弦振动与弦驻波实验
弦振动和驻波实验

2.弦线上的驻波
当由音叉振动产生的波动传至弦线与滑轮S的接触点B时, 产生了反射,形成了反射波,于是弦线上同时有前进波和反射 波,这两列波是满足相干条件的相干波,在波的重叠区将会发 生波的干涉现象,即形成驻波。此时弦线分段振动,弦线上有 些点振动的幅度最大,称为波幅(如图1所示)。有些点振动 的幅度为零,称为波节。相邻两个波节(或波幅)之间的距离 为半个驻波波长。可以证明,当弦线长度为半波长的整数倍时 即
如图所示,将弦线的一端固定在电音叉上,另一端跨 过滑轮S挂上砝码,使弦线具有一定的张力。当音叉振动时,
。 弦线也随之振动,形成了沿弦线传播的行波(横波),其弦振
动频率与音叉频率相同。由波动学知道,波的传播速度V与 频率之间的关系为:
υ=
V
λ
(1)
若知道了波长和横波传播速度,就能求得频率 υ 。
图1 弦振动实验装置
l = n
λ
2
(2)
时,弦线上形成的驻波振幅最大也最定。
3.测量公式
沿弦线传播的横波的传播速度为 V =
T
ρ
m 其中T=Mg,为弦线所受张力 , ρ = 为弦线的线密度, L
m为弦线的质量,L为弦线的长度
将V,λ ,T,ρ 的表达式代入(1)式可得
n MgL υ = 2l m
测出上式右边各量,就可求出音叉振动频率
数据处理
1.将驻波测量值及弦线长度、质量代入(3)式,求出音叉频 率的测量值。取一组较为准确的测量值与音叉的标准频率 进行比较,求出相对误差。 2.根据公式(3)来分析音叉频率的不确定度,选取一组数据 进行不确定度的计算。 3
.正确表达测量结果。
弦振动实验
胡翠英
广东省物理实验教学示范中心 暨南大学理工学院物理系
大学物理实验讲义~弦振动和驻波研究方案

⼤学物理实验讲义~弦振动和驻波研究⽅案弦振动与驻波研究【实验⽬的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张⼒的关系; 3.学习对数作图和最⼩⼆乘法进⾏数据处理。
【实验原理】在⼀根拉紧的弦线上,其中张⼒为T ,线密度为µ,则沿弦线传播的横波应满⾜下述运动⽅程:2222xyT t y ??=??µ (1) 式中x 为波在传播⽅向(与弦线平⾏)的位置坐标,y 为振动位移。
将(1)式与典型的波动⽅程 22222x y V t y ??=?? 相⽐较,即可得到波的传播速度: µTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张⼒及线密度之间的关系为:µλTf1=(2)为了⽤实验证明公式(2)成⽴,将该式两边取对数,得:11lg lg lg lg 22T f λµ=-- (3)固定频率f 及线密度µ,⽽改变张⼒T ,并测出各相应波长λ,作lg λ-lg T 图,若得⼀直线,计算其斜率值(如为21),则证明了λ∝21T的关系成⽴。
弦线上的波长可利⽤驻波原理测量。
当两个振幅和频率相同的相⼲波在同⼀直线上相向传播时,其所叠加⽽成的波称为驻波,⼀维驻波是波⼲涉中的⼀种特殊情形。
在弦线上出现许多静⽌点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧⽚;3、弦线(铜丝);4、可动⼑⽚⽀架;5、可动⼑⼝⽀架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌图1 实验装置⽰意图图2 可调频率数显机械振动源⾯板图(1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指⽰)实验装置如图1所⽰,⾦属弦线的⼀端系在能作⽔平⽅向振动的可调频率数显机械振动源的振簧⽚上,频率变化范围从0-200Hz 连续可调,频率最⼩变化量为0.01Hz ,弦线⼀端通过定滑轮⑦悬挂⼀砝码盘⑧;在振动装置(振动簧⽚)的附近有可动⼑⽚⽀架④,在实验装置上还有⼀个可沿弦线⽅向左右移动并撑住弦线的可动⼑⼝⑤。
弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言:弦振动与驻波是物理学中重要的研究领域,对于理解波动现象和振动特性有着重要的作用。
