楞次定律的实验研究

合集下载

4.3楞次定律(问题探究式)

4.3楞次定律(问题探究式)

(2)适用情况:所有电磁感应现象.
2.右手定则
(1)内容:伸开右手,使拇指与 其余四个手指 垂直, 并且都与手掌在同一平面内,让 磁感线 从掌心进 入,并使拇指指向导线 运动的方向 ,这时四指所指 的方向就是 感应电流 的方向. (2)适用情况:导体 切割磁感线 产生感应电流.
3、楞次定律中“阻碍”的含义
楞次定律表述三:“增缩减扩”
例7 一长直铁芯上绕有一固定线圈M,铁芯右端与一木 质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木 质圆柱上无摩擦移动,M连接在如图4所示的电路中,其 中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关, 下列情况中,可观测到N向左运动的是 ( )
A.在S断开的情况下,S向a闭合的瞬间 B.在S断开的情况下,S向b闭合的瞬间 C.在S已向a闭合的情况下,将R的滑片向c端
移去时
引力
阻碍相互远离
楞次定律表述二: “来拒去留”,总阻碍相对运动。
5
如图所示,当条形磁铁突然向闭合铜环运动时,铜 环里产生的感应电流的方向怎样?铜环运动情况怎样?
NS
原磁场方向 穿过回路磁通量的变化 感应电流磁场方向 感应电流方向
向左 增加 向右 顺时针
铜环向右运动
思考与讨论
如图A、B都是很轻的铝环,环A是闭合的,环B是断开的, 用磁铁的任一极去接近A环,会产生什么现象?把磁铁从A环 移开,会产生什么现象?磁极移近或远离B环,又会发生什么 现象?
5、在竖直向下的匀强磁场中,放在水平光滑的导轨上的
两平行导线aa′,bb′,其中aa受外力作用而向左运动,试分析
导线bb′向哪边运动?
××
a× × b × ×
××
××
××
v× ×

楞次定律教案(图文版)

楞次定律教案(图文版)

