高速变频电机测试解决方案

合集下载

变频8项测试方法提升

变频8项测试方法提升

最大频率运行发热盲点——测试电压不固定,测试多台样机过程中是按最高不出现限频的低压运行,但对于很多样机实际用的电压通常偏高,测试的恶劣性就会比原来的低了技巧、注意事项——①热电偶包括:变频模块附近散热器表面、整流桥堆附近散热器表面、PFC模块附近散热器表面、其他功率器件附近散热器表面、电控盒腔体、滤波器表面、滤波电容表面、电抗器电容表面、室内变压器、PFC电感绕组表面、电抗器表面、室外电机外壳、外机开关电源芯片、外机三端稳压器芯片、开关电源变压器(后三个为新增加的)②热电偶很多接在元器件表面,要注意其是否带电,防止短路造成以外③确定测试电压时,要在工况稳定后再调节电压,测试电压为出现限频的最低电压+5V ④测试最大频率运行发热一般情况下要求测试高低压压力,在测试过程中特别注意压力表和连接处是否出现冷媒泄漏⑤测试过程中要监控压机运行频率⑥样机元器件有标有T值的要做好记录;常见问题——①压缩机过载保护器跳开②样机压机在关、开机操作时,由于电流冲击过大出现电流保护,且次数在2次以上③排气温度过高,大于125℃④室外风机出现过载导致系统压力过大保护⑤冷凝器高温保护停压机或长运后冷凝器脏导致系统压力过大保护⑥元器件温度超过温度极限值⑦当额定电压下如果仍不能达到最大频率,判不合格。

(如内销不能大于220V,出口额定电压在220V-240V,不能大于230V。

)最高室外环境温度运行发热试验测试要加发热板,其他大体与最大频率运行发热最大频率运行制热试验盲点——测试电压不固定,测试多台样机过程中是按最高不出现限频的低压运行,但对于很多样机实际用的电压通常偏高,测试的恶劣性就会比原来的低了技巧、注意事项——①外侧测试工况干球温度一般为2度,内销与出口的电压不同,测试过程中应注意②热电偶很多接在元器件表面,要注意其是否带电,防止短路造成以外③测试时要测试压机频率,监控其是否最大频率运行⑤测试若要求测试高低压压力时,在测试过程中特别注意压力表和连接处是否出现冷媒泄漏⑥热电耦线要贴好,用束紧带固定牢靠,热电耦感温处的铝箔纸只能贴一层,避免影响散热效果⑦箔纸必须粘贴到位,不允许有翘起,或搭在不同电位(弱电上也不允许,变频机模块上的散热器也属于带电部件)的现象;常见问题——①压缩机过载保护器跳开②样机压机在关、开机操作时,由于电流冲击过大出现电流保护,且次数在2次以上③排气温度过高,大于125℃④室外风机出现过载导致系统压力过大保护⑤冷凝器高温保护停压机或长运后冷凝器脏导致系统压力过大保护⑥元器件温度超过温度极限值⑦当额定电压下如果仍不能达到最大频率,判不合格。

变频调速电机轴电压和轴电流问题及解决措施

变频调速电机轴电压和轴电流问题及解决措施

变频调速电机轴电压和轴电流问题及解决措施2017年12月目录1变频调速电机轴电压和轴电流问题的种类和形成原因 (1)2低压大功率变频调速电机轴电压和轴电流问题的重要性 (2)3低压大功率变频调速电机轴电压和轴电流问题的难点 (3)4.一般变频调速电机轴电压和轴电流问题的解决方案 (4)5.低压大功率变频调速电机轴电压和轴电流问题的解决方案初探 (5)4变频调速电机轴电压和轴承电流试验测试 (11)1变频调速电机轴电压和轴电流问题的种类和形成原因电机运行时,轴承两端之间产生的电位差称之为“轴电压”,该电压加在由电机转轴、轴承、端盖、机座构成的回路中,从而引起了轴承电流(该电流也可能通过联轴器传递至传动机械,见图1)。

