9.1.1--不等式及其解集---导学案
七年级下册数学9.1.1 不等式及其解集(导学案)

第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集一、新课导入1.导入课题:前面我们学习了方程和方程组,知道它们都属于等式的范畴.在现实世界和日常生活中存在大量不等关系的问题.为此,我们还须学习不等式,下面我们就从最基础的不等式及其相关概念入手吧!(板书课题)2.学习目标:(1)知道不等式及其相关概念.(2)知道不等式的解与解集的意义,能把不等式的解集在数轴上表示出来.3.学习重、难点:重点:不等式的概念,不等式的解与解集的意义,把不等式的解集在数轴上表示出来.难点:把简单的实际问题抽象为数学不等式.二、分层学习1.自学指导:(1)自学内容:课本P114第1行至倒数第6行的内容.(2)自学时间:3分钟.(3)自学要求:认真阅读课文,重要的概念和存在疑问的地方做上记号.(4)自学参考提纲:①对于课本中的“问题”,若设车速为xkm/h,则:(a)从时间角度看,因为时间=路程速度,所以依题意可列关系式<5023x.(b)从路程角度看,因为路程=时间×速度,所以依题意又可列关系式2503x>.②像①中( A )( B )所列关系式及a+2≠a-2这样用符号“>”“<”或“≠”连接的,表示大小关系的式子叫做不等式.③在下列所给式子:①a+3≠1;②12x>2;③3<5;④3x+1;⑤-2>-1;⑥1x<-1;⑦a+b=b+a中,属于不等式的有①②③⑤⑥.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题:是否理解不等式的意义.②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流、展示、纠错.4.强化:(1)不等式的概念.(2)注意事项:①判断一个式子是否是不等式的关键是看有没有用不等号连接,常见的不等号有:“>”“<”“≠”“≥”“≤”,其中“≥”和“≤”的含义将在下一节学习.②不等式不成立(如“-2>-1”)不能理解成不是不等式.(3)练习:用不等式表示:①a是正数;②a是负数;③a与5的和小于7;④a与2的差大于-1;⑤a的4倍大于8;⑥a的一半小于3.解:①a>0;②a<0;③a+5<7;④a-2>-1;⑤4a>8;⑥12a<3.1.自学指导:(1)自学内容:课本P114倒数第5行至P115“练习”前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,重要的概念或不理解的地方做上记号. (4)自学参考提纲:①什么叫不等式的解?什么叫不等式的解集?说说它们的区别.②不等式的解和方程的解有何区别?你能举例说明吗?③不等式的解集在数轴上如何表示?空心圈表示什么意思?画线方向怎样确定?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题:a.是否知道不等式的解与解集的区别.b.是否能说明用数轴表示不等式解集的道理和方法.②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)不等式的解及不等式的解集的意义.(2)不等式解集在数轴上表示时,空心圈及画解集的方向的意义.(3)练习:①下列数中哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12答案:3.2,4.8,8,12是x+3>6的解,其余不是.②直接说出下面不等式的解集,并用数轴把它们表示出来.(a)x+3>6;(b)2x<8;(c)x-2>0.答案:(a)解集为:x>3.(b)解集为:x<4.(c)解集为:x>2.三、评价1.学生的自我评价(围绕三维目标):各小组长汇报本组的学习收获和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(15分)在下列数学式子:①-2<0;②3x-5>0;③x =1;④x 2-x ;⑤x ≠-2;⑥x +2>x-1中,是不等式的有①②⑤⑥(填序号).2.(15分)有理数a ,b 在数轴上的位置如图所示,用不等式表示:①a+b < 0; ②ab < 0; ③a-b > 0.3.(15分)下列数值中,哪些是不等式2x +3>9的解?哪些不是? -4,-2,0,3,3.01,4,6,100解:3.01,4,6,100是2x+3>9的解,-4,-2,0,3不是.4.(15分)用不等式表示:(1)a 与5的和是正数;(2)a 与2的差是负数;(3)b 与15的和小于27;(4)b 与12的差大于-5.解:(1)a+5>0;(2)a-2<0;(3)b+15<27;(4)b-12>-5.二、综合运用(20分)5.直接写出不等式的解集,并把解集在数轴上表示出来.(1)x+2>6;(2)2x <10;(3)x-2>0.5;(4)3x>-10.解:(1)解集为:x>4.(2)解集为:x<5.(3)解集为:x>2.5.(4)解集为:x>-103.三、拓展延伸(20分)6.下列说法,其中正确的有①②④⑥(填序号).①方程2x +3=1的解是x =-1;②x =-1是方程2x +3=1的解;③不等式2x+3>1的解是x=3;④x=3是不等式2x+3>1的解;⑤x>5是不等式x+2>6的解集;⑥x>4是不等式x+2>6的解集.。
