(重要)阵列天线

合集下载

阵列天线

阵列天线

1

[r12 r1[1
2r1d sin d
2 sin
cos cos
d (
2 ]2 d )2
1
]2
dr1sin cos r1
r1(1
)
r1
以二元阵为例
r1 dsin cos
z
M
如图: 天线阵间距
d
;
r1
沿x轴排列;
2
半波振子:
r2
h 2 h 2h
2
1
d
2
x
天线元2电流相位超
4
2
H面方向图(xoy平面)为:
例三:(2) E面方向图(zoy平面)为:
三、均匀直线阵
❖ 定义:均匀直线阵是等间距、 各阵元电流的幅度、相位依 次等量递减(相位差为 )
的直 线阵.
❖ N元均匀直线阵的辐射场:
❖ 推导:
E
Em r
N1
F(, ) e jkr e ji( kdsin cos)
例一(1): (等幅同相)
半波阵子,沿x轴,间距d 等幅同相 0
2
例一(2): (等幅同相)
➢ 由上图可知,
0, FH () 0
2
,
FH
()
1
所以,最大辐射方向在垂直于阵子轴方向的 N元均匀直线阵----边射阵。
例二(1): (等幅反向 )
例二(2):
➢ 由上图可知,
0, FH() 1
i0
Em e jkr F(, ) 1 e j e j2 L e j( N1) r
其中,( kdsin cos )
令 2,得到H平面方向函数(归一化阵因子表达式):
例:五元均匀直线阵:

阵子天线原理

阵子天线原理

阵子天线原理
阵子天线(也称为阵列天线)的原理是基于电磁波的干涉和叠加效应。

阵列天线由多个天线单元组成,每个天线单元都可以独立地调整其馈电电流的振幅和相位。

这些天线单元辐射的电磁场在空间中相互干涉和叠加,形成整个阵列天线的辐射电磁场。

由于每个天线单元的位置、馈电电流的振幅和相位都可以独立调整,因此阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。

例如,通过调整天线单元的相位和振幅,可以改变阵列天线的辐射方向图,使其在主瓣方向上具有更强的辐射功率,同时在旁瓣方向上具有较小的辐射功率,从而实现波束赋形和方向性控制。

阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和。

每个天线的辐射方向图乘以阵因子,就可以合成出来整个阵列的方向图。

这种合成方法可以利用方向图相乘原理,将复杂的多元天线阵
分解为几个相同的子阵,然后利用简单的方向图相乘得到整个天线阵的总方向图。

此外,阵列天线还可以通过调整各天线单元的相位来实现波束扫描功能,即在不同的空间角度上扫描电磁波。

这种功能在雷达、通信等领域中得到了广泛应用。

5g aau的组成

5g aau的组成

5g aau的组成
5G AAU(Active Antenna Unit)主要由以下部分组成:
1. 天线阵列:AAU中的重要组成部分是天线阵列,它包含多个天线元件,用于收发无线信号。

5G AAU通常采用大规模MIMO(Massive Multiple-Input Multiple-Output)技术,利用多个天线元件同时进行信号传输和接收,从而提高网络容量和速率。

2. 射频前端模块:射频前端模块用于对无线信号进行放大、滤波和调制等处理。

它包含功率放大器、低噪声放大器、滤波器等组件,用于处理接收到的信号和发送的信号,以及控制天线阵列的工作状态。

3. 基带处理单元:基带处理单元主要用于对数字信号进行处理和调度。

它包含高性能的数字信号处理器(DSP)、协议栈和调度算法,用于对接收到的数据进行解调、解码和编码,以及对发送的数据进行编码和调度,以实现高效的信号传输。

4. 辅助模块:5G AAU还可以包含一些辅助模块,例如功耗管理模块、时钟模块、温度传感器等,用于对AAU进行电源管理、时钟同步和温度监测等功能。

总的来说,5G AAU是一种集成了天线、射频前端模块和基带处理单元的无线通信设备,它负责接收和发送无线信号,并对信号进行处理和调度,从而实现高速、高容量的无线通信。