轴承电流一般存在3种不同的形式:环路电流、 dV/dt电流和EDM(electrical discharge machining)电流。

这3种不同的形式可以单独出现,也可以同时出现。

图1➢环路电流:正弦波驱动的电机系统中电机的结构上的不对称、气隙不均匀等)。

不对称的磁路会在磁轭产生环形交流磁通(环状磁通),从而产生交流感应电压。

当感应电压破坏轴承润滑剂的绝缘能力时,就会有电流流过此回路。

流经途径为导电的电机轴、机壳、轴承沟道、滚动体等。

图2为环路电流可能流经的各部分零部件所组成的通路。

图2➢dV/dt电流:PWM逆变器中,由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免的产生零点漂移,从而产生高频的共模电压。

由于寄生电容Cwr的存在,在电机轴上会形成轴电压Vshaft。

由于电机端输入的是PWM脉冲电压,这些脉冲序列电压耦合到电机轴上会得到交变轴电压,经过轴承电容流到大地,从而产生形成dV/dt轴承电流。

dV/dt电流一般只有0.1~0.15A,主要为高频分量,对轴承影响很小,主要是持续不断地腐蚀着轴承上的润滑剂,最后造成电介质击穿。

➢EDM电流:第3种形式的轴承电流是由内外圈的间隙(包括油膜)电容放电引起的轴承电流,又叫EDM电流。

变频器调试方案

变频器调试方案
1.过程监控:对调试过程进行实时监控,确保各项指标符合规范要求。
2.数据记录:详细记录调试数据,包括调试步骤、参数设置、测试结果等。
3.性能评估:通过综合性能测试,评估变频器与电机的匹配性能和运行效率。
六、调试人员要求
1.具备相关专业知识和实践经验。
2.熟悉变频器及电机的工作原理和调试方法。
3.具备良好的安全意识和应急处理能力。
3.优化变频器参数设置,提升系统响应速度和节能效果。
4.减少设备故障率,提高生产线的连续运行能力。
三、调试准备
1.技术资料准备:收集并熟悉变频器的技术手册、电机参数、系统设计图纸及相关国家标准。
2.人员培训:对调试人员进行变频器原理、操作流程及安全规范培训。
3.工具与设备:准备必要的调试工具和测试设备,如万用表、示波器、绝缘测试仪等。
4.系统联调
-将变频器与控制系统连接,进行联动调试。
-验证控制系统对变频器的控制指令是否准确执行。
-在不同负载条件下测试变频器与电机的运行稳定性。
5.故障诊断与处理
-记录调试过程中出现的故障现象和故障代码。
-分析故障原因,采取相应措施予以排除。
-对故障处理过程进行详细记录,为后续维护提供参考。
五、调试质量控制
第2篇
变频器调试方案
一、引言
变频器作为工业自动化领域的关键设备,对于提高电机系统的运行效率和节能减排具有重要意义。为确保变频器系统的可靠性与稳定性,特制定本调试方案,以规范调试流程,保障设备正常运行。
二、调试目标
1.验证变频器设备的性能指标是否符合设计规范与国家标准。
2.确保变频器与电机的匹配性能,实现高效、稳定的转速调节。
七、调试周期
根据项目规模和复杂程度,合理规划调试周期,确保调试工作的深度和广度。

