(2-32)>f(2-23)>f (log 314)D.f(2-23)>f(2-32)>f (log 314)【答案】C【解析】∵f(x)是R 上的偶函数,∴f (log 314)=f(-log 34)=f(log 34).又y=2x 在R 上单调递增,∴log 34>1=20>2-23>2-32.又f(x)在区间(0,+∞)内单调递减, ∴f(log 34)<f(2-23)<f(2-32),∴f(2-32)>f(2-23)>f (log 314).故选C.7.(2019•全国1•理T3文T3)已知a=log 20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a【答案】B【解析】因为a=log 20.2<0,b=20.2>20=1,又0<c=0.20.3<0.20<1,所以a<c<b.故选B.8.(2019•天津•理T6)已知a=log 52,b=log 0.50.2,c=0.50.2,则a ,b ,c 的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b【答案】A【解析】∵a=log 52<log 5√5=12,b=log 0.50.2>log 0.50.5=1,c=0.50.2=(12)0.2>(12)1,∴b>c>a.故选A.9.(2019•天津•文T5)已知a=log 27,b=log 38,c=0.30.2,则a ,b ,c 的大小关系为( )A.c<b<aB.a<b<cC.b<c<aD.c<a<b命题点比较大小,指、对数函数的单调性. 解题思路利用指、对数函数的单调性比较.【答案】A【解析】a=log 27>log 24=2.b=log 38<log 39<2,且b>1.又c=0.30.2<1,故c<b<a ,故选A.10.(2019•全国1•T5)函数f(x)=sinx+xcosx+x 2在[-π,π]的图像大致为( )。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):函数

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):函数
2 |x|
49.(2016•全国 1•T9)函数 y=2x -e 在[-2,2]的图象大致为( )
2
50.(2016•浙江•文 T3)函数 y=sin x 的图象是( )
x
51.(2016•浙江•文 T7)已知函数 f(x)满足:f(x)≥|x|,且 f(x)≥2 ,x∈R.( )
b
A.若 f(a)≤|b|,则 a≤b B.若 f(a)≤2 ,则 a≤b
cc
A.a <b
cc
B.ab <ba
C.alogbc<blogac
D.logac<logbc
9
46.(2016•全国 3•理 T6)已知 a=2 ,b=4:,c=25 ,则( )
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
9
47.(2016•全国 3•文 T7)已知 a=2 ,b=3 ,c=25 ,则( )
!"#
35.(2017•全国 1•文 T8)函数 y= 的部分图象大致为( )
-%&!
!"#
36.(2017•全国 3•文 T7)函数 y=1+x+ 的部分图象大致为( )
5
37.(2017•山东•理
T10)已知当
x∈[0,1]时,函数
2
y=(mx-1)
的图象与
y=√x+m
的图象有且只有一个交点,则正
③f(x)在[-π,π]有 4 个零点 ④f(x)的最大值为 2
其中所有正确结论的编号是( )
A.①②④ B.②④
C.①④
D.①③
6.(2019•全国 3•理 T11 文 T12)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)单调递减,则( )

(2010-2019)高考数学真题分类汇编专题06平面向量文(含解析)

(2010-2019)高考数学真题分类汇编专题06平面向量文(含解析)