天线阵列参数

天线阵列参数

天线阵列是无线通信领域中非常重要的一个概念,它是由一组天线组成的,用于发送和接收无线信号。

天线阵列的参数包括阵列形状、阵列单元间距、阵列单元数量、阵列增益、波束宽度、交叉极化鉴别率、天线增益和极化方式等。

下面将对这些参数进行简要介绍。

阵列形状:阵列形状是指天线阵列的几何结构,常见的有线性阵列和圆形阵列等。

不同的阵列形状适用于不同的应用场景。

阵列单元间距:阵列单元间距是指相邻两个阵列单元之间的距离,它会影响阵列的波束宽度和方向性。

间距越小,波束宽度越窄,方向性越强;间距越大,波束宽度越宽,方向性越弱。

阵列单元数量:阵列单元数量越多,阵列的分辨率越高,但同时也会导致辐射功率和互耦等问题。

阵列增益:阵列增益是指阵列发送或接收信号时的能量增强程度,它是由天线排列和电路设计等因素决定的。

阵列增益越高,信号的传输距离越远,通信质量越高。

波束宽度:波束宽度是指阵列在空间中形成的波束角度,它会影响阵列的方向性。

波束宽度越窄,方向性越强;波束宽度越宽,方向性越弱。

交叉极化鉴别率:交叉极化鉴别率是指阵列对不同极化的信号的鉴别能力,它会影响阵列在复杂电磁环境下的性能。

天线增益:天线增益是指单个天线的发射或接收能力,它会影响信号的强度和覆盖范围。

对于阵列天线来说,天线增益是由单个天线的增益和阵列排列方式等因素决定的。

极化方式:极化方式是指电磁波的电场方向随时间变化的特性,它会影响信号的传输距离、衰减特性和干扰抑制能力等。

在实际应用中,需要根据具体的应用场景和需求来选择合适的天线阵列,并综合考虑上述参数对阵列性能的影响。

同时,还需要考虑天线的尺寸、重量、成本和可维护性等因素。

阵列天线

阵列天线

切比雪夫多项式阵列
阵列单元个数无论奇偶, 都可以写成 cosine 函数相 加的形式,这和推导出的 切比雪夫多项式具有很大 的相似性,那么未知的阵 列单元激励幅值就可以通 过已知的切比雪夫多项式 系数来近似确定。
切比雪夫多项式阵列
单元个数为2M或者2M+1,单元间距为d,第一旁瓣的旁 瓣电平为R0,切比雪夫阵列的设计流程:
阵因子
2M
2M+1
阵因子
幅值分布关于原点对称,则偶数单元阵列的阵因子
奇数单元阵列的阵因子
AF 2 M an cos2n 1u
n 1
M
d AF 2 M 1 an cos2n 1u , 其中u cos n 1
M 1
N元非等幅均匀阵列
线阵实例 2: 常规端射阵
方向性系数:
线阵实例 2: 常规端射阵
线阵实例 3: 汉森-伍德亚德端射阵
为了提高常规端射阵的方向性系数,且不影 响阵列的其他特性,汉森和伍德亚德提出了附加 条件来提高方向性系数:
对于大型阵列, N足够大
具有比常规端射阵更高的方向性系数
线阵实例 3: 汉森-伍德亚德端射阵
55
相控阵
• 相控阵是指由大量配相单元组成的阵列 • 每个单元的相位 ( 和幅度 ) 可变,借以控制波束方 向,以及包括旁瓣的波瓣图形状 • 相控阵能瞬时形成波束,通过适当的馈电网络可 以同时形成多个波束
相控阵
• 波束形成时,无需旋转天线阵列,因此不存 在机械问题和惯性问题
• 在某固定频率或确定的频带宽度上实现波束 控制的非频变性
5
二元阵列
忽略单元间互耦,远场电场值计算如下:
二元阵列
二元阵列