楞次定律教案(图文版)第一章:楞次定律简介1.1 楞次定律的定义介绍楞次定律的定义:感应电流的方向总是要使得其磁场对抗原磁场的变化。

解释楞次定律的实验现象:通过实验观察到,当导体在磁场中运动时,导体中会产生电流,电流的方向与磁场和导体运动方向有关。

1.2 楞次定律的发现历程强调楞次定律的重要性:楞次定律是电磁学中的基本定律之一,对于我们理解电磁现象和应用电磁技术具有重要意义。

第二章:楞次定律的数学表达式2.1 楞次定律的数学公式介绍楞次定律的数学公式:Δ∅= -dΦ/dt,其中Δ∅表示感应电动势,dΦ/dt 表示磁通量的变化率。

解释楞次定律的数学意义:楞次定律通过数学公式定量地描述了感应电流的方向和大小。

2.2 楞次定律的适用条件介绍楞次定律的适用条件:楞次定律适用于闭合回路中的感应电流,且磁场和导体运动方向不在同一平面内。

强调楞次定律的局限性:楞次定律只适用于线性、时不变的系统,对于复杂系统需要进行适当的简化。

第三章:楞次定律的应用3.1 楞次定律在电动机中的应用介绍楞次定律在电动机中的应用:电动机中,电流通过线圈产生磁场,磁场与电动机中的磁场相互作用,产生转矩。

解释楞次定律在电动机中的作用:楞次定律决定了电流的方向和大小,从而决定了转矩的大小和方向。

3.2 楞次定律在发电机中的应用介绍楞次定律在发电机中的应用:发电机中,磁场通过线圈产生电动势,线圈在磁场中旋转,产生交变电动势。

解释楞次定律在发电机中的作用:楞次定律决定了感应电动势的方向和大小,从而决定了发电机产生的电流的方向和大小。

第四章:楞次定律的实验验证4.1 楞次定律的实验装置介绍楞次定律的实验装置:实验中使用导线、磁铁、电流表等器材,搭建一个闭合回路,观察感应电流的方向。

强调实验安全:实验中要注意电流的大小,避免过大的电流对器材造成损坏。

4.2 楞次定律的实验结果介绍楞次定律的实验结果:通过实验观察到,当磁铁靠近导体时,感应电流的方向与磁铁的运动方向有关。

实验楞次定律

实验楞次定律

三、实验原理1.楞次定律的本质楞次定律的本质是在电磁感应现象中的反映。

感应电流的磁场是原磁通量变化的,其结果必须克服这个阻碍,而需要消耗能量,这个能量就是的源头。

2.楞次定律的深刻意义楞次定律的深刻意义在于它是——在电磁感应现象中的具体反映。

为了产生和维持,必须有外力克服磁场力的阻碍作用,在这个过程中机械能转化为,通电导线在磁场中运动时,它又将因磁感线而产生,这个电动势是与原电流方向的电动势,电流要克服反电动势做功,在这个过程中,电能转化为。

3.实验方法把条形磁铁迅速(或)线圈,使线圈中产生,找出感应电流的和磁铁的的关系。

(1)因果判断法楞次定律所揭示的电磁感应过程中有两个最基本的因果关系:一是与变化之间的与的关系;二是与和。

抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键。

线圈中在什么情况下可以产生某个方向的感应电流,我们可以通过看这个感应电流产生什么样的,然后结合寻找其原因,即根据产生感应电流这个结果判断产生感应电流的原因,称之为,例如:线圈中产生了逆时针方向的感应电流,而这个感应电流产生的是向外的磁场,根据此结果,分析可知其原因有两种可能:一是原来的磁通量向外,正在减小;另一种情况是原来的磁通量向里,且正在增加。

(2)等效替代法。

等效替代的思维方法是把复杂的和转化为、、物理现象和过程来研究和处理。

应用等效替代法的关键在于明确两个不同的物理现象或物理过程在什么条件下,什么意义上可以等效并相互替代,这是等效替代的实质所在。

实验结论:通过上述实验,可以得出结论:在原线圈插入或通环保瞬间,感应电流的磁场方向与原磁场方向怎样?当原线圈排出或断电瞬间,感应电流的磁场方向与原磁场方向相同;当滑动变阻器插入回路的阻值变大时,感应电流的磁场方向与原磁场方向怎样?当滑动变阻器接入回路的阻值变小时,感应电流的磁场方向与原磁场方向怎样?实验拓展:1.实验前电流表为什么一定要检查电流表指针偏转方向与通过电流方向之间的关系?2.为什么不直接将原线圈接入电源两端?且为何只能将滑动变阻器由大调小?3.当手持条形磁铁使它的一个磁极靠近闭合线圈时,线圈中产生了感应电流,获得了电能。

铝环实验-楞次定律对比演示器

铝环实验-楞次定律对比演示器

定律验证
01 02
铝环实验
通过铝环实验可以直观地观察到楞次定律的现象,当磁铁插入铝环时, 铝环产生感应电流,根据楞次定律,感应电流产生的磁场会阻碍磁铁的 插入,表现为铝环的收缩或扩张。
实验设备
进行铝环实验需要准备磁铁、铝环、导线等实验器材,通过连接导线可 以观察到电流表指针的偏转,从而判断感应电流的方向。
实验结论对比
实验一结论
当磁铁靠近闭合铝环时,铝环中 产生的感应电流产生磁场,该磁 场阻碍磁铁靠近,表现出“拒抗
”现象。
实验二结论
当磁铁远离闭合铝环时,铝环中产 生的感应电流产生磁场,该磁场阻 碍磁铁远离,表现出“承追”现象 。
对比结论
两个实验的结论均符合楞次定律, 进一步证明了楞次定律的正确性和 普遍适用性。
03
实验步骤
将导线绕在铝环上,将磁铁插入铝环,观察电流表指针的偏转方向,根
据楞次定律判断感应电流的方向,从而验证楞次定律的正确性。
04
对比演示
实验现象对比
实验一现象
对比结论
当条形磁铁靠近闭合铝环时,铝环产 生阻力,阻碍磁铁靠近,表现出“拒 抗”现象。
实验一和实验二的现象均符合楞次定 律,即感应电流产生的磁场总是阻碍 引起感应电流的磁通量的变化。
实验二现象
当条形磁铁远离闭合铝环时,铝环产 生推力,推动磁铁远离,表现出“承 追”现象。
实验数据对比
实验一数据
磁铁靠近铝环时的速度、加速度、 作用力等数据记录。
实验二数据
磁铁远离铝环时的速度、加速度、 作用力等数据记录。
对比结论
通过对比实验一和实验二的数据, 可以发现感应电流产生的磁场对 磁铁的作用力方向与磁铁运动方 向相反,符合楞次定律的规律。