专题06平面向量历年考题细目表填空题2012向量的模2012年新课标1文科15填空题2011平面向量的数量积2011年新课标1文科13历年高考真题汇编1.【2019年新课标1文科08】已知非零向量,满足||=2||,且()⊥,则与的夹角为()A.B.C.D.【解答】解:∵()⊥,∴,∴,∵,∴.故选:B.2.【2018年新课标1文科07】在△ABC中,AD为BC边上的中线,E 为AD的中点,则( )A.B.C.D.【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,(),故选:A.3.【2015年新课标1文科02】已知点A(0,1),B(3,2),向量(﹣4,﹣3),则向量( )A.(﹣7,﹣4)B.(7,4) C.(﹣1,4) D.(1,4)【解答】解:由已知点A(0,1),B(3,2),得到(3,1),向量(﹣4,﹣3),则向量(﹣7,﹣4);故选:A.4.【2014年新课标1文科06】设D,E,F分别为△ABC的三边BC,CA,AB的中点,则()A.B.C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴()+()(),故选:A.5.【2010年新课标1文科02】平面向量,已知(4,3),(3,18),则夹角的余弦值等于()A.B.C.D.【解答】解:设(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ,故选:C.6.【2017年新课标1文科13】已知向量(﹣1,2),(m,1),若向量与垂直,则m=.【解答】解:∵向量(﹣1,2),(m,1),∴(﹣1+m,3),∵向量与垂直,∴()•(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.7.【2016年新课标1文科13】设向量(x,x+1),(1,2),且⊥,则x=.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.8.【2013年新课标1文科13】已知两个单位向量,的夹角为60°,t(1﹣t).若•0,则t=.【解答】解:∵,,∴0,∴t cos60°+1﹣t=0,∴10,解得t=2.故答案为2.9.【2012年新课标1文科15】已知向量夹角为45°,且,则.【解答】解:∵,1∴∴|2|解得故答案为:310.【2011年新课标1文科13】已知a与b为两个垂直的单位向量,k为实数,若向量与向量k垂直,则k=.【解答】解:∵∴∵垂直∴即∴k =1故答案为:1考题分析与复习建议本专题考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积,平面向量的综合应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积等,预测明年本考点题目会比较稳定,备考方向以知识点平面向量的线性运算,平面向量的数量积,平面向量的综合应用等为重点较佳。

专题10 平面向量丨十年高考数学真题分项汇编(解析版)(共40页)

专题10  平面向量丨十年高考数学真题分项汇编(解析版)(共40页)