人教版七年级数学下册9.1.1《不等式及其解集》导学案

9.1.1《不等式及其解集》导学案一、学习目标(1)了解不等式和一元一次不等式的意义。
(2)通过解决简单的实际问题,使学生自发地寻找不等式的解,理解不等式的解集。
(3)会把不等式的解集正确地表示在数轴上。
二、预习内容自学课本114页至115页,完成下列问题:1、什么叫不等式?2、什么是不等式的解?如何体验一个数是不是某个不等式的解?3、什么是不等式的解集?如何用数轴表示不等式的解集?三、探究学习【问题1:】如果刘翔要在北京奥运会上110米栏比赛成绩超越12.88秒,他的跨栏速度要满足什么条件?学生:主动思考,小组讨论,合作探究,积极发言。
结论: 88.12110<x从时间上看:11088.12>x 从距离上看:引入概念: 像这样用“>”或“<”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也叫不等式,如。
a+2≠a ; 用“≥”或“≤”表示大小关系的式子也叫做不等式,如:a ≥10,b ≤81、下列各式哪些是不等式?① a+b=b+a ② -3>-5 ③ x ≠1④x+3>6 ⑤ 2m ≤n ⑥ ⑦ 4y+3≥3五种不等号的读法及意义:①“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确谁大谁小;②“>”读作“大于”,表示左边的量比右边的量大;③“<” 读作“小于”,表示左边的量比右边的量小;④“≥”读作“大于或等于”,即“不小于”,表示左边的量“不小于”右边的量; ⑤“≤”读作 “小于或等于”,即 “不大于”,表示左边的量 “不大于” 右边的量.练习2、用不等式表示:3250<x(1)a是负数(2)b是非负数(3)x与5的和小于7(5)x的4倍大于8(6)y的一半小于3【问题2:】不等式的解和不等式的解集【问题3】不等式的解集表示在数轴上3、写出下列数轴所表示的不等式的解集:0 1 2 3 40 1 2方法提炼:归纳:1、用数轴表示不等式的解集:第一步: 画数轴第二步: 定界点 ,第三步; 定方向“>”“<”是空心;“≥”“≤”是实心“>”“≥”向右画;“<”“≤”向左画注意:1、大于向右走、小于向左走2、有等号实心小原点,无等号空心小圆圈四、巩固测评1、用不等式表示下列数量关系:(1)a是正数;(2)x与5的和小于7;(3)y的一半不小于3.2、当x取下列数值时,哪些是不等式x+3<6的解?-4, -2.5, 0, 1,2, 2.5, 3, 4.5, 7哪些是不等式x+3<6的正整数解?3、直接想出不等式的解集,并尝试把解集表示在数轴上: (1)x+3>6(2) 2y<8(3) x-2≤0五、学习心得:。
《9.1.1不等式及其解集》导学案N0.1

第九章 不等式与不等式组《9.1.1不等式及其解集》导学案N0.1班级 姓名____________小组 小组评价 教师评价_____一、学习目标 1.了解不等式的概念,能用不等式表示简单的不等关系。
2.理解不等式的解与不等式的解集。
3.能判断一个数是否是一个不等式的解,能用数轴正确表示不等式的解集。
二、重点与难点:重点:不等式的解集的表示.难点:不等式解集的确定.三、自主学习:1.等式:表示______关系的式子,叫做等式.练习:下列各式:(1)a b b a +=+,(2)51<-x ,(3)23>,(4)ba ab =,(5)24≠,(6)63=+x 中,是等式的有____________________.(填序号)2.用恰当的式子表示出下列数量关系:(1)a 是正数:________;(2)a 是负数:__________;(3)a 与5和小于7;_________;(4)a 与2的差大于-1:_______;(5)a 的4倍大于8:_______;(6)a 的一半小于3:_________.四.合作探究探索一:不等式的概念阅读课本P114内容,完成下列问题:一辆匀速行驶的汽车在11:20距离A 地50 km,要在12:00之前驶过A 地,车速应满足什么条件? ①如果设车速为x km/h,从时间上看,50x h 和23 h 是什么关系?_______________;②如果设车速为x km/h,从路程上看,汽车要在12:00之前驶过A 地,那么以这个速度行驶23 h 的路程和50 km 是什么关系?_______________。