楞次定律的实验

楞次定律的实验
创新微课 现在开始
楞次定律的实验
楞次定律的实验
引入:
N
不同情况下产生的感应电流的方
S
向不同,那么,感应电流的方向由
哪些因素决定?遵循什么规律?
创新微课
G
+
楞次定律的实验
猜想与假设:感应电流的方向可能与哪些因素有关?
N S
G
+
原磁场的方向 磁通量的变化
创新微课
楞次定律的实验
创新微课
1、感应电流的方向与原磁场的方向有什么关系? 2、感应电流的方向与磁通量的变化有什么关系?
当穿过线圈的磁通量增加时,感应电流的磁场阻碍磁通量增加; 当穿过线圈的磁通量减少时,感应电流的磁场阻碍磁通量减少。
感应电流的磁场阻 碍磁通量的变化
同学,下节再见
感应电流方向 逆时针
向上 感应电流磁场方向 相反 感应电流的磁场与
原磁场方向的关系
减小 增大 减小
顺时针 顺时针 逆时针
向下 向下 向上 相同 相反 相同
创新微课
楞次定律的实验
小结
创新微课
增反减同
当穿过线圈的磁通量增加时,感应电流的磁场与原磁场方向相反; 当穿过线圈的磁通量减少时,感应电流的磁场与原磁场方向相同。
楞次定律的实验
G
+
创新微课
正进右偏 负进左偏
楞次定律的实验
创新微课
N SGBiblioteka +若指针右偏,说明线圈中产生逆时针 方向(俯视)的感应电流
楞次定律的实验
创新微课
N极向下 插入线圈
S极向下 插入线圈
N极向下 拔出线圈
S极向下 拔出线圈
楞次定律的实验
磁铁运动情况

楞次定律的实验探究

楞次定律的实验探究

楞次定律的实验探究本实验设计利用螺线管配合发光二极管,演示强磁铁迅速插入和拔出螺线管时感应电流方向的变化,再利用磁感线模拟强磁铁进出螺线管时原磁场和感应电流磁场的方向,将抽象变为可视直观,验证了楞次定律,提高了课堂效率。

一、制作实验装置1.实验装置图如图1所示,面板上带有磁感线的模拟设计、电路如图。

2.制作材料圆柱形钕铁硼超强磁铁,大螺线管基槽,0.13mm的铜线500g,红、蓝光5mm的LED灯各4个,长30cm、宽20cm的铝缩板材四块,木方两根,自制模拟磁感线等。

3.制作方法(1)制作底座框架将两根木方用薄角铁制成高8cm 的稳定支架,在支架上用螺丝固定铝缩板材,并将四块板材重叠,其中一块作为基材用来安装螺线管、二极管及平面图,其他板材割掉一半,便于观察二极管和电路图;剩余的一半在中间靠右的地方挖成螺线管大小的窟窿,露出螺线管。

五块板材用固定台历的钮钩固定在一起,像一本活页书籍,可以自由翻转。

(2)制作螺线管用螺线管基槽把铜线有顺序地绕在螺线管上,绕2000匝左右,标出缠绕方向,然后用焊锡固定,留出两根接线柱。

(3)制作二极管电路红、蓝二极管分别焊在两块电路板上,每块电路板上并联四个LED灯,把两块电路板上的LED灯反接并联,用导线与螺线管连接,形成闭合回路。

(3)制作模拟磁感线用flash制图,分别画出强磁铁N、S极进入和拔出螺线管时原磁场磁感线、感应电流磁场的磁感线分布,以及模拟闭合回路中磁通量变化过程中原磁场和感应电流的磁场关系,面板上红色磁感线为原磁场磁感应线,黑色磁感线为感应电流磁感线。