十年(2014-2023)年高考真题分项汇编—平面向量目录题型一:平面向量的概念及线性运算.......................................................1题型二:平面向量的基本定理....................................................................3题型三:平面向量的坐标运算....................................................................9题型四:平面向量中的平行与垂直.........................................................13题型五:平面向量的数量积与夹角问题.................................................14题型六:平面向量的模长问题..................................................................32题型七:平面向量的综合应用 (37)题型一:平面向量的概念及线性运算一、选择题1.(2021年高考浙江卷·第3题)已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B解析:若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b = ,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件,故选B .2.(2020年新高考全国卷Ⅱ数学(海南)·第3题)在ABC 中,D 是AB 边上的中点,则CB=()A .2CD CA +B .2CD CA-C .2CD CA-D .2CD CA+【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA-=+=+=+-= 3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n -B .23m n-+C .32m n+D .23m n+【答案】B解析:因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .4.(2019·上海·第13题)已知直线方程02=+-c y x 的一个方向向量d 可以是()A.)1,2(-B .)1,2(C .)2,1(-D .)2,1(【答案】D【解析】依题意:)1,2(-为直线的一个法向量,∴方向向量为)2,1(,选D .【点评】本题主要考查直线的方向量.5.·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为12(10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是()A .165cmB .175cmC .185cmD .190cm【答案】答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .二、填空题1.(2020北京高考·第13题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD =_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD ==,()021(1)1PB PD ⋅=⨯-+⨯-=-.故答案为:;1-.2.(2014高考数学北京理科·第10题)已知向量a 、b 满足|a |=1,b =(2,1),且0a b λ+=(R λ∈),则||λ=.【答案】5解析:∵0a b λ+= ,∴a b λ=-,b aλ∴==3.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12解析:因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=.题型二:平面向量的基本定理一、选择题1.(2018年高考数学课标卷Ⅰ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A .3144AB AC-B .1344AB AC-C .3144AB AC+D .1344AB AC+【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A .2.(2014高考数学福建理科·第8题)在下列向量组中,可以把向量)2,3(=a表示出来的是()A .)2,1(),0,0(21==e eB .)2,5(),2,1(21-=-=e e C .)10,6(),5,3(21==e e D .)3,2(),3,2(21-=-=e e 【答案】B解析:根据12a e e λμ=+ ,选项A :()()()3,20,01,2λμ=+,则3μ=,22μ=,无解,故选项A 不能;选项B :()()()3,21,25,2λμ=-+-,则35λμ=-+,222λμ=-,解得,2λ=,1μ=,故选项B 能.选项C :()()()3,23,56,10λμ=+,则336λμ=+,2510λμ=+,无解,故选项C 不能.选项D :()()()3,22,32,3λμ=-+-,则322λμ=-,233λμ=-+,无解,故选项D 不能.故选:B .3.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则()A .1433AD AB AC =-+B .1433AD AB AC=- C .4133AD AB AC =+ D .4133AD AB AC=-【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A .4.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD λμ=+,则λμ+的最大值为()A .3B .CD .2【答案】A【解析】法一:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如下图则()0,0A ,()1,0B ,()0,2D ,()1,2C ,连结BD ,过点C 作CE BD ⊥于点E在Rt BDC ∆中,有BD ==1122ACD S BC CD BD CE =⨯⨯=⨯⨯△即112512225CE CE ⨯⨯=⇒=所以圆C 的方程为()()224125x y -+-=可设1cos ,2sin 55P θθ⎛⎫++ ⎪ ⎪⎝⎭由AP AB AD λμ=+ 可得()1cos ,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以1cos 51sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩,所以2cos sin 55λμθθ+=++()2sin θϕ=++其中sin 5ϕ=,cos 5ϕ=所以λμ+的最大值为3,故选A .法二:通过点C 作CE BD ⊥于E 点,由1AB =,2AD =,可求得BD ==又由1122ACD S CD CB BD CE =⨯⨯=⨯⨯△,可求得255CE =由等和线定理可知,当点P 的切线(即FH )与DB 平行时,λμ+取得最大值又点A 到BD 的距离与点C 到直线BD 的距离相等,均为255而此时点A 到直线FH 的距离为25252565225555r +=+⨯=所以6553255AFAB ==,所以λμ+的最大值为3,故选A .另一种表达:如图,由“等和线”相关知识知,当P 点在如图所示位置时,λμ+最大,且此时若AG x AB y AD =+,则有x y λμ+=+,由三角形全等可得2AD DF FG ===,知3,0x y ==,所以选A.法三:如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y根据等面积公式可得圆的半径是,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-= ,若满足AP AB ADλμ=+ 即21x y μλ=⎧⎨-=-⎩,,12x y μλ==-,所以12x y λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A .