1.不等式:用表示______关系的式子,叫做不等式.不等号:(1)“>”:读作“______”;(2)“<”:读作“______”;(3)“≠”:读作“_______”;(4)“≥”:读作“_______”或“______”;(5)“≤”:读作“_________”或“_______”.练习:下列各式:①- 3<0;②4x +3y >0;③x =3;④x 2+2x +y 2;⑤x ≠2;⑥x +2>2x +3.其中属于不等式的有 ( )A .1个 B .2个 C .3个 D .4个 探索二:不等式的解不等式23x >50中,你能说出几个使不等式成立的数值吗? ①当x=80时,23x__50;当x=78时,23x__50.即:当x 取某些值(如80,78)时,不等式23x>50成立. ②当x =72时,23x__50;当x =75时,23x__50.即:当x 取某些值(如72,75)时,不等式23x >50不成立. 不等式的解:_________________________________________.练习:P115练习2.探索三:不等式的解集除了80和78,不等式32x>50还有其他解吗?如果有,这些解应满足什么条件?怎样表示不等式的所有解呢? 当x >75时,不等式23x >50总成立;而当x <75或x =75时,不等式23x >50不成立.这就是说,任何一个大于75的数都是不等式23x >50的解,这样的解有无数个;任何一个小于或等于75的数都不是不等式23x >50的解.因此,x >75表示能使不等式23x >50成立的x 的取值范围,它可以在数轴上表示,如下图所示:由上可知,在前面问题中,汽车要在12:00之前驶过A 地,车速必须大于75 km/h . 不等式的解集:______________________________________________.解不等式:_________________________________________________.(与方程类似) 练习:1.P115练习3.2.如果对于不等式x<5,当x=1,2,3,4时都成立,那么就说不等式x<5的解是x=1,2,3,4,这种说法正确吗?五、课堂小结:1.不等式的概念.2.不等式的解和解集的区别和联系如下表:区别 举例:x- 1>2 概念 个数 表示方法不等式的解 x=4,5…… 是一些具体的值 无数个 用等号表示不等式的解集 x>3 是一个范围 一个 用不等号表示联系 在不等式解集范围内的每一个数值都是此不等式的一个解或者说不等式的每一个解都在它的解集的范围内六、拓展提高:不等式4<x 的非负整数解的个数有( )A.4个 B.3个 C.2个 D.1个七、课后作业:教材P119习题1——3八、达标检测一、选择题(共20分)1.下面各式是不等式的个数为 ( )①- 2<1; ②x=1; ③a+b; ④2a+b>0; ⑤a ≠3; ⑥x+1>y+4.A.1B.2C.3D.42.下列说法中正确的是 ( )A.x=3是不等式2x>1的解B.x=3是不等式2x>1的唯一解C.x=3不是不等式2x>1的解D.x=3是不等式2x>1的解集二、填空题(共40分)3.用不等式表示:(1)a 的相反数是正数;____________ (2)y 的2倍与1的和大于3;________________(3)a 的一半小于3;______________ (4)d 与5的积不小于0;_________________(5)x 的2倍与1的和是非正数._________________________.三、解答题(共40分)4.直接写出下列不等式的解集,并把解集在数轴上表示出来:(1)x+3﹥5; (2)2x ﹤8; (3)x-2≥0; (4)3x ≤6.九、教学反思:。
9.1.1不等式及其解集(导学案)

9.1不等式9.1.2不等式的性质第1课时不等式的性质、导1. 导入课题:在上节课,我们学习了什么是不等式,对于某些简单的不等式,我们可以直 接写出它的解集.如不等式x+3>6的解集是x>3,不等式2XV8的解集是xv4.但是 对于比较复杂的不等式,与解方程需要依据等式的性质一样,解不等式需要依据 不等式的性质.这节课我们就来探讨不等式有什么性质.(板书课题)2. 学习目标:(1) 探索并理解不等式的性质、体会探索过程中所应用的归纳和类比方法(2) 能运用不等式的性质对不等式进行变形和解简单的不等式(3) 知道符号和“W”的意义及数轴表示不等式的解集时实心点与 空心圈的区别.3. 学习重、难点:重点:不等式的性质及其运用.难点:不等式的性质3的探索与理解.4. 自学指导:认真阅读课文,思考相关问题,运用类比和归纳的方法得 出不等式的性质.(4)自学参考提纲:①等式有哪些性质?分别用文字语言和符号语言把它表示出来②类比等式性质1,我们来看下列问题:a 用“ >”或“V”完成下列两组填空:第一组:5工3, 5+2三 3+2,5-2三 3-2,5+0工3+0.