(4)制作强磁铁强磁铁吸附在普通条形磁铁N、S极,即可以区分强磁铁的N极和S极。

二、演示实验把螺线管、LED电路板固定在铝缩板基材上,磁感线模拟图固定在其他四块板材上便可以进行实验。

1.观察现象,激发求知欲望首先把磁铁的N(或S)极迅速插入和拔出螺线管,学生会观察到LED灯发光,证明线圈中产生了感应电流;LED灯发光顺序不同,证明感应电流方向不同。

专题4.3 楞次定律-2020届高中物理同步讲义 人教版(选修3-2)

专题4.3 楞次定律-2020届高中物理同步讲义 人教版(选修3-2)

第四章电磁感应第3节楞次定律一、楞次定律1.实验探究将螺线管与电流计连接成闭合回路,分别将N极、S极插入、抽出线圈,如图所示。

记录感应电流方向如下。

甲乙丙丁2.分析3.归纳总结当线圈内的磁通量增加时,感应电流的磁场______磁通量的增加;当线圈内磁通量减少时,感应电流的磁场_______磁通量的减少。

4.楞次定律感应电流具有这样的方向,即感应电流的______总要______引起感应电流的磁通量的_______。

5.适用范围:一切电磁感应现象。

6.对“阻碍”意义的理解7.楞次定律的推广含义楞次定律中“阻碍”的含义可以推广为:感应电流的效果总是阻碍引起感应电流的原因,列表说明如下磁铁靠近线圈,B感与B原反向磁铁靠近,是斥力合上S,B先亮二、右手定则1.内容:伸开右手,使拇指与其余四个手指________,并且都与手掌在同一个平面内,让磁感线从_______进入,并使拇指指向__________方向,这时________所指的方向就是感应电流的方向。

2.适用范围:右手定则适用于闭合回路中_______导体做_________时产生感应电流的情况。

3.楞次定律与右手定则的区别4.右手定则与左手定则的比较使用左手定则和右手定则时容易混淆,为了便于区分,可把两个定则简单地总结为“通电受力用左手,运动生电用右手”,简称为“通电左,生电右”。

学科*网向下 向上 向上 向下 向下 向上 向上 向下 阻碍 阻碍 磁场 阻碍 变化 垂直 掌心 导线运动的 四指 一部分 切割磁感线运动一、楞次定律处理电磁感应问题的常用方法1.常规法:ΔB B Φ−−−→−−−−→楞次定律原安培定则感据原磁场(方向及情况)确定感应电流产生的磁场(方向)判I −−−→左手定则感断感应电流(方向)导体受力及运动趋势。

2.效果法:由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义,根据“阻碍”原则,可直接对运动趋势做出判断。