法四:由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系则C 点坐标为(2,1).∵||1CD =,||2BC =.∴22125BD =+=.BD 切C 于点E .∴CE⊥BD.∴CE是Rt BCD△中斜边BD上的高.12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 255.∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y = ,(0,1)AB = ,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0151cos 25x μθ==+,02155y λθ==+.两式相加得:2225151552552()())552sin()3λμθθθϕθϕ+=+++=+++=++≤(其中5sin 5ϕ=,25cos 5ϕ=)当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题1.(2023年天津卷·第14题)在ABC 中,60A ∠= ,1BC =,点D 为AB 的中点,点E 为CD 的中点,若设,AB a AC b == ,则AE 可用,a b表示为_________;若13BF BC = ,则AE AF ⋅ 的最大值为_________.【答案】①.1142a b + ②.1324解析:空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED ADAE EC AC⎧+=⎪⎨+=⎪⎩,两式相加,可得到2AE AD AC =+,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC ACAF FB AB ⎧+=⎪⎨+=⎪⎩ ,得到()22AF FC AF FB AC AB +++=+,即32AF a b =+,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭.记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos 601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅有最大值1324.故答案为:1142a b + ;1324.2.(2015高考数学北京理科·第13题)在ABC △中,点M ,N 满足2AM MC = ,BN NC =.若MN x AB y AC =+,则x =;y =.【答案】11,26-解析:特殊化,不妨设,4,3AC AB AB AC ⊥==,利用坐标法,以A 为原点,AB 为x 轴,AC 为y轴,建立直角坐标系,3(0,0),(0,2),(0,3),(4,0),(2,2A M CB N ,1(2,),(4,0),2MN AB =-=(0,3)AC = ,则1(2,)(4,0)(0,3)2x y -=+,11142,3,,226x y x y ==-∴==-.3.(2017年高考数学江苏文理科·第12题)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为2,OA与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+ (,)m n ∈R ,则m n +=______.【答案】3解析:由tan 7α=可得72sin 10α=,2cos 10α=,根据向量的分解,易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩,即2222102720210n m n +=⎪⎪⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.题型三:平面向量的坐标运算一、选择题1.(2023年北京卷·第3题)已知向量a b,满足(2,3),(2,1)a b a b +=-=-,则22||||a b -=()αA CBO(第12题)A .2-B .1-C .0D .1【答案】B解析:向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B2.(2023年新课标全国Ⅰ卷·第3题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D解析:因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .3.(2014高考数学重庆理科·第4题)已知向量)1,2(),4,1(),3,(===c b k a ,且(23)a b c -⊥,则实数k =()A .92-B .0C .3D .152【答案】C解析:(23)a b c -⊥ (23)0a b c ⇒-= 230a c b c ⇒-= 2(23)360 3.k k ⇒+-⨯=⇒=C .13r R ≤<<D .13r R<<<【答案】A解析:因为||||1a b == ,且0a b ⋅= ,设(1,0)a = ,(0,1)b =,则由)OQ a b =+得Q 曲线C:设(,)P x y ,则(1,0)cos (0,1)sin (cos ,sin )OP θθθθ=+=,02θπ≤<,则cos ,(02)sin x y θθπθ=⎧≤<⎨=⎩,表示以(0,0)为圆心,1为半径的圆;区域Ω:设(,)P x y ,则由||r PQ R ≤≤,则有:2222(2)(2)r x y R ≤-+-≤,表示以(2,2)为圆心,分别以r 和R 为半径的同心圆的圆环形区域(如图),若使得C Ω 是两段分离的曲线,则由图像可知:13r R <<<,故选A .5.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,)22BA = ,31(,)22BC = ,则ABC ∠=()A .30︒B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC ⨯+⋅∠===⨯⋅ ,所以30ABC ∠=︒,故选A.6.(2016高考数学课标Ⅱ卷理科·第3题)已知向量(1,)(3,2)a m b =- ,=,且()a b b ⊥+,则m =()A .8-B .6-C .6D .8【答案】D【解析】由()a b b ⊥ +可得:()0a b b +=,所以20a b b += ,又(1,)(3,2)a mb =- ,=所以2232+(3(2))0m -+-=,所以8m =,故选D .二、填空题1.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.2.(2020江苏高考·第13题)在ABC ∆中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得9AP =,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】,,A D P 三点共线,∴可设()0PA PD λλ=> ,32PA mPB m PC ⎛⎫∴=+- ⎪⎝⎭,32PD mPB m PC λ⎛⎫∴=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,321m m λλ⎛⎫- ⎪⎝⎭∴+=,即32λ=,9AP = ,3AD ∴=,4AB = ,3AC =,90BAC ∠=︒,5BC ∴=,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,()cos cos 0θπθ+-= ,()()2570665x x x --∴+=-,解得185x =,CD ∴的长度为185.当0m =时,32PA PC =,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.3.设向量a 与b 的夹角为θ,(33)a = ,,2(11)b a -=-,,则cos θ=.【答案】31010解:设向量a 与b 的夹角为,θ且(3,3),2(1,1),a b a =-=- ∴(1,2)b =,则cos θ=||||a b a b ⋅==⋅31010。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):坐标系与参数方程