第二组:-1S3, -1+2S3+2, -1-2 .<3-2,-1+0 .<3+0.b.你能发现a 中的规律吗?(注意观察不等式中不等号的方向是否改变) (1)自学内容: 课本P 116至P l17 “练习”之前的内容.(2)自学时间: 8分钟.(3)自学要求:C.由于减去一个数等于加上这个数的相反数,比较等式性质1,归纳出不等式的性质1.d.换一些其他的数验证不等式的性质 1.②类比等式性质2,我们来看下列问题:a 用“ >”或“V”完成下列两组填空:第一组:6=2, 6X 5Z2X 5, 6X (-5) V 2X(-5).第二组:-2二3, (-2) X 6_< 3X 6, (-2) X (-6)3X (-6). b.你能发现a 中的规律吗?(注意观察不等式中不等号的方向是否改变)C.由于除以一个不为零的数等于乘以这个数的倒数,比较等式性质2,归纳出不等式的性质2和性质3.d.换一些其他的数验证不等式的性质 2和性质3.二.自学同学们可结合自学指导进行学习.三.助学(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(主要是自学的进度和存 在的问题:归纳不等式性质时是否有符号语言表述;验证时选例是否正确、合理 等).②差异指导:根据学情进行相应指导.四.强化:不等式的性质(用表格形式与等式的性质对照呈现出来)初步运用:设a>b 用“ >”或“ V”填空,并说明依据的是不等式的哪条性质① a+2_> b+2;② a-3> b-3;③-4a 工-4b;a b④ a-:⑤a+m_>b+m ;⑥-3.5a+10 -3.5b+1. 2 — 2 — —五、评价1. 学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等2. 教师对学生的评价:(2) 生助生:小组内同学间相互交流研讨,互帮互学(1)(1)表现性评价:教师对学生在本节课学习中的整体表现(如态度、方法、 效率、效果及存在的问题等)进行总结和点评(2)纸笔评价:课堂评价检测.评价作业那么a± c < b± c; (2)如果a< b,且ab c>0,那么 ac w be (或 一 w —);c c (3)如果a<b,且c<0,那么ac2. (15 分)若-2av -2b,则 av b,根据是(C)A.不等式的基本性质1B.不等式的基本性质2C.不等式的基本性质3D.等式的基本性质23. (15分)若m>n,下列不等式一定成立的是(B )A.m-2 > n+2 B .2m >2n C.专 > 2 D.m 2>n 24. (15分)判断下列各题的结论是否正确.(1)若 b-3av 0,则 bv 3a; (2)如果-5x> 20,那么 x >-4;(3)若 a> b,则 ac2>bc2;(4)若 ac > be 2,则 a>b; 2 2 1 1⑸若 a>b,则 a(c 2+1)>b(c 2+1);(6)若 a>b>0,则一v — a b 解:(1) (4) (5) (6)正确,(2) (3)错误.二、综合运用(20分)5. (10分)设口>门,用“ >”或“V”填空:(1) 2m-5工2n-5; (2) -1.5m+1s -1.5n+1.6.(10分)已知某机器零件的设计图纸中标注的零件长度 L 的合格尺寸为: L=40 ± 0.02 (单位:mm ).那么用不等式表示零件长度 L 的取值范围是39.98mm w Lw 40.02mm(时间:12分钟 、基础巩固(60分)满分:100分)1. (20分)填空:(1)如果a< b,三、拓展延伸(20分)7.(1)小明说不等式a>2a永远不会成立,因为如果在这个不等式两边用除以a,就会出现1>2这样错误结论,他的说法对吗?(2)比较-a与-2a的大小.解:(1)他的说法不对,他未考虑 a<0 时的情况;2)当 a>0 时,••• av2a,---a>-2a.当 a=0 时, -a=-2a.当 a<0 时,• a>2a,• -a<-2a.。
不等式及其解集

9.1.1不等式及其解集 <导学案>学习目标:1、感受生活中存在着大量的不等关系,了解不等式的意。
2、通过解决简单的实际问题,使学生自发地寻找不等式的解。
3、理解不等式的解集的意义,能区分不等式的解与解集。
4、会把不等式的解集正确地表示到数轴上,体会数形结合思想。
学前准备:1、叫做方程。
2、叫做方程的解。
3、一般地,一个一元一次方程有解,一个二元次方程有个解。
课前预习:1、叫做不等式。
举例:不等号有:。
2、与方程类似,我们把叫做不等式的解。
一般地,一个含有未知数的不等式有个解。
3、不等式的解集是。
不等式的解集如何表示?4、叫做解不等式。