变频器调试方案范文

变频器调试方案范文

变频器调试方案范文一、概述本方案旨在介绍变频器调试的具体步骤,包括变频器硬件连接、参数设置、主要功能调试、输出波形观测等内容,以确保变频器的正常运行。

二、变频器硬件连接1.检查变频器的输入和输出电源是否符合需求,确保输入和输出电压、频率和相数一致。

2.确保变频器的输入和输出电缆连接良好,接线端子连接牢固、插头没有松动。

3.检查变频器的离线电路和过电流保护电路,确保正常工作。

三、参数设置1.按照变频器的使用说明书,设置变频器的基本参数,包括电压、频率、过载保护等。

2.调整变频器的PID控制参数,使变频器在各种负载情况下的运行稳定。

3.检查变频器的运行模式,选择合适的模式,如V/F控制、闭环矢量控制等。

四、主要功能调试1.运行停止测试:通过控制台或外部开关,测试变频器的运行和停止功能是否正常。

2.转速调节测试:调整变频器的转速设置,观察变频器的输出电压和频率是否随之改变。

3.加/减速测试:通过连续调节变频器的输出频率,测试变频器的加速和减速功能是否正常。

4.紧急停止测试:通过急停按钮、断电测试变频器的急停功能是否正常。

5.稳定性测试:在不同负载情况下,测试变频器的运行稳定性和输出波形是否正常。

五、输出波形观测1.连接示波器和变频器的输出端子,选择合适的测试模式,观测输出波形的电压、频率和相位。

2.观测输出波形的失真程度,检查是否存在谐波和干扰。

3.根据观测结果调整变频器的输出滤波器和控制参数,以提高输出波形的质量。

六、安全措施1.在调试过程中,确保所有人员已经了解并遵守相关安全操作规程,佩戴个人防护装备。

2.在操作变频器时应先断开电源,确保操作的安全。

3.在急停测试时,应用急停按钮或者直接断电操作,确保操作及时有效。

七、小结通过以上调试步骤,可以确保变频器在使用前能够正常工作。

在实际操作过程中,应注意安全措施,合理选择测试方法和参数,按照调试方案进行操作。

如有需要,可以通过观测输出波形来优化调整参数,以提高变频器的性能和稳定性。

变频器的常见故障原因及解决方案

变频器的常见故障原因及解决方案

变频器的常见故障原因及解决方案变频器的控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。

无速度检测电路为开环控制。

在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。

运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。

与主回路电位隔离检测电压、电流等。

为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。

为了变频器更好人机交互,变频器具有多种输入信号的输入 (比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。

以装在异步电动轴机上的编码器的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转及定位控制等。

检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能有以下几点:①瞬时过电流保护由于逆变电流负载侧短路等,流过逆变器器件的电流超出允许峰值时,瞬时停止逆变器运转,切断电流。

变流器的输出电流达到异常值,也同样停止逆变器运转。

逆变器输出电流超过额定值,且持续流通达规定的时间以上,为了防止逆变器器件、电线等损坏要停止运转。

恰当的保护需要反时限特性,采用热继电器或者电子热保护(使用电子电路)。

过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。

采用逆变器是电动机快速减速时,由于再生功率直流电路电压将升高,有时超过容许值。

可以采取停止逆变器运转或停止快速减速的方法,防止过电压。

对于数毫秒以内的瞬时停电,控制电路工作正常。

但瞬时停电如果达数 10ms以上时,通常不仅控制电路误动作,主电路也不能供电,所以检出后使逆变器停止运转。

变频器调试总结

变频器调试总结

变频器调试总结变频器调试是指对变频器进行安装、接线、参数设定、运行测试等一系列工作的实施与验证。

通过调试工作,可以确保变频器的正常运行,保障机械设备的稳定运行,提高生产效率。

在变频器调试过程中,需要按照以下步骤进行操作:1. 确定变频器的配置和安装位置。

首先,需要根据设备的需求,选择合适的变频器型号,并确定变频器的安装位置,确保能够方便接线和通风散热。

2. 进行电气接线。

根据变频器的接线图,将主电源、电机、机械设备等进行正确的接线。

确保接线牢固可靠,防止漏电、短路等情况发生。

3. 设置变频器参数。

根据设备的运行要求,需要正确设置变频器的参数。

这些参数包括电网频率、电机功率、运行方式、加速时间、减速时间等。

适当的参数设置可以提高设备的性能,减少能耗。

4. 进行运行测试。

在设置完变频器参数后,需要进行运行测试,检验是否可以正常启动和运行。

测试中需要注意电机的转速、运行平稳性、响应速度等指标。

5. 调试反馈和调整。

在运行测试过程中,如果发现问题,需要及时记录并进行调整。

例如,如果出现振动、噪音、温度过高等异常情况,可能需要调整参数或更换元件。

在整个调试过程中,需要注意以下几个方面:1. 安全性。

在进行电气接线时,需要确保断电并采取安全措施,避免触电和其他事故发生。

此外,在变频器运行测试时,也需要保持警惕,随时注意设备的运行状况,防止意外事故的发生。

2. 测试准确性。

在进行运行测试时,需要采用合适的测试方法和工具,确保测试的结果准确可靠。

测试数据应该与实际情况相符,以便进行后续的调整和改进。

3. 经验积累。

每一次变频器调试都是一个宝贵的经验积累过程。

通过总结和分析调试过程中遇到的问题和解决方案,可以积累更多的经验,提高调试效率和质量。

变频器调试的主要目的是确保变频器的正常运行,同时也是对机械设备的保护和优化。

通过正确的安装、接线和参数设定,可以提高设备的性能和效率,减少故障发生的可能性,延长设备的使用寿命。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言在工业生产过程中,变频器被广泛应用于控制电机的转速和运行。