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):坐标系与参数方程

线 l 的参数方程为
(t 为参数),曲线 C 的参数方程为
(s 为参数).设 P 为曲线 C 上的动
点,求点 P 到直线 l 的距离的最小值.
2
12.(2016·全国 1·理 T23 文 T23)在直角坐标系 xOy 中,曲线 C1的参数方程为 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C2:ρ=4cos θ. (1)说明 C1 是哪一种曲线,并将 C1 的方程化为极坐标方程;
(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;
(2)直线 l 的参数方程是
(t 为参数),l 与 C 交于 A,B 两点,|AB|= ,求 l 的斜率.
14. (2016·全国 3·理 T23 文 T23)在直角坐标系 xOy 中,曲线
1-t2
1 t2 , 4t (t 为参数).以坐标
1 t2
原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+√3 ρsin θ+11=0.
(1)求 C 和 l 的直角坐标方程;
(2)求 C 上的点到 l 距离的最小值.
3.(2019·全国 2·理 T22 文 T22)[选修 4—4:坐标系与参数方程] 在极坐标系中,O 为极点,点 M(ρ0,θ0)(ρ0>0)在曲线 C:ρ=4sin θ 上,直线 l 过点 A(4,0)且与 OM 垂直,垂足为 P. (1)当 θ0=π3时,求 ρ0 及 l 的极坐标方程; (2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.
在直角坐标系 xOy 中,曲线 C 的参数方程为
(θ 为参数),直线 l 的参数方程为