问题呈现:观光园区的学生票价是每人5元;一次购票满30张时,每张可少收1元.这次游玩总共去了27位同学,当领队准备好了零钱去售票处买27张票时,爱动脑筋的李明同学喊住了领队,提议他买30张票.问题1:有的同学不明白,明明我们只有27人,买30张票岂不浪费了?那么究竟李明的提议对不对呢?问题2:当然如果去观光园区的人数较少(比如10个人),显然不值得买30张票,还是按实际人数买票为好.现在问题是:小于30人时,至少要有多少人去观光园区,买30张票反而合算呢?(设有x个人进入)试着列式:问题3:x取哪些值时,5x>120才成立呢?即问题中5x>120的解有:问题4:判断下列数中哪些是不等式5x >120的解?(抛开实际背景思考)-10 18 21.5 24 25 38.5 100 2000你能找出这个不等式其它的解吗?他到底有多少个解呢?满足什么条件就行?5x>120的解集表示为:试一试:1、在数轴上表示下列不等式的解集(1) x>-1; (2) x≥-1; (3) x<-1; (4) x≤-12、写出下列数轴所表示的不等式的解集:总结:⑴、大于向画,小于向画⑵、无等号画,有等号画。
当堂检测1、下列数值中,哪些是不等式2X+3>9的解?哪些不是?-4,-2,3, 3.01,3,4,6,100。
人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案

人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案人教版七班级数学下册《9.1.1不等式及其解集》教学设计PPT课件导学案教案课题:9.1.1不等式及其解集教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简约的实际问题,使同学自发地查找不等式的解,会把不等式的解集正确地表示到数轴上;2、经受由详细实例建立不等模型的过程,经受探究不等式解与解集的不同意义的过程,渗透数形结合思想;3、通过对不等式、不等式解与解集的探究,引导同学在独立思索的基础上积极参加对数学问题的争论,培育他们的合作沟通意识;让同学充分体会到生活中到处有数学,并能将它们应用到生活的各个领域。
教学难点正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
知识重点建立方程解决实际问题,会解“a*+b=c*+d”类型的一元一次方程教学过程〔师生活动〕设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么缘由呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。
要在12:00以前驶过A地,车速应当具备什么条件?假设设车速为每小时*千米,能用一个式子表示吗?通过实例创设情境,从“等”过渡到“不等”,培育同学的观测技能,激发他们的学习爱好.探究新知〔一〕不等式、一元一次不等式的概念1、在同学充分发表自己看法的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。
2、以下式子中哪些是不等式?〔1〕a+b=b+a〔2〕-3>-5〔3〕*≠l〔4〕*十36〔5〕2mn〔6〕2*-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.3、小组沟通:说说生活中的不等关系.分组活动.先独立思索,然后小组内相互沟通并做记录,最末各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.〔二〕不等式的解、不等式的解集问题1.要使汽车在12:00以前驶过A地,你认为车速应当为多少呢?问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式50的解?问题4,数中哪些是不等式50的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它究竟有多少个解?你从中发觉了什么规律?争论后得出:当*75时,不等式50成立;当*75或*=75时,不等式50不成立。
七年级数学9.1.1导学案(最新整理)

-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
2பைடு நூலகம்你还能找出 x+3﹥6 的其他的解吗?
3、你认为 x+3﹥6 有多少个解?
。当 x 符合什么条件时 x+3﹥6 总成立?
4、所以不等式 x+3﹥6 的解集是
。
5、直接想出下列不等式的解集 ① x+3〈 6
③ x-2 〉0
速应该具备什么条件?若设车速为每小时 x 千米,能用一个式子表示吗?
二.导学
(一)、自学指导(阅读课本)完成下列习题(5 分钟)
1、
叫做不等式。举例:
2、与方程类似,我们把
叫做不等式的解。
3、不等式的解集是
4、类似于一元一次方程,
叫做一元一次不等式。
举例
(二)、自学检测(5 分钟)
1、 用 不 等 式 表 示 : ① 、 a 与 5 的 和 小 于 7;
3
3
的解有_____ __.