阵列天线原理

阵列天线原理

阵列天线原理阵列天线是一种由多个天线单元组成的天线系统,它可以通过合理的排列和控制,实现对无线信号的接收和发射,从而提高通信系统的性能和覆盖范围。

在现代通信系统中,阵列天线已经得到广泛的应用,比如在移动通信、雷达系统、卫星通信等领域都有着重要的地位。

本文将从阵列天线的原理入手,介绍其工作原理、结构特点和应用前景。

首先,阵列天线的工作原理是基于波束赋形技术的。

波束赋形是指通过控制每个天线单元的相位和幅度,使得天线辐射的信号能够形成特定方向和波束宽度的技术。

通过合理的阵列设计和信号处理算法,可以实现对特定方向信号的增强和干扰信号的抑制,从而提高通信系统的性能和可靠性。

其次,阵列天线的结构特点主要包括天线单元、馈电网络和信号处理单元。

天线单元是阵列天线的基本组成部分,它可以是同构天线单元或异构天线单元,根据具体的应用场景和需求进行选择。

馈电网络用于将发射或接收的信号分配给每个天线单元,并进行相位和幅度的控制。

信号处理单元则负责对接收到的信号进行处理和解调,以提取出有用的信息。

最后,阵列天线在通信系统中有着广阔的应用前景。

在移动通信系统中,通过波束赋形技术,可以实现对移动用户的定向覆盖,提高信号的传输速率和覆盖范围。

在雷达系统中,阵列天线可以实现对目标的精准探测和跟踪,提高雷达系统的探测性能和抗干扰能力。

在卫星通信系统中,阵列天线可以实现对地面用户的定向通信,提高通信系统的频谱利用率和通信质量。

综上所述,阵列天线作为一种重要的天线系统,具有波束赋形、结构特点和广泛的应用前景。

随着通信技术的不断发展和应用需求的不断增加,阵列天线将会在未来的通信系统中发挥着越来越重要的作用,为人们的生活和工作带来更加便利和高效的通信体验。

通信系统的天线阵列设计与性能优化

通信系统的天线阵列设计与性能优化

通信系统的天线阵列设计与性能优化随着通信技术的快速发展,无线通信系统中的天线阵列设计和性能优化变得越来越重要。

天线阵列是一种由多个天线组成的系统,可以提高通信系统的传输速率、信号质量和系统容量。

本文将介绍通信系统中的天线阵列设计原理和性能优化方法,并探讨其在实际应用中的优势和挑战。

一、天线阵列的设计原理天线阵列是通过将多个天线组合在一起来形成一个整体的天线系统。

它通过控制每个天线元素的相位和振幅来实现波束形成、空间多址和信号传输增益。

天线阵列设计的主要原理包括以下几个方面:1. 平面阵列设计:平面阵列天线通常由均匀排列的天线元素组成。

通过控制天线元素之间的距离和相位差,可以实现主波束的形成和辐射方向的控制。

常见的平面阵列设计包括线性阵列、矩形阵列和圆形阵列等。

2. 自适应波束形成:自适应波束形成是一种利用数字信号处理技术对接收到的信号进行处理的方法。

通过根据接收到的信号强度和相位信息来实时调整天线阵列的权重和相位,从而最大化接收信号的信噪比。

自适应波束形成可以提高信号的接收质量和降低多径效应对信号的影响。

3. 空间多址技术:空间多址技术是一种利用天线阵列的空间选择性传输信号的方法。

通过将不同发送用户的信号编码到不同的空间角度或波束中,可以实现在同一个频谱资源上传输多个信号。

空间多址技术可以提高系统容量和频谱效率,降低互干干扰。

二、性能优化方法为了进一步提高通信系统中天线阵列的性能,可以采取以下优化方法:1. 波束赋形算法:波束赋形算法是一种用于确定天线阵列权重和相位的优化算法。

通过建立系统性能模型,并结合天线阵列的约束条件和系统需求,可以设计出最佳的波束赋形算法。

常用的波束赋形算法包括最小均方误差算法、线性约束最优化算法和基于梯度的算法等。

2. 多路径信号处理:多路径信号是通信系统中常见的问题之一,它会导致信号的多径衰落和时延扩展。

通过采用多路径信号处理算法,如欠采样和超分辨率重构算法,可以减小多径效应对通信系统性能的影响,提高信号的接收质量和系统容量。

卫星天线阵列、波束指向等技术

卫星天线阵列、波束指向等技术

卫星天线阵列、波束指向等技术1.引言1.1 概述卫星通信技术作为现代通信领域中的重要组成部分,扮演着连接全球的桥梁。

而卫星天线阵列和波束指向作为卫星通信系统中的重要技术手段,具有极高的实用价值和广泛的应用领域。

卫星天线阵列技术是指将多个单个天线组合在一起形成一个整体,以实现多种功能和特性。

通过对天线之间的排列方式和相位控制,卫星天线阵列系统能够实现波束的聚焦和指向,从而提高通信质量、增加传输速率和扩大覆盖范围。

同时,卫星天线阵列技术还具备天线重构和自适应调整等优势,能够适应不同通信环境下的需求。

而波束指向技术则是卫星通信系统中的一项关键技术,它通过调整天线阵列中各个天线元件的相位以及振幅,将发射功率在特定方向上进行集中发送或接收信号。

这样一来,不仅能够有效增强信号传输的目标性和方向性,还可减小无意的能量辐射,提高通信系统对目标区域的覆盖和通信效率。

因此,在卫星通信领域,卫星天线阵列和波束指向技术是关乎通信质量、系统性能以及覆盖范围的关键因素。

无论是在卫星通信、卫星雷达、卫星导航还是遥感探测等领域,这两项技术都发挥着重要作用。

同时,随着科技的不断发展和进步,卫星天线阵列和波束指向技术也在不断创新和完善,为未来的卫星通信提供更好的技术支持和保障。

因此,本文将对卫星天线阵列技术和波束指向技术的定义、原理、应用领域等进行深入探讨和分析。

通过对这两项关键技术的全面了解,我们可以更好地认识到它们在卫星通信系统中的重要性和作用,并为未来的卫星通信技术发展提供一定的参考和展望。

1.2文章结构1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。

下面对每个部分的内容进行简要介绍:引言部分将对卫星天线阵列和波束指向技术进行概述,介绍它们的定义、原理以及应用领域。

同时,引言部分还将说明本文的目的,即通过对这两项技术的深入研究和分析,探讨它们在未来的发展方向。

正文部分将分为两个章节,分别是卫星天线阵列技术章节和波束指向技术章节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Progress In Electromagnetics Research, PIER 98, 1–13, 2009A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING J. Yu † , M. Yuan, and Q. H. Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708, USA Abstract—A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than −10 dB from 2.7 to 5 GHz. The scattered field detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber. 1. INTRODUCTION Breast cancer is the most common cancer in women, but fortunately early detection and treatment can significantly improve the survival rate. Ultrasound, mammography and magnetic resonance imaging (MRI) are currently used clinically for breast cancer diagnosis [1]. However, these techniques have many limitations, such as high rate of missed detections, ionizing radiation (mamography), too expensive to be widely available, and so on. Compared with conventional mammography, microwave imaging of breast tumors is a nonionizing, potentially low-cost, comfortable and safe alternative [2]. The high contrast of the dielectric property between the malignant tumor and the normal breast tissue should manifest itself in terms of lower numbers of missed detections and false positives [3, 4]. The microwave breast tumor detection also has the potential to be both sensitive and specific, to detect small tumors, and to be less expensive than methods such as MRI.