2010—2019“十年高考”数学真题分类汇总 平面向量专题解析版 (可下载)

2010—2019“十年高考”数学真题分类汇总 平面向量专题解析版 (可下载)

解法二 由 b2 4e b 3 0 得 b2 4e b 3e2 (b e) (b 3e) 0 .





设 b OB , e OE , 3e OF ,所以 b e EB , b 3e = FB ,
7.(2017 北京)设 m , n 为非零向量,则“存在负数 ,使得 m n ”是“ m n 0 ”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】A.
【 解 析 】 因 为 m, n 为 非 零 向 量 , 所 以 m n | m || n | cos m, n 0 的 充 要 条 件 是
cos m, n 0 .
因 为 0 , 则 由 m n 可 知 m, n 的 方 向 相 反 , m, n 180 , 所 以
法二、优解
EB

AB

AE

AB

1
AD

AB

1
1
(AB

AC
)
2
22

3
AB

1
AC
.故选
A.
44
4.(2018 全国卷Ⅱ)已知向量 a , b 满足 | a | 1 , a b 1 ,则 a (2a b)
所以 cos a, b b 2 b 2 1 . ab 2b 2
又因为 a, b [0,π] ,所以 a, b π .故选 B. 3
2.(2019 全国Ⅱ文 3)已知向量 a=(2,3),b=(3,2),则|a–b|=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题06平面向量历年考题细目表题型年份考点试题位置单选题2019 平面向量的数量积2019年新课标1文科08单选题2018 平面向量基本定理2018年新课标1文科07单选题2015 平面向量的坐标运算2015年新课标1文科02单选题2014 平面向量的几何运算2014年新课标1文科06单选题2010 平面向量的数量积2010年新课标1文科02填空题2017 平面向量的坐标运算2017年新课标1文科13填空题2016 平面向量的数量积2016年新课标1文科13填空题2013 平面向量的数量积2013年新课标1文科13填空题2012 向量的模2012年新课标1文科15填空题2011 平面向量的数量积2011年新课标1文科13历年高考真题汇编1.【2019年新课标1文科08】已知非零向量,满足||=2||,且()⊥,则与的夹角为()A.B.C.D.【解答】解:∵()⊥,∴,∴,∵,∴.故选:B.2.【2018年新课标1文科07】在△ABC中,AD为BC边上的中线,E为AD的中点,则()A.B.C.D.【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,(),故选:A.3.【2015年新课标1文科02】已知点A(0,1),B(3,2),向量(﹣4,﹣3),则向量()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)【解答】解:由已知点A(0,1),B(3,2),得到(3,1),向量(﹣4,﹣3),则向量(﹣7,﹣4);故选:A.4.【2014年新课标1文科06】设D,E,F分别为△ABC的三边BC,CA,AB的中点,则()A.B.C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴()+()(),故选:A.5.【2010年新课标1文科02】平面向量,已知(4,3),(3,18),则夹角的余弦值等于()A.B.C.D.【解答】解:设(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ,故选:C.6.【2017年新课标1文科13】已知向量(﹣1,2),(m,1),若向量与垂直,则m=.【解答】解:∵向量(﹣1,2),(m,1),∴(﹣1+m,3),∵向量与垂直,∴()•(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.7.【2016年新课标1文科13】设向量(x,x+1),(1,2),且⊥,则x=.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.8.【2013年新课标1文科13】已知两个单位向量,的夹角为60°,t(1﹣t).若•0,则t=.【解答】解:∵,,∴0,∴t cos60°+1﹣t=0,∴10,解得t=2.故答案为2.9.【2012年新课标1文科15】已知向量夹角为45°,且,则.【解答】解:∵, 1∴∴|2|解得故答案为:310.【2011年新课标1文科13】已知a与b为两个垂直的单位向量,k为实数,若向量与向量k垂直,则k=.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1考题分析与复习建议本专题考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积,平面向量的综合应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积等,预测明年本考点题目会比较稳定,备考方向以知识点平面向量的线性运算,平面向量的数量积,平面向量的综合应用等为重点较佳.最新高考模拟试题1.在ABC ∆中,,,若,则( )A .3y x =B .3x y =C .3y x =-D .3x y =-【答案】D 【解析】 因为,所以点D 是BC 的中点,又因为,所以点E 是AD 的中点,所以有:,因此,故本题选D.2.已知非零向量a r ,b r 的夹角为60o,且满足22a b -=r r ,则a b ⋅r r 的最大值为( )A .12B .1C .2D .3【答案】B 【解析】因为非零向量a r ,b r 的夹角为60o,且满足22a b -=r r ,所以,即,即,又因为,当且仅当2a b =r r时,取等号;所以,即2a b ≤rr ;因此,.即a b ⋅rr 的最大值为1. 故选B3.设a r ,b r 均为单位向量,则“a r 与b r夹角为2π3”是“||3a b +=r r ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】因为a r ,b r均为单位向量, 若a r 与b r夹角为2π3, 则;因此,由“a r 与b r夹角为2π3”不能推出“||3a b +=r r ”; 若||3a b +=r r,则,解得1cos ,2a b =v v ,即a r 与b r 夹角为π3,所以,由“||3a b +=r r ”不能推出“a r 与b r 夹角为2π3”因此,“a r 与b r 夹角为2π3”是“||3a b +=r r ”的既不充分也不必要条件.故选D4.