本次实验旨在通过实验观测和数据分析,探究弦振动和驻波的基本特性,并验证实验结果与理论预期的一致性。
实验装置:实验装置主要由一根细长的弦、固定装置和振动源组成。
弦通过固定装置固定在两端,振动源通过机械手柄产生横向振动,使弦发生振动。
实验过程:1. 调整弦的张力:首先,我们根据实验要求调整弦的张力,使其保持稳定。
通过调节固定装置上的螺钉,可以改变弦的张力,从而影响弦的振动频率和振幅。
2. 观察弦的振动模式:接下来,我们将振动源固定在弦的一个端点,并通过机械手柄产生横向振动。
我们观察到弦在振动过程中形成了不同的振动模式。
当振动源产生的频率与弦的固有频率相等时,弦会形成稳定的驻波。
3. 测量驻波的节点和腹点:我们使用尺子测量弦上的驻波节点和腹点的位置。
节点是弦上振动幅度为零的点,而腹点则是振动幅度最大的点。
通过测量节点和腹点的位置,我们可以计算出弦的波长和振动频率。
4. 计算波长和频率:根据实验测量的数据,我们可以利用以下公式计算弦的波长和频率:波长 = 2 * 节点间距离频率 = 振动源产生的频率实验结果与分析:通过实验观测和数据分析,我们得到了一系列关于弦振动和驻波的结果。
首先,我们发现当振动源产生的频率等于弦的固有频率时,弦会形成稳定的驻波。
这是因为当振动源频率与弦的固有频率一致时,反射波和入射波在弦上形成了干涉,导致驻波的形成。
其次,我们发现驻波的节点和腹点位置与振动源产生的频率有关。
当频率增加时,节点和腹点的位置会发生变化,波长也会相应改变。
这是因为频率的增加导致波长的缩短,从而节点和腹点的位置也会随之改变。
最后,通过计算弦的波长和频率,我们发现实验结果与理论预期相符。
这进一步验证了弦振动和驻波的基本原理和公式的准确性。
结论:通过本次实验,我们深入了解了弦振动和驻波的基本特性,并通过实验结果验证了相关理论。
弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言弦振动是物理学中一个经典的实验课题,通过实验可以观察到弦线在不同条件下的振动模式。
本实验旨在通过对弦线振动的研究,探索驻波现象的产生及其特性。
实验目的1. 理解弦振动的基本原理;2. 掌握测量弦线振动频率的方法;3. 观察驻波现象的形成和特性。
实验器材1. 弦线:长度约为2-3米,材质均匀、柔软的弦线;2. 弦线固定装置:用于固定弦线的两端,保持稳定;3. 驱动装置:用于产生弦线的振动;4. 频率计:用于测量弦线的振动频率;5. 各类测量仪器:尺子、计时器等。
实验步骤1. 将弦线固定在实验装置的两端,保持稳定;2. 调整驱动装置,使其产生合适的振动频率;3. 使用频率计测量弦线的振动频率;4. 观察弦线的振动模式,并记录下来;5. 调整驱动装置的频率,观察驻波现象的形成和特性;6. 测量不同驻波节点位置之间的距离,并计算波长。
实验结果与分析通过实验观察,我们可以看到弦线在不同频率下的振动模式。
当驱动频率与弦线固有频率相同时,弦线上形成了驻波现象。
驻波是指波动传播过程中,波峰和波谷相互叠加形成的现象。
在弦线上形成的驻波由一系列波节和波腹组成,波节为振动幅度最小的位置,波腹为振动幅度最大的位置。
在实验中,我们可以通过调整驱动频率,观察驻波现象的形成和特性。
当驱动频率与弦线固有频率相同时,弦线上形成了一个完整的驻波模式。
当驱动频率与弦线固有频率不匹配时,弦线上不会形成驻波,而是呈现出不规则的振动模式。
通过测量不同驻波节点位置之间的距离,我们可以计算出弦线的波长。
波长是指波动中一个完整波动周期所占据的距离。
根据波动理论,波长与频率之间存在着简单的关系,即波速等于波长乘以频率。
因此,通过测量波长和频率,我们可以计算出波速。
实验结论通过本次实验,我们深入了解了弦振动和驻波现象。
弦振动是一种常见的物理现象,通过调整驱动频率可以观察到不同的振动模式。
驻波现象是波动传播中的一个重要现象,通过波节和波腹的叠加形成。
弦线上的驻波实验实验报告

弦线上的驻波实验实验报告实验目的:本实验的目的是通过弦线上的驻波实验,探究驻波的特性及其与弦线长度、振动频率和弦张力的关系。
同时,通过实验观察驻波现象,进一步理解波动的基本原理。