†Corresponding author: M. Yuan (mengqing.yuan@). Also with National Key Laboratory of EMC, Wuhan, Hubei 430064, China.2Yu, Yuan, and LiuTheoretical analysis and numerical simulation results have shown that microwave imaging for breast cancer is feasible [5–13], but during practical fabrication of imaging systems, there are many practical problems [14]. One of the biggest challenges of constructing a microwave breast cancer imaging system is the sensor design. Various types of antennas have been proposed by research groups involved in breast cancer detection applications [15–20]. For example, [16] proposed and fabricated a compact stair-shaped dielectric resonator antenna (DRA) for microwave breast cancer detection. A quarterwavelength choke was incorporated to reduce the finite ground plane size. [17] studied and compared the detection capabilities of two co-polarized and cross-polarized antenna arrays consisting of two slot, CPW fed antennas for the purpose of ultra-wideband breast cancer detection. [18] proposed an antenna for radar-based breast imaging, which detects tumors by observing variations in microwave signals reflected from the tumors as the antenna location changes. Different breast cancer detection methods need different antennas. Most antennas proposed recently are applied to the time-domainbased detection method, capable of detecting the location of tumor, but not targeted for the reconstruction of the whole breast dielectric distributions. Here we proposed a prototype of 3D imaging system, which uses a small 100 × 100 × 100 mm3 cubic chamber integrated with patch antenna arrays [21, 22] as the sensor. One chamber can contain one breast immersed in a matching dielectric medium. And the antenna array located on four vertical walls of the chamber can sweep and acquire 3D scattered field data in a relatively short time. For a breast imaging system, the antenna should be compact, lightweight and suitable for directly touching the breast. [21, 22] proposed a kind of bowtie patch antenna for imaging at 2.75 GHz. However, broadband antennas are preferable to increase the possibility of detecting tumors over a large range of sizes. So an operating bandwidth of 2.7–5 GHz is the objective of this work. This paper presents a simple half oval patch antenna that can operate over the necessary wide bandwidth for this application. The half oval patch antenna presented here has been proposed to radiate directly into a dielectric medium (matching medium). As described in subsequent sections, the initial antenna design and performance optimization were carried out by simulations with HFSS and Wavenology EM. And the performance of proposed antenna is validated by measurement. For further integration and scattered field calculation, we will study and compare the coupling of the antenna array and determine the smallest spacings for reducing interferencesProgress In Electromagnetics Research, PIER 98, 20093among antennas. The detection capability of the antenna array will be discussed by simulations of different positions in a matching dielectric medium. 2. ANTENNA DESIGN 2.1. Half Oval Patch Antenna Structure According to the imaging system requirement as discussed in [21, 22], the antennas will be mounted on four vertical panels of a cubic chamber. Each panels has the same number of antennas. To obtain the data for reconstruction of the breast dielectric distribution, the antennas are switched electronically between source and receiver one by one. In each scan process, only one antenna is used as the source and the others act as receivers. We choose an oval antenna as our initial structure, then change it to half oval for reducing its size. Because the antenna size is too small to omit the coaxial connector in simulation, we proposed an trapezium for connecting the coaxial cable connector and the half oval antenna arm, which can keep the antenna in the same size but with better return loss performance. This design uses a 100 × 100 mm2 FR4 substrate (1.6 mm thickness). The ground plane is placed right behind the substrate and covers the whole substrate. The antenna is fed by a coaxial line. Because each antenna is as small as 15.1 mm, the coaxial cable connector should be considered as part of the antenna design. The dimensions and structure are shown in Fig. 1. The inner conductor of the coaxial cable connector (SMB 50 Ohm connector) is modeled as a cylinder 1.27 mm in diameter. And the dielectric insulator in the connector is Teflon. The outer diameter of the cable is 4.2 mm and is connected with the ground plane. In our model, the thickness of the shell is 1 mm, which is not shown in the figure. The fabricated antenna prototype is made of copper. The thickness of patch is 0.16 mm for both simulation model and real antenna. 