在矩形ABCD 中,4AB =uu u r ,2AD =u u u r .若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅=u u u u r u u u u r( )A .4B .3C .2D .1【答案】C 【解析】由题意作出图形,如图所示:由图及题意,可得:,.∴.故选:C .5.已知P 为等边三角形ABC 所在平面内的一个动点,满足,若2AB =u u u r,则( )A .23B .3C .6D .与λ有关的数值【答案】C 【解析】如图:以BC 中点为坐标原点O ,以BC 方向为x 轴正方向,OA 方向为y 轴正方向,建立平面直角坐标系,因为2AB =u u u r ,则3AO =u u u r,因为P 为等边三角形ABC 所在平面内的一个动点,满足,所以点P 在直线BC ,所以AP uu u r 在AO u u ur 方向上的投影为AO u u u v ,因此.故选C6.已知向量,且()a a b ⊥-rr r ,则m 的值为( )A .1B .3C .1或3D .4【答案】B 【解析】 因为,所以,因为()a a b ⊥-rr r ,则,解得3m =所以答案选B.7.已知向量a r 、b r 为单位向量,且a b +r r 在a r 的方向上的投影为31+,则向量a r 与b r 的夹角为( )A .6πB .4π C .3π D .2π 【答案】A 【解析】设向量a r 与b r的夹角为θ, 因为向量a r 、b r为单位向量,且a b +r r 在a r 的方向上的投影为31+,则有,变形可得:,即,又由0θπ≤≤,则6πθ=,故选A .8.在矩形ABCD 中,与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=u u u v u u u v( )A .725B .14425C .125D .1225【答案】B 【解析】 如图:由3AB =,4=AD 得:,又AE BD ⊥Q又本题正确选项:B9.已知直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,若,则实数m=( )A .1±B .32±C .22±D .12±【解析】联立221y x m x y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0, ∵直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点, ∴△=4m 2+8m 2-8=12m 2-8>0,解得m >6或m <-6,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO u u u r=(-x 1,-y 1),AB u u u v=(x 2-x 1,y 2-y 1), ∵+y 12-y 1y 2=1+m 2-m 2=2-m 2=32, 解得m=22±. 故选:C .10.已知菱形ABCD 的边长为2,,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=u u u r u u u r,则λ的值为( )A .3B .2C .23D .52【答案】B 【解析】 由题意可得:,且:,故,解得:2λ=.11.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ⋅u u u r u u u r的值为( ) A .83- B .1-C .1D .3【答案】B 【解析】由已知可得:EB=EC=7 , 又所以所以故选:B .12.在ABC ∆中,3AC =,向量AB u u u v 在AC u u u v上的投影的数量为,则BC =( )A .5B .27C .29D .42【答案】C 【解析】∵向量AB u u u v 在AC u u u v上的投影的数量为2-, ∴.① ∵3ABC S ∆=,∴,∴.②由①②得tan1A=-,∵A为ABC∆的内角,∴34Aπ=,∴.在ABC∆中,由余弦定理得,∴29BC=.故选C.13.在△ABC中,,则λμ+=()A.1-3B.13C.1-2D.12【答案】A【解析】因为所以P为ABC∆的重心,所以, 所以,所以因为,所以故选:A14.在ABC∆中,,则()A.9:7:8B.C.6:8:7D.【答案】B【解析】设所以,所以,所以,得所以故选:B15.在平行四边形ABCD中,若则ADC∠=( )A.56πB.34πC.23πD.2π【答案】C【解析】如图所示,平行四边形ABCD中, ,,,,因为,所以, ,所以,故选C.16.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B.34-C.2-D.2512-【答案】D【解析】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当16a =时,的最小值为2512-. 故选:D .17.如图Rt ABC ∆中,2ABC π∠=,2AC AB =,BAC ∠平分线交△ABC 的外接圆于点D ,设AB a =u u u r r ,AC b =u u u r r ,则向量AD =u u u r( )A .a b +r rB .12a b +r rC .12a b +r rD .23a b +r r【答案】C 【解析】解:设圆的半径为r ,在Rt ABC ∆中,2ABC π∠=,2AC AB =, 所以3BAC π∠=,6ACB π∠=,BAC ∠平分线交ABC ∆的外接圆于点D ,所以, 则根据圆的性质,又因为在Rt ABC ∆中,,所以四边形ABDO 为菱形,所以.故选:C .18.在ABC ∆中,90A ∠=︒,1AB =,2AC =,设点D 、E 满足AD AB λ=u u u r u u u r, ()AC R λ∈u u u r,若5BE CD ⋅=u u u r u u u r,则λ=( ) A .13- B .2 C .95D .3【答案】D 【解析】因为90A ∠=︒,则,所以.由已知,345λ-=,则3λ=. 选D .19.已知点C 为扇形AOB 的弧AB 上任意一点,且,若,则λμ+的取值范围为( )A .[2,2]-B .(1,2]C .[1,2]D .[1,2]【答案】D 【解析】解:设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中A (12-,3),B (1,0),C (cos θ,sin θ)(其中∠BOC =θ有(λ,μ∈R )即:(cos θ,sin θ)=λ(12-,3)+μ(1,0); 整理得:12-λ+μ=cos θ;32λ=sin θ,解得:λ3=,μ=cos θ3+,则λ+μ3=+cos θsin θ+cos θ=2sin (θ6π+),其中;易知λ+μ3=+cos θsin θ+cos θ=2sin (θ6π+),由图像易得其值域为[1,2]20.