跳环式楞次定律演示实验报告

跳环式楞次定律演示实验报告

跳环式楞次定律演示实验报告大家好,今天咱们来聊聊一个有趣的实验,跳环式楞次定律。

这听上去可能有点高深,但别担心,咱们慢慢来,一步一步剖析。

大家知道什么是楞次定律吗?它跟电磁感应有关系,简单来说,就是当一个磁场变化时,导体中会产生电流,而这个电流又会产生磁场。

听起来有点复杂,不过,咱们做个实验就能看得一清二楚,轻松搞定。

想象一下,有一个金属环,咱们把它放在一个强磁场中。

然后,咱们突然把这个磁场的强度改变一下。

哎呀,立刻就会有一个电流在金属环里涌动,真是神奇!这个电流还会在环中形成一个新的磁场,来抵抗原来的变化。

这样一来,咱们就能感受到那种“反抗”的力量,真的就像是一个小小的英雄在为自己争取空间。

实验的第一步,准备工作可得仔细,别小看了这一步。

我们需要一个强磁铁,金属环,还有一些电路连接的材料。

准备好之后,咱们就可以开始啦!把金属环放在磁铁的附近,眼睁睁看着它在磁场的作用下,似乎有了生命一样。

然后,迅速移动磁铁,让磁场变化,嘿,别眨眼,注意观察!这时候,环里的电流就像是被激活了一样,感觉就像给了环一个新的使命。

咱们可以用一个小电压计,测量一下环里的电流。

哇,看到数字跳动了吗?真是有趣的体验,就像是数字在为咱们的实验鼓掌,告诉我们,嘿,咱们成功了!这个过程其实就是在验证楞次定律。

没错,就是那种能量的转换,电流和磁场之间的互动,简直让人觉得不可思议。

然后,咱们可以尝试改变磁场的强度,看看会有什么不同。

比如说,把磁铁放得更近一些,电流会不会更强呢?或者说,把磁铁移得远一点,电流又会有什么变化?这时候,我们就像科学家一样,边做边想,充满了探索的乐趣。

记得在旁边观察的同学们,不妨多提提问题,讨论一下,大家的想法碰撞在一起,灵感就会迸发出来。

实验过程中,也会有一些小插曲。

比如说,有时金属环没放好,或者磁铁没用对劲,那就得调整一下。

别着急,这都是实验的一部分,搞科学嘛,谁都不能保证一帆风顺。

失败也能带来意想不到的收获,反而能让咱们更深入地理解这个原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

楞次定律的实验研究
楞次定律是电磁学中的基本定律之一,描述了在一个闭合电路中,由于变化的磁场引起的感应电动势与磁场的变化率成正比。

本文将探讨楞次定律的实验研究,包括实验目的、实验装置、实验过程、实验结果以及对实验结果的分析。

实验目的
本实验的目的是验证楞次定律,即当闭合电路中的磁通量发生变化时,电路产生感应电动势的方向与磁通量变化的方向相反。

实验装置
本实验所需的装置包括一个闭合电路、一个磁铁和一个电阻。

闭合电路由一根导线组成,两端接上电阻。

磁铁放置在闭合电路附近。

实验过程
1. 将电阻连接到闭合电路的两端,保证电路是完整的闭合回路。

2. 将磁铁靠近闭合电路,改变磁铁与闭合电路之间的距离,观察感应电动势的变化。

3. 移动磁铁的方向,使得磁场的方向相对于闭合电路发生变化,再次观察感应电动势的变化。

实验结果
在进行实验过程中,我们记录下了磁铁与闭合电路之间的距离和相对运动的方向,并记录了电路上的电动势变化。

通过实验观察和记录,我们发现以下结果:
1. 当磁铁静止时,闭合电路中没有感应电动势产生。

2. 当磁铁靠近闭合电路时,电路中出现了感应电动势。

当将磁铁移近电路时,感应电动势逐渐增大;当将磁铁离开电路时,感应电动势则逐渐减小。

3. 当改变磁铁与闭合电路的相对运动方向时,感应电动势的方向也相应地发生了改变。

当将磁铁靠近电路时,感应电动势的方向与磁铁运动方向相反;当将磁铁离开电路时,感应电动势的方向则与磁铁运动方向相同。

对实验结果的分析
根据实验结果,我们可以得出以下结论:
1. 通过改变磁铁与闭合电路的相对位置,可以产生感应电动势。

这验证了楞次定律所描述的磁场变化引起感应电动势的现象。

2. 实验结果表明,感应电动势的大小与磁铁与闭合电路之间的距离以及相对运动的方向有关。

当磁铁靠近电路时,感应电动势增大;当磁铁远离电路时,感应电动势减小。

3. 感应电动势的方向与磁铁与闭合电路的相对运动方向相反,这符合楞次定律的要求。

综上所述,经过实验的验证,我们得出结论:楞次定律在实验中得到了有效验证。

实验结果表明,当闭合电路中的磁通量发生变化时,电路会产生与磁通量变化方向相反的感应电动势。

这一定律在电磁学中具有广泛的应用,为我们理解电路和电磁现象提供了重要的理论基础。

通过本次实验,我们不仅加深了对楞次定律的理解,还了解了实验中的操作和观察技巧。

这对我们今后的科学研究和实验设计具有积极的意义。

相关文档
最新文档