2.2. Antenna Performance During the breast cancer detection and imaging, a matching medium should be applied to surround the breast to reduce the scattering from the breast skin. The relative permittivity (εr ) of tumor varies from 40 to 60, and normal breast tissue varies from 9 to 25 [23–26]. From the past experimental experiences [21], we choose acetone as the matching medium, whose relative permittivity is εr = 21.8 and conductivity is σ = 0.17 S/m. Acetone is easy to obtain for the system prototype development.45 05.35Yu, Yuan, and LiuHFSS Wavenolegy EM Measurement|S11 | (dB)1.60y x 1.27 z x 2.10 13.00 15.10 6.61 10.00-5 -10 -15 -20 -25 -30 2 2.5 3 3.5 4 Frequency (GHz) 4.5 54.20Coaxial Cable ConnectorFigure 1. Top and side views of a half oval patch antenna. (Unit: mm).Figure 2. Return loss simulation and measurement results for the antenna in Fig. 1.We assume that the normal breast tissue is perfectly matched with the medium. So above the patch antenna is matching medium, while it is the air under the PEC ground plane. With these design considerations, the prototype antenna shown in Fig. 1 is simulated by both HFSS and Wavenology EM. We we measured the |S11 | parameter in acetone by an Agilent E8362B PNA series network analyzer. The simulated and measured return loss results from 2 to 5 GHz in Fig. 2 show good agreement. Both commercial software simulation results and measurement results indicate that the proposed half oval patch antenna satisfies the basic performance requirements, and the length is as short as 15.1 mm. The reflection is less than −10 dB within 2.7– 5 GHz. 2.3. Array Design An imaging system with a chamber size 100 × 100 × 100 mm3 was proposed to fit regular breast size [21]. One prototype of the chamber is shown in Fig. 3 and Fig. 4. The vertical spacing between two adjacent antennas is defined as Dv , while the horizontal spacing is noted as Dh . In this prototype, each plane has a 3 × 3 antenna array. And the ground covers the 4 side and bottom panels to isolate the noise from the environment. The antennas in each array has the same vertical and horizontal spacings. How to arrange the antennas on each plane and how to choose Dv and Dh will be discussed below.Progress In Electromagnetics Research, PIER 98, 20095Dh Breast Tissue100 mmDvTumorMatch. Medium100 mm(a)(b)Figure 3. (a) Side view of the imaging chamber. (b) Each face of the imaging chamber with 3 × 3 antennas.Figure 4. 3D view of the chamber with an array of 36 antennas. 3. ANTENNA COUPLING ANALYSIS The antennas will be integrated into a 3-D array on the four vertical walls of the cubic chamber. Usually, the more antennas the wall contains, the more imaging data can be obtained from each scan, but the undesirable coupling may be stronger and the array becomes more expensive. So the spacings of the antenna array are also discussed in the paper. The couplings between the co-polarized horizontal and vertical array elements are represented by |S21 |.6-16 -18 -20 |S 21 | (dB) -24 -26 -28 -30 -32 2D h = 10 mm D h = 3 mm D h = 5 mm D h = 6 mm D h = 7 mmYu, Yuan, and Liu-15 -20 |S 21 | (dB) -25 -30 -35 -40Dv Dv Dv Dv = 10 mm = 15 mm = 17 mm = 20 mm-222.53 3.5 4 Frequency (GHz)4.55-4522.53 3.5 4 Frequency (GHz)4.55Figure 5. Coupling versus the horizontal distance of two parallel antennas.Figure 6. Coupling versus the vertical distance of two parallel antennas.The antennas will be parallel mounted on each of the four side panels. Here, we studied the vertical (Dv ) and horizontal (Dh ) spacings for any two half oval patch antennas on the same plane as Fig. 3(b) shows. The simulation is under the assumption that there are only two antennas on a 100 mm ×100 mm substrate (ground covers the whole substrate). According to the study of [17], we choose −20 dB as the coupling requirement in the imaging frequency band of 2.7 to 5 GHz. From the simulation results shown in Fig. 5 and Fig. 6, we can see that to meet the requirement of isolation less than −20 dB, the smallest Dh is 5 mm, while smallest Dv is 17 mm. As a preliminary study of this kind of imaging system, these results are only for the reference of further antenna array design. 4. ANTENNA DETECTION CAPABILITY For breast cancer imaging application, the antenna should be able to detect weak signals and identify small tumors, and high quality signals received will benefit the imaging. So we place two half oval patch antennas on the opposite sides in Fig. 7 to determine the detection capability of the antennas. The space between two antennas is also filled with a homogenous dielectric material (breast tissue surrounded by matching medium, and skin is omitted here). We assume that the tumor is spherical, and located at the center point between two antennas (deepest place under skin for detection) as in Fig. 7. The relative permittivity of the tumor is εr = 50, and conductivity is σ = 9 S/m [19].Progress In Electromagnetics Research, PIER 98, 20097100 mm|S 11 |, |S 21 | (dB)Breast Tissue ε r = 21.8 σ = 0.17 S/m