实验原理:驻波是指两个相同频率、振幅相等且沿相反方向传播的波相遇后在同一空间内定向干涉而形成的波动现象。
在弦线上,当两个反向传播的波相遇时,由于波在相接处的叠加,会产生节点和腹部。
节点是波的振动幅度为零的位置,腹部则是波的振动幅度最大的位置。
驻波的性质与弦线的长度、振动频率和弦张力密切相关。
根据弦线的特性,我们可以通过改变弦线的长度、振动频率和弦张力来观察驻波的变化情况。
实验步骤:1.准备实验装置,将一根细弦拴在平直的固定支架上,并通过转动装置与信号发生器连接。
2.设置信号发生器的频率为初始频率,并调整输出幅度使得弦线振幅合适,避免过大过小。
3.轻轻触碰弦线使其产生波动,并观察弦线上是否出现驻波现象。
如果出现驻波,继续调整信号发生器的频率,观察驻波的变化情况。
4.测量弦线上节点(振幅为零的点)的位置,并记录下来。
5.根据测得的节点位置,计算波长,并进一步计算弦线的线密度。
6.固定弦线一端的支架,并用一物体调整弦线的长度。
重复步骤3-5,记录下不同弦线长度下的节点位置,并计算波长。
7.固定弦线长度不变,调整信号发生器的频率,重复步骤3-5,记录下不同频率下的节点位置,并计算波长。
8.固定弦线长度和频率,逐渐调整弦线的张力,重复步骤3-5,记录下不同张力下的节点位置,并计算波长。
实验结果:在本次驻波实验中,我们通过改变弦线的长度、振动频率和弦张力,观察了驻波的变化情况,并记录了节点的位置,计算了波长。
实验讨论:根据实验结果可以得出以下结论:1.当弦线的长度改变时,驻波的节点位置也会发生相应的改变。
节点的位置与弦线长度成正比,即弦线长度越短,节点位置越靠近振动源。
2.频率的变化也会导致驻波节点位置的变化。
频率越大,节点位置越靠近振动源。
弦振动和驻波实验

弦振动和驻波实验【实验目的】1、观察固定均匀弦振动传播时形成的驻波波形;2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。
【实验器材】XZDY-B 型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。
【实验原理】驻波是一种波的叠加现象,它广泛存在于各种振动现象中。
本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。
横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v 与张力T 及弦线的线密度ρ(即单位长度的质量)之间的关系为:Tv ρ=(1)。
设弦线的振动频率为f ,横波在弦线上传播的波长为λ,则根据v f λ=,有1Tfλρ=(2)。
根据式(2)可知,若弦线的振动频率f 和线密度ρ一定,则波长λ与张力T 的平方根成正比。
如图所示,弦线的一端通过劈尖A ,另一端跨过劈尖B 后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。
随着振动产生向右传播的横波,此波由A 点传到B 点时发生反射。
由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播方向相反,所以可互相干涉形成驻波。
在驻波中,弦上各点的振幅出现周期性的变化,有些点振幅最大,称为波腹;有些点振幅为零,称为波节。
两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。
当弦的长度L (A 、B 两劈尖之间的距离)恰为半波长(2λ)的整数倍时产生共振。
此时驻波的振幅最大且稳定,因此均匀弦振动产生驻波的条件为:(1,2,3......)2L nn λ== (3),式中n 为半波数。
可见,由驻波的半波长的波段数n 和弦长L ,即可求出波长λ,则2(1,2,3......)L n n λ==(4)。
由公式(2)和(4)可得弦线的线密度2224Tn L f ρ=(5)。
【实验内容】1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。
弦振动和驻波试验