二。应用
6。(1)用不等式表示下列数量关系:
作业 ①a 比 1 大;
②x 与一 3 的差是正数;
③x 的 4 倍与 5 的和是负数
(2)在-4,-2,-1,0,1,3 中,找出使不等式成立的 x 值:
(1)x+5 > 3,(2) 3x < 5
(3)在数轴上表示下列不等式的解集: ① x < 2 ② x >-3
是(
)
01
2
(A)
01
2
(C)
01
2
(B)
01
2
(D)
二、填空题 4.有理数 a、b 在数轴上的位置如图所示,用不等式表示:
七年级数学下册9.1不等式9.1.1不等式及其解集导学案新人教版(2021年整理)

七年级数学下册9.1 不等式9.1.1 不等式及其解集导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册9.1 不等式9.1.1 不等式及其解集导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册9.1 不等式9.1.1 不等式及其解集导学案(新版)新人教版的全部内容。
9.1。
1不等式及其解集导学案学习目标1、会把不等式的解集正确地表示到数轴上。
2、探究不等式解与解集的不同意义的过程,渗透数形结合思想.一、自学释疑1.什么是不等式?2。
什么是不等式的解?3.什么是不等式组的解集?二、合作探究探究观察下列两组式子,它们之间有何区别?(1)或 (2)x>50或类比(1)的定义, 你能给(2)起个名吗?结论:像上面出现的这样用”>”或"〈"等不等号表示不等关系的式子,叫做不等式.不等式的解(1) x=80, x=78, x=72能使不等式x 〉50成立吗?(2)你还能找出一些使不等式x >50成立的值吗?(3)使不等式x >50成立的未知数的值有多少个?不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?解不等式设问1:什么是解不等式?例1:在数轴上表示下列不等式的解集(1)x>—1;(2)x≥—1;(3)x〈-1;(4)x≤—1解:总结:用数轴表示不等式的解集,应记住下面的规律:(1)大于向右画,小于向左画;(2)>,<画空心圆三、随堂检测1、下列式子:①错误!<y+5;②1>-2;③3m-1≤4;④a+2≠a-2中,不等式有( )A.2个 B.3个 C.4个 D.1个2.下列说法中,错误的是( )A.x=1是不等式x<2的解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x=-3D.不等式x<10的整数解有无数个3.用适当的符号表示下列关系:(1)a-b是负数:____________;(2)a比5大:________;(3)x是非负数:________;(4)m不大于-3:__________.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1.1 不等式及其解集导学案
班级姓名组别
学习目标:1、了解不等式的概念,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,什么是解不等式,并能判断一个数是否是一个不等式
的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等
式能直接说出它的解集。
学习重点:不等式的解集的表示.
学习难点:不等式解集的确定.
学习过程
一、独立阅读,自主探究
阅读P114—115,完成下列问题:
1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数
量关系:
(1)a与1的和是正数; (2)y的2倍与1的和大于3;
(3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2;
(5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3.
二、课堂探究(先独立完成,再小组讨论完善答案)
1、对于下列各式中:①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥2a +1﹥5;
⑦a+b﹥0.不等式有______________(只填序号),
2、下列哪些数值是不等式x+3﹥6的解?那些不是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8,12 .
你还能找出这个不等式的其他解吗?这个不等式有多少个解?
3、用不等式表示.
(1)a与5的和是正数;(2)b与15的和小于27;
(3)x的4倍大于或等于8;(4)d与e的和不大于0.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+2﹥6;(2)2x﹤10;(3)x-2≥0.5.
三、当堂反馈
1、下列数学表达式中,不等式有()
①-3﹤0;②4x+3y﹥0;③x=3;④x≠2;⑤x+2﹥y+3
(A) 1个. (B)2个. (C)3个. (D)4个.
2、当x=-3时,下列不等式成立的是()
(A)x-5﹤-8. (B)2x+2﹥0. (C)3+x﹤0. (D)2(1-x)﹥7.
3、用不等式表示:(写在各题的后面)
(1)a的相反数是正数;(2)y的2倍与1的和大于3;
(3)a的一半小于3;(4)d与5的积不小于0;
(5)x的2倍与1的和是非正数.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+3﹥5;(2)2x﹤8;(3)x-2≥0.
5、不等式x﹤4的非负整数解的个数有()
(A)4个. (B)3个. (C)2个. (D)1个.
6、已知(a-2)-5﹥3是关于x的一元一次不等式试求a的值.
四、课后反思:。