Tumor ε r = 50 σ = 9 S/m x0 -10 -20 -30 -40 -50 -60 -70|S 11| |S 21|zCoaxial Cable Connectors22.53 3.5 4 Frequency (GHz)4.55Figure 7. Placement sketch of two opposite antennas.inc Figure 8. Simulated |S11 | and inc | results for the configuration |S21 in Fig. 7.The scattered field of the tumor is calculated by subtracting the incident field (background field) from the total field. Here the incident field means the electromagnetic field generated by one antenna radiation in dielectric medium when there is no tumor, while the total filed is the corresponding field when a tumor exists. So the S21 parameter, which depends on signal transmission and reception, can inc be used to represent the detection capability. If S21 is the incident S tot parameter when there is no tumor inside the breast, S21 is the total field S parameter when there is a tumor inside breast, the scatter S sct parameter S21 is sct tot inc S21 = S21 − S21 (1) If no tumor exists, the antenna will only receive the background signals from the other. |S11 | and |S21 | in this condition are shown in Fig. 8 (|S22 | = |S11 | and |S12 | = |S21 | for the symmetric structure). |S11 | still satisfies the requirements of the system, i.e., |S11 | ≤ −10 dB between 2.7 and 5 GHz. 4.1. Case 1: Detection of a 10-mm Tumor at the Origin Here, we connect the center points of two coaxial cable connectors of two opposite antennas, and define the center point of this line as origin (Fig. 7). First simulation case is assuming the 10-mm tumor (radius r = 5 mm) is located at the origin (x = 0 mm, y = 0 mm, z = 0 mm) as in Fig. 7. The horizontal distances (along z direction) between the tumor and both antennas are 50 mm. Simulation results are shown in Fig. 9. The background field,810mm diameter tumor at (0,0,0) mm -25 -30 -35 -40 -45 -50 -55 -60 scattered field -65 background field total field -70 -75 2 2.5 3 3.5 4 4.5 5 Frequency (GHz)Yu, Yuan, and Liu-45 -50 |S 21| (dB) -55 -60 -65 -70 -75 2 2.510 mm tumor at (0,0,0) mm 10 mm tumor at (10,0,0) mm 2 mm tumor at (10,0,0) mm|S 21| (dB)3 3.5 4 Frequency (GHz)4.55Figure 9. |S21 | for the background field, incident field and scattered field when a 10-mm tumor is located at the origin.Figure 10. |S21 | for the scattered field when a 10-mm tumor is located at (0, 0, 0) mm and (10, 0, 0) mm.inc which is plotted by solid line, represents |S21 |. The dotted line is tot |). The difference between these two lines are hard total field (|S21 to see by eyes. So we subtract them according to Equation (1), and sct plot the magnitude of the subtraction results (|S21 |) by dashed line. According to the experiences of [21, 22], the imaging system can detect sct and reconstruct the dielectric distribution of the object when |S21 | sct | ranges from −65 dB to higher than −75 dB. Here, the simulated |S21 −47 dB. So the antenna is suitable for the system to detect the tumors bigger than 10 mm in diameter.4.2. Case 2: Detection of a 10-mm Tumor at (10, 0, 0) mm The origin is the deepest position in breast for antenna to detect (horizontally). However, there may be tumors located near the chest, for example at (10, 0, 0) mm. Simulation results are plotted in Fig. 10 by dotted line for a 10sct mm tumor at (10, 0, 0) mm. |S21 | for this tumor ranges from −56 dB to −45 dB. The position change of the tumor is detectable by the change sct of this |S21 |. 4.3. Case 3: Detection of a 10-mm tumor at (40, 0, 0) mm In this case, the tumor is located closer to the chest (the open end of chamber) at (40, 0, 0) mm. Simulation results are plotted in Fig. 10 sct by solid line. |S21 | for this tumor ranges from −52 dB to −80 dB. Scattered field of some frequencies are lower than −80 dB. But mostProgress In Electromagnetics Research, PIER 98, 20099frequencies are detectable. And when antennas are mounted on the imaging chamber and build array, the performance will be better as discussed in the following Section 5.0 -5 Return Losses (dB) -10 -15 -20 -25 -30 -35 2 2.5|S 1,1 | |S 2,2 | |S 13,13 | |S 14,14 | |S 25,25 | |S 26,26 |3 3.5 4 4.5 Frequency (GHz)5-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70Incident Field (dB)|S 9,1 | |S 8,2 | |S 21,13 | |S 20,14 | |S 33,25 | |S 32,26 |22.53 3.5 4 4.5 Frequency (GHz)5Figure 11. Return losses of 6 representative antennas in chamber.-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85antenna 20, tumor at (0,0,0)mm antenna 20, tumor at(10,0,0)mm antenna 23, tumor at (0,0,0)mm antenna 23, tumor at (10,0,0)mmFigure 12. Incident field of 6 pairs of representative antennas in the imaging chamber.