然而,变频器的使用也带来了一些问题,其中之一就是产生的干扰。

本文将详细介绍变频器产生的干扰的原因和影响,并提供一些解决方案,以帮助企业有效地解决这一问题。

二、变频器产生的干扰原因1. 高频电磁干扰:变频器在工作过程中会产生高频电磁干扰,这些干扰信号会通过电源线、信号线和地线传播到其他设备和系统中。

2. 电源线谐波干扰:变频器的输入端会引入谐波电流,这些谐波电流会对电源系统造成干扰,导致其他设备的正常工作受到影响。

3. 电磁辐射干扰:变频器在工作时会产生电磁辐射,这些辐射会干扰周围的设备和系统,导致它们的正常工作受到影响。

三、变频器产生的干扰影响1. 信号干扰:变频器产生的干扰信号可能会影响其他设备和系统的正常工作,导致信号传输错误或丢失。

2. 电源系统不稳定:变频器引入的谐波电流会导致电源系统的电压波动,进而影响其他设备的正常工作。

3. 电机故障:变频器产生的干扰信号可能会对电机的正常运行产生影响,导致电机故障或损坏,进而影响生产效率。

四、解决变频器产生的干扰的方案1. 滤波器的使用:安装滤波器可以有效地减少变频器产生的高频电磁干扰。

滤波器可以在变频器的输入端或输出端安装,通过滤波器对干扰信号进行滤波,减少干扰的传播。

2. 接地措施:合理的接地系统可以有效地降低变频器产生的电磁辐射干扰。

确保变频器和其他设备都良好接地,减少接地电阻,提高接地效果。

3. 屏蔽措施:对变频器和其他设备进行屏蔽处理,可以有效地减少电磁辐射干扰。

使用金属屏蔽罩、屏蔽线缆等材料对设备进行屏蔽,减少干扰信号的传播。

4. 谐波滤波器的应用:安装谐波滤波器可以有效地减少变频器引入的谐波电流对电源系统的干扰。

谐波滤波器可以将谐波电流滤波,使其不会对其他设备和系统造成影响。

5. 电磁兼容性测试:进行电磁兼容性测试可以帮助企业了解变频器产生的干扰情况,并采取相应的措施进行干扰的消除和防护。

变频器调试方案

变频器调试方案

变频器调试方案简介变频器是一种用于调节电机转速的电子设备,可实现电机的启停、转速调节、运行方向控制等功能。

在工业自动化和机械设备领域被广泛应用。

本文将介绍变频器调试的基本步骤和注意事项。

调试步骤步骤一:现场准备在开始调试变频器之前,需要进行一些现场准备工作,包括: - 确保变频器的安装位置符合要求,且固定可靠。

- 检查电源连接是否正确,确保电源稳定。

- 检查变频器与电机之间的连接是否正确,如电缆接头是否紧固。

- 调试所需工具的准备,包括电压表、频率表等。

步骤二:变频器参数配置接下来,需要进行变频器参数的配置,以适应实际的工作需要。

主要配置项包括: - 输入电压和频率:根据现场电源的实际情况,设置变频器的输入电压和频率。

- 输出电压和频率:根据所需的电机转速,设置变频器的输出电压和频率。

- 控制方式:选择合适的控制方式,如恒定转矩控制、恒定功率控制等。

- 保护参数:设置过流保护、过压保护、欠压保护等参数,保护电机和变频器的安全运行。

步骤三:变频器调试完成参数配置后,即可进行变频器的调试。

主要包括以下内容: 1. 启动测试:按照设定的参数,启动变频器,观察电机的启动过程。

注意观察启动是否平稳,电机是否有异常声音或振动。

2. 转速调节:通过调整变频器的输出频率,逐步调节电机的转速。

观察电机转速的变化是否与设定值一致。

3. 转向控制:测试变频器的转向控制功能,观察电机的运行方向是否与设定一致。

4. 负载测试:在不同负载条件下,观察变频器的响应和电机的运行状态。

重点观察电流、温度等参数,确保变频器和电机在不同负载下的稳定性和安全性。