弦振动和驻波实验【实验目的】1、观察固定均匀弦振动传播时形成的驻波波形;2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。
【实验器材】XZD Y-B型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。
【实验原理】驻波是一种波的叠加现象,它广泛存在于各种振动现象中。
本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。
横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v与张力T及弦线的线密度(即单位长度的质量)之间的关系为:v . T(1)。
设弦线的振动频率为f,横波在弦线上传播的波长为,则根据v f,有(2)。
根据式(2)可知,若弦线的振动频率f和线密度一定,则波长与张力T的平方根成正比。
如图所示,弦线的一端通过劈尖A,另一端跨过劈尖B后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。
随着振动产生向右传播的横波,此波由A点传到B点时发生反射。
由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播方向相反,所以可互相干涉形成驻波。
在驻波中,弦上各点的振幅出现周期性的变化, 有些点振幅最大,称为波腹;有些点振幅为零,称为波节。
两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。
当弦的长度L(A、B两劈尖之间的距离)恰为半波长()的整数倍时产生共振。
此时驻波的振2幅最大且稳定,因此均匀弦振动产生驻波的条件为:L n㊁(n 1,2,3……)(3),式中n为半波数。
可见,由驻波的半波长的波段数n和弦长L ,即可求出波长,则丄(n 1,2, 3……)(4)。
由公式(2)和(4)可得弦线的线密度丄匚(5)。
n 4L f【实验内容】1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。
2、测定弦线的线密度:选取频率f 100Hz,张力T由40 g钩码挂在弦线的一端产生。
大学物理实验讲义-弦振动与驻波研究

大学物理实验讲义-弦振动与驻波研究弦振动与驻波研究【实验目的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张力的关系; 3.学习对数作图和最小二乘法进行数据处理。
【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222x yT t y ∂∂=∂∂μ(1)式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222x y V t y ∂∂=∂∂相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:11lg lg lg lg 22T f λμ=-- (3)固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作lg λ-lg T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T的关系成立。
弦线上的波长可利用驻波原理测量。
当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。
在弦线上出现许多静止点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧片;3、弦线(铜丝);4、可动刀片支架;5、可动刀口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌9123456781011图1 实验装置示意图图2 可调频率数显机械振动源面板图 (1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指示)实验装置如图1所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动弦线上驻波实验仪电 