-10 -20 -30 |S 21| (dB) -40 -50 -60 -70antenna 20, tumor at (0,0,0)mm antenna 20, tumor at (40,0,0)mm antenna 23, tumor at (0,0,0)mm antenna 23, tumor at (40,0,0)mm|S 21 | (dB)22.53 3.5 4 Frequency (GHz)4.55-8022.53 3.5 4 Frequency (GHz)4.55Figure 13. Scattered field results of antenna 20 and 23 as receivers, antenna 14 as transmitter on imaging chamber when a 10-mm tumor is located at origin and (10, 0, 0) mm.Figure 14. Scattered field results of antenna 20 and 23 as receivers, antenna 14 as transmitter on imaging chamber when a 10-mm tumor is located at origin and (40, 0, 0) mm.10Yu, Yuan, and Liu5. ANTENNAS ON CHAMBER Antenna array design is another challenge for the imaging system. We modeled a simple prototype as Fig. 4 to validate the antennas performance when they are mounted on an imaging chamber. By the results of Section 3, vertical spacing of the antennas Dv is set to 17 mm. Although 5 mm horizontal spacing is enough for −20 dB isolation, we set Dh = 20 mm as a preliminary study of the antenna performance in chamber. The array is symmetric, so six antennas (center column and left column in Fig. 3(b)) are enough to represent the performance of all antennas. We choose antennas 1, 2, 13, 14, 25 and 26 as sources in the array shown in Fig. 4. The return losses of these antennas are shown in Fig. 11. At the frequencies higher than 3.5 GHz, the return losses are slightly higher than −10 dB for part of the 6 representative antennas. Although antenna performance is slightly affected by the chamber, the antennas are still suitable for the imaging system. Figure 12 plots the coupling of 6 pairs of antennas to their counterparts on the opposite side of the chamber. For example, antennas 1 and 9 are the antennas located in the upper left corner of two parallel walls of the chamber; the coupling result is shown as |S9,1 | in Fig. 12; |S33,25 | is for the pair located in the bottom corner of the chamber. The antennas are numbered in Fig. 4. These coupling results are simulated under the hypothesis that there is no tumor in the breast. So the results are the incident field. The magnitude of these incident fields are similar to the results simulated by two opposite antennas in Section 3. Here we define the center point of the chamber as the origin; the x direction is pointed to the open face of the imaging chamber, and the y and z directions are pointed to two adjacent vertical walls. Similar to Section 3, we simulated and calculated the scattered field of a 10-mm tumor at three different positions, namely at the origin, (10, 0, 0) mm, and (40, 0, 0) mm. Fig. 13 and Fig. 14 show the different scattered field results at antenna 20 and 23 when antenna 14 is radiating. We can observe that the most scattered field is over −75 dB. This level of scattered field has been shown to enable imaging in a homogeneous fluid [8], although much more work needs to be done to allow imaging in a real breast tissue. 6. CONCLUSION A simple half oval patch antenna is proposed for breast cancer imaging. Both simulation and measurement results show that the return loss ofProgress In Electromagnetics Research,PIER98,200911 the proposed antenna is less than−10dB from2.7to5GHz.In a cubic imaging chamber,the antennas are mounted on four vertical walls. The couplings of two co-polarized antennas placed horizontally and vertically are studied for the antenna array design.And the detection capability of the antenna is simulated by two opposite antennas with 100mm distance.The space between two antennas isfilled with dielectric medium,which simply represents a model of breast immersed in perfect matching medium omitting the skin.Simulation results show that the antenna can detect the signal variation caused by a10-mm tumor at different positions.According to the co-polarized coupling results,we modeled a chamber with3×3×3antenna array.Simulation results prove that the proposed antenna is applicable to the breast cancer imaging system.Ongoing work is being conducted to build appropriate antenna array,integrate them in the chamber,and perform experiments to validate the feasibility of the imaging system we proposed. REFERENCES1.Fear,E.C.,S.C.Hagness,and P.M.Meaney,“Enhancing breasttumor detection with near-field imaging,”IEEE Microwave Mag., Vol.3,No.1,48–56,2002.2.Fear,E.C.and M.A.Stuchly,“Microwave detection of breastcancer,”IEEE Trans.Microwave Theory Tech.,Vol.48,No.11, 1854–1863,2000.3.Liu,Q.H.,Z.Q.Zhang,T.Wang,G.Ybarra,L.W.Nolte,J.A.Bryan,and W.T.Joines,“Active microwave imaging I:2-D forward and inverse scattering methods,”IEEE Trans.Microwave Theory Tech.,Vol.50,No.1,123–133,2002.4.Fear,E.C.,P.M.Meaney,and