步骤四:参数优化在调试过程中,可能会出现电机转速不稳定、响应不够灵敏等问题。

此时,需要进行参数优化,以提高系统的性能。

优化主要包括: - PID参数调整:对PID控制参数进行调整,以提高系统的动态性能和稳定性。

- 加速、减速时间调整:根据实际需求,调整变频器的加速、减速时间,以实现更加平滑的运行过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速变频电机测试解决方案
高速变频电机是指转速超过10000r/min,一般都是几万转甚至达到十几万转,在电动汽车、家电和无人机系统中具有广阔的应用前景。

在高速和超高速运行情况下,电机的运行特性与常规电机有很大的不同,对高速电机进行相关测试是至关重要的。

高速变频电机是指转速超过10000r/min,一般都是几万转甚至达到十几万转,电机输入基波频率范围达到1000Hz甚至更高,极数基本为2级。

高速电机具有转速高、相对尺寸小、功率密度大、效率高等显著优点,在空调或冰箱的离心式压缩机、储能飞轮、纺织、高速磨床等诸多场合具有较多应用,在电动汽车、分布式发电系统中具有广阔的应用前景。

在高速和超高速运行情况下,电机的运行特性与常规电机有很大的不同,对高速电机进行相关测试是至关重要的。

高速电机测试内容
(1)高速电机效率测试
高速电机功率密度高,但是单位体积内的损耗也大,尤其是转子的风磨损耗和涡流损耗是一般电机的数十倍。

通过电机的输入电量测量(包括电压,电流,功率、功率因数等)、输出量测量(转速,转矩,功率等)、励磁测量等得到高速电机的效率。

通过高速电机效率测试,从而分析高速电机的相关损耗,是高速电机的结构设计、改善机械特性、提高散热能力、减小损耗的关键。

(2)高速电机供电系统监测
高速电机一般采用变频器供电,对于供电系统的基波频率、谐波分量十分敏感。

变频器输出的电压波形是PWM波,除了基波外,还包含大量的整数倍载波频率的高次谐波,会给高速电机带来高频附加损耗,所以对供电系统运行状态及可靠性监测是十分必要的。

高速电机测试关键要求
1、为了准确获得电机的效率,必须要求确保电机输入电功率与电机输出轴功率严格同步测量。

2、必须满足变频器输出PWM波的基波电压、基波频率、谐波分析等的测量需要。

3、传感器及测试仪器组成的测试系统,整体精度必须达到0.2级。

4、由于高速电机的空载试验时功率因数低于0.2,所以测试系统的角差指标,必须满足低功率因数条件下功率测量精度的要求。

5、高速电机的测试现场一般电磁环境复杂,测试系统必须拥有强的抗电磁干扰能力。

高速电机测试解决方案
本测试系统采用广州致远电子研制的PA8000功率分析仪,致远公司PA系列功率分析仪能够执行最多6个功率输入的测量,通过测量变频器输入输出的电功率和机械功率,可准确评估变频器的效率、驱动系统的电能和机械之间的转换功率。

同时,通过详尽的频谱分析和动态扭矩计算,PA功率分析仪可准确测量出由变频器引起的开关损耗,并且能够全面评估高频下的扭矩瞬态和谐波。

高速电机测试系统构成框图,如图1所示。

本测试选用PA8000功率分析仪具有行业标杆最高精度0.01%,完全满足高速电机测试需求;同时具有高采样率与宽带相结合的特点,可选择多通道的电机输入单元,采样率高达2MS/s,并且独家含有录波功能,可以完整的分析电机的启动波形,可用于测量电机起动与负载变化过程中的瞬时电压、电流、功率及相关的曲线波形,评估电机起动与负载变化特性,可帮助用户查找异常波形,定位错误细节。

适用于科研与认证机构。

相关文档
最新文档