源ON复位 幅度 调节上海复旦天欣科教仪器有限公司频率调节H Z1 2 3 45FD-SWE-II源的振簧片上,频率变化范围从0-200Hz 连续可调,频率最小变化量为0.01Hz ,弦线一端通过定滑轮⑦悬挂一砝码盘⑧;在振动装置(振动簧片)的附近有可动刀片支架④,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口⑤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦振动与弦驻波实验
波是一种重要的物理现象,我们通过前进的波和反射波叠加可以得到驻波。
在和振动源连接的一根拉紧的弦线上,可以直观而清楚地了解弦振动时驻波形成的过程。
用它可以研究弦振动的基频与张力、弦长的关系,从而测量在弦线上横波的传播速度,并由此求出振动源的频率,一、实验目的
1.观察弦振动时形成的驻波,学习与弦振动有关的物理知识和规律;
2.通过实验测量振动源的频率。
二、实验设备
THQZB-2型弦振动仪信号源、THQZB-2型弦振动实验仪。
图1 THQZB-2型弦振动仪信号源面板示意图
(一)THQZB-2型弦振动仪信号源
弦振动仪信号源主要由以下几部分组成,如图1所示:
频率计:用于显示信号源频率;
扬声器接口:用于连接信号源与实验仪中扬声器接口,驱动扬声器工作;
复位按键:用于当仪器出现死机或其他异常时使其恢复到初始状态;
频率调节旋钮:用于调节信号源输出信号的频率;
幅度调节旋钮:用于调节信号源输出信号的幅度。
(二)THQZB-2型弦振动实验仪
弦振动实验仪结构如图2所示:
图2 THQZB-2 型弦振动实验仪结构简图
弦振动实验仪由振子(扬声器)、滑块1(固定)、滑块2(可移动)、滑轮、弦线、砝码、标
尺、导轨等几部分组成。
三、实验原理
1. 弦线上横波的传播速度
在拉紧的弦线上,波沿某方向传播的速度(大学物理课中讲过)为
ρ
υF
=
(1)
式(1)中υ为波速, F
为弦线张力, ρ
2. 振动频率与横波波长、弦线张力及线密度如图2选择适当的砝码重量,
νλ
υ= 将式(2)代入式(1)得
ρ
νλF
=
设弦线长为L n
L 2=
λ
(5)
当入射波与反射波的相位差为π
(6)
⎭⎝λT
(7)
两列波合成得
t
T x A y y y πλπ2cos 2cos 221⎪⎭
⎫ ⎝⎛
=+= (8)
由上式可以看出,当x 一定时,即考察平衡位置位于x 处的质点时,后面的时间因子表示这质点是作简谐运动的,考察不同x 处的所有质点时,由上式可知各质点都在做同周期的简谐运动,
定⎪⎭
⎫
⎝⎛
λπx A 2cos
2的正负,凡是使λ
πx
A 2cos
2为正的各x 处的相位都相同;凡是使λ
πx
A 2cos
2为负的
各点的相位也都相同,但两者的关系相反。
由式(8)可知,当
()
4
12λ
+=k x (⋅⋅⋅±±=,2,1,0k
时,振幅λπx
A 2cos
22
λ
k
x = (⋅⋅⋅±±=,2,1,0k ) 时,振幅
A
x
A 22cos
2=λ
π的距离都是半个波长
2
λ。
如图4,考虑两个波节之间所有各点的振动,λ
4
3=
x
所有各点都作振幅不同、相位相同的振动,λ
4
3=
x 到
=
x
5g )
,幅度调节旋钮顺时针调到底(幅度最大),L ,调节频率,使弦线上出现稳定的振幅
2调节弦线长度,使弦线产生稳定的驻波,此时有2
λ
⋅
=n L
,在每一固定砝码重量的作用下,重复测量L 数次,每次微调滑块2 改
变弦线长度,再重新调好稳定的驻波,然后测量n 个波腹长度L 。
(4) 重复步骤3,至少测五组数据,分别测出n 个波腹的弦线长L ,记录测量数据。
2.用作图法求振子振动频率,自拟数据表格和选取坐标参量。
3.在固定拉力、固定弦长下,测量不同频率下的波长,自拟数据表格并作波长与频率关系
图4 驻波分段振动示意图
曲线图,验证两者之间的关系。
五、数据处理
将测量数据填入下面表格:
七、注意事项
1.开机前将信号源幅度调到最大、频率调到最小,以免开机频率过大,振源无法起振;
2.实验过程中缓慢调节信号源频率旋钮。