M.A.Stuchly,“Microwaves forbreast cancer detection,”IEEE Potentials,Vol.22,No.1,12–18, 2003.5.Bindu,G.,S.J.Abraham, A.Lonappan,V.Thomas,C.K.Aanandan,and K.T.Mathew,“Active microwaveimaging for breast cancer detection,”Progress In Electromagnetics Research,PIER58,149–169,2006.6.Zhang,H.,S.Y.Tan,and H.S.Tan,“A novel method formicrowave breast cancer detection,”Progress In Electromagnetics Research,PIER83,413–434,2008.7.Zhang,Z.Q.,Q.H.Liu, C.Xiao, E.Ward,G.Ybarra,andW.T.Joines,“Microwave breast imaging:3-D forward scattering12Yu,Yuan,and Liu simulation,”IEEE Trans.Biomed.Eng.,Vol.50,No.10,1180–1189,2003.8.Yu,C.,M.Yuan,J.P.Stang,J.E.Bresslour,R.T.George,G.A.Ybarra,W.T.Joines,and Q.H.Liu,“Active microwaveimaging II:3-D system prototype and image reconstruction from experimental data,”IEEE Trans.Microwave Theory Tech., Vol.56,No.4,991–1000,2008.9.Chen,G.P.,Z.Q.Zhao,Z.P.Nie,and Q.H.Liu,“The prototypeof microwave-induced thermo-acoustic tomography imaging by time reversal mirror,”Journal of Electromagnetic Waves and Applications,Vol.22,No.11–12,1565–1574,2008.10.Chen,G.,Z.Zhao,Z.Nie,and Q.H.Liu,“Computational studyof time reversal mirror technique for microwave-induced thermo-acoustic tomography,”Journal of Electromagnetic Waves and Applications,Vol.22,No.16,2191–2204,2008.11.Ybarra,G.A.,Q.H.Liu,J.Stang,and W.T.Joines,“Microwavebreast imaging,”Emerging Technologies in Breast Imaging and Mammography,J.Suri,R.M.Rangayyan,and xminarayan (eds.),American Scientific Publishers,2008.12.Ybarra,G. A.,Q.H.Liu,G.Ye,K.H.Lim,R.George,and W.T.Joines,“Breast imaging using electrical impedance tomography(EIT),”Emerging Technologies in Breast Imaging and Mammography,Ed.:J.Suri,R.M.Rangayyan,and xminarayan,American Scientific Publishers,2008.13.Ye,G.,K.H.Lim,R.George,Jr.,G.Ybarra,W.T.Joines,and Q.H.Liu,“3-D EIT for breast cancer imaging:System, measurements,and reconstruction,”Microwave Opt.Technol.Lett.,Vol.50,No.12,3261–3271,2008.14.Meaney,P.M.,M.W.Fanning, D.Li,S.P.Poplack,andK.D.Paulsen,“A clinical prototype for active microwave imaging of the breast,”IEEE Trans.Microwave Theory Tech.,Vol.48, No.11,1841–1853,2000.15.Woten, D. A.and M.El-Shenawee,“Broadband dual linearpolarized antenna for statistical detection of breast cancer,”IEEE Trans.Antennas Propag.,Vol.56,No.11,3576–3580,2008. 16.Huang,W.and A. A.Kishk,“Compact dielectric resonatorantenna for microwave breast cancer detection,”IET Microw.Antennas Propag.,Vol.3,No.4,638–44,2009.17.Jafari,H.M.,J.M.Deen,S.Hranilovic,and N.K.Nikolova,“Co-polarised and cross-polarised antenna arrays for breast,cancer detection,”IET Microw.Antennas Propag.,Vol.1,No.5,1055–1058,2007.Progress In Electromagnetics Research,PIER98,200913 18.Yun,X., E.C.Fear,and R.H.Johnston,“Compact antennafor radar-based breast cancer detection,”IEEE Trans.Antennas Propag.,Vol.53,No.8,2374–2380,2005.19.Nilavalan,R.,I.J.Craddock, A.Preece,J.Leendertz,andR.Benjamin,“Wideband microstrip patch antenna design for breast cancer tumour detection,”IET Microw.Antennas Propag., Vol.1,No.2,277–281,2007.20.Bond,E.J.,X.Li,S.C.Hagness,and B.D.Van Veen,“Microwaveimaging via space-time beamforming for early detection of breast cancer,”IEEE Trans.Antennas Propag.,Vol.51,No.8,1690–705, 2003.21.Yuan,M., C.Yu,J.P.Stang,R.T.George,G. A.Ybarra,W.T.Joines,and Q.H.Liu,“Experiments and simulations of an antenna array for biomedical microwave imaging applications,”URSI Meeting,San Diego,CA,July2008.22.Stang,J.P.,W.T.Joines,Q.H.Liu,R.T.George,G.A.Ybarra,M.Yuan,and I.Leonhardt,“A tapered microstrip patch antenna array for use in breast cancer screening via3D active microwave imaging,”APS-URSI Meeting,Charleston,SC,June2009.23.Jossinet,J.and M.Schmitt,“A review of parameters for thebioelectrical characterization of breast tissue,”Ann.N.Y.Acad Sci.,Vol.873,30–41,1999.24.Woten, D. A.,J.Lusth,and M.El-Shenawee,“Interpretingartificial neural networks for microwave detection of breast cancer,”IEEE Microwave Wireless Compon.Lett.,Vol.17,No.12, 825–827,2007.zebnik,M.,L.McCartney, D.Popovic, C. B.Watkins,M.J.Lindstrom,J.Harter,S.Sewall,A.Magliocco,J.H.Booske, M.Okoniewski,and S.C.Hagness,“A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries,”Phys.Med.Biol., Vol.52,2637–2656,2007.zebnik,M., D.Popovic,L.McCartney, C. B.Watkins,M.J.Lindstrom,J.Harter,S.Sewall,T.Ogilvie,A.Magliocco, T.M.Breslin,W.Temple,D.Mew,J.H.Booske,M.Okoniewski, and S.C.Hagness,“A large-scale study of the ultrawideband microwave dielectric properties of normal,benign and malignant breast tissues obtained from cancer surgeries,”Phys.Med.Biol., Vol.52,6093–6115,2007.。

相关文档
最新文档