在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=3π,2ACB π∠≠,BC=1,P 为BC 中点.过点P 作PQ⊥BC 交AC 所在直线于Q,则AQ uuu r 在BC uuu r方向上投影的最大值是( )A .13B .12C .3 D .23【答案】C 【解析】建立如图所示的平面直角坐标系,则B (-12,0),C (12,0),P (0,0), 由BAC 3π∠=可知,ABC 三点在一个定圆上,且弦BC 所对的圆周角为3π,所以圆心角为23π.圆心在BC 的中垂线即y 轴上,且圆心到直线BC 的距离为132tan 3BCπ=,即圆心为3(0,)6,半径为.所以点A 的轨迹方程为:,则213x ≤,则,由AQ uuu r 在BC u u u r 方向上投影的几何意义可得:AQ uuu r 在BC u u u r方向上投影为|DP|=|x|, 则AQ uuu r 在BC u u u r 方向上投影的最大值是33,故选:C . 21.已知圆的弦AB 的中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅u u u r u u u r的值为______.【解析】设(1,1)M -,圆心(2,0)C -,∵,根据圆的性质可知,1AB k =-, ∴AB 所在直线方程为,即22gR r,联立方程可得,,设11(,)A x y ,22(,)B x y ,则,令0y =可得(0,0)P ,,故答案为:-5. 22.已知向量,若,则λ=______.【答案】12【解析】 解:;;; ;解得12λ=.故答案为:12. 23.向量()1,2a v=-,()1,0b =-r ,若,则λ=_________.【答案】13【解析】向量()1,2a =-v,()1,0b =-r ,所以,又因为, 所以,即,解得13λ=,故答案为13. 24.设向量12,e e r r的模分别为1,2,它们的夹角为3π,则向量21e e -r r 与2e r 的夹角为_____. 【答案】6π 【解析】又∴向量21e e -r r 与r 2e 的夹角为:6π本题正确结果:6π 25.已知平面向量a r ,m v ,n v,满足4a =r ,,则当m n -=u r r _____,则m v 与n v的夹角最大.【答案】3 【解析】 设a r ,m v ,n v 的起点均为O ,以O 为原点建立平面坐标系, 不妨设(4,0)a =r ,(,)m x y v =,则,4a m x ⋅=r u r , 由可得,即,∴m v 的终点M 在以(2,0)为圆心,以3为半径的圆上,同理n v 的终点N 在以(2,0)为圆心,以3为半径的圆上.显然当OM ,ON 为圆的两条切线时,MON ∠最大,即m v ,n v 的夹角最大.设圆心为A ,则3AM =,∴,,∴, 设MN 与x 轴交于点B ,由对称性可知MN x ⊥轴,且2MN MB =,∴.故答案为:3.26.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u r u u u r 的最小值为_______.【答案】5﹣213【解析】设圆心为O,AB 中点为D,由题得.取AC 中点M ,由题得,两方程平方相减得,要使PC PA ⋅u u u r u u u r取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=, 所以PM 有最小值为2﹣13, 代入求得PC PA ⋅u u u r u u u r 的最小值为5﹣213.故答案为:5﹣21327.如图,在边长为2的正三角形ABC 中,D 、E 分别为边BC 、CA 上的动点,且满足CE mBD =(m为定常数,且(0,1]m ∈),若AD DE ⋅u u u r u u u r 的最大值为34-,则m =________.【答案】12【解析】以BC 中点为坐标原点O ,OC 方向为x 轴正方向,OA 方向为y 轴正方向,建立如图所示平面直角坐标系, 因为正三角形ABC 边长为2,所以(1,0)B -,(1,0)C ,(0,3)A ,则(2,0)BC =u u u r ,,因为D 为边BC 上的动点,所以设BD tBC =u u u r u u u r,其中01t ≤≤,则,所以(21,0)D t -; 又,所以,因此, 所以,, 故,因为(0,1]m ∈,所以,又01t ≤≤, 所以当且仅当324m t m -=+时,AD DE ⋅u u u r u u u r 取得最大值, 即,整理得,解得12m =或8m =(舍) 故答案为1228.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B 成等差数列,则AB 的长为________.【答案】23 【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以,即, 所以,由正弦定理可得,又由余弦定理可得,所以,故,又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为, 所以, 即,解23c =. 即AB 的长为23. 故答案为23 29.如图,在平面四边形ABCD 中,,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若 (,R λμ∈),则λμ的值为_______.【答案】43 【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2,则有A (0,0),B (2,0),C (2,2),E (2,1),AC =22,AD=22×tan30°=263,过D作DF⊥x轴于F ,∠DAF=180°-90°-45°=45°,DF =26s in45°=,所以D(233-,23),ACu u u r=(2,2),ADu u u r=(23-,23),AEu u u r=(2,1),因为,所以,(2,2)=λ(23-,23)+μ(2,1),所以,,解得:3343λμ⎧=⎪⎪⎨⎪=⎪⎩λμ的值为43故答案为:4330.在平面直角坐标系xOy中,已知()11,A x y,()22,B x y为圆221x y+=上两点,且.若C为圆上的任意一点,则CA CBu u u r u u u rg的最大值为______.【答案】32【解析】因为C为圆x2+y2=1上一点,设C(sinθ,cosθ),则,∵()11,A x y,()22,B x y为圆221x y+=上两点,∴,又,∴,其中,∵sin()θϕ+∈[﹣1,1],∴当sin()θϕ+=1时,CA CB ⋅u u u r u u u r 的最大值为32.故答案为:32.。

相关文档
最新文档