东南大学信号与系统试题及答案
信号与系统试卷及参考答案

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
《信号与系统》考研试题解答第六章 离散系统的z域分析

第六章 离散系统的z 域分析一、单项选择题X6.1(浙江大学2003年考研题)离散时间单位延迟器的单位响应为 。
(A ))(k δ (B ))1(+k δ (C ))1(-k δ (D )1X6.2(北京邮电大学2004年考研题)已知一双边序列⎪⎩⎪⎨⎧<≥=0,30,2)(k k k f k k ,其z 变换为 。
(A )32,)3)(2(<<---z z z z (B )3,2,)3)(2(≥≤---z z z z z(C )32,)3)(2(<<--z z z z (D )32,)3)(2(1<<---z z zX6.3(东南大学2002年考研题)对于离散时间因果系统5.02)(--=z z z H ,下列说法是不对的是 。
(A )这是一个一阶系统 (B )这是一个稳定系统 (C )这是一个全通系统 ()这是一个最小相移系统X6.4(南京理工大学2000年考研题))(2)(k k f --=ε的z 变换为 。
(A )12)(-=z z z F (B )12)(--=z z z F (C )12)(-=z z F (D )12)(--=z z F X6.5(西安电子科技大学2005年考研题)序列[]∑-=-1)()1(2k i iki ε的单边z 变换为 。
(A )422-z z (B ))1)(2(+-z z z (C )422-z z(D ))1)(2(2--z z zX6.6(西安电子科技大学2004年考研题)离散序列[]∑∞=--=0)()1()(m mm k k f δ的z 变换及收敛域为 。
(A )1,1<-z z z (B )1,1>-z z z (C )1,1<+z z z (D )1,1>+z z zX6.7(北京交通大学2004年考研题)已知)(k f 的z 变换)2(211)(+⎪⎭⎫⎝⎛+=z z z F ,)(z F 的收敛域为 时,)(k f 为因果序列。
2008年东南大学信号与系统考研试题

共7页第 1 页共 7 页第 2 页试题编号: 920 试题名称:专业基础综合12) 下列说法中,()是正确的寄存器一般是边沿触发的,仅在时钟的边沿改变状态;锁存器一般指电平触发的 (a)触发器,特点是当控制端有效的时候,输入端的变化会随时传递到输出端同步计数器各触发器的CP脉冲相同,异步计数器的各CP脉冲不同,异步计数 (b)器的速度可能比同步计数器速度快异或门当反相器使用时,把多余输入端接低电平(c)组合逻辑电路如果产生了可以采用增加冗余项的方法消除险象,这种险象属于功 (d)能险象13)对于半导体存储器,下列叙述是( )正确的(a)随机存取的存储器,使用的时候需要进行刷新和再生半导体存储器的数据读写是依靠地址译码器选中相应的存储单元,对单元进行读 (b)写的,由于是数字信号,因此从存储矩阵中获取的信号可以不经处理,送到相应的数字逻辑电路中(c)随机存取的存储器断电后数据丢失;只读存储器断电后数据不会丢失,通电后又可以继续使用可编程的只读存储器使用电进行编程,用紫外线可以擦除原来的信息(d)14)以下关于时序电路和组合电路,同步电路和异步电路的解释, ( )是正确的。
时序电路是依靠触发信号触发的电路,组合电路是不依靠触发信号触发的电路, (a)同步电路触发信号由同一个时钟驱动,异步电路触发信号使用不同时钟驱动时序电路是触发信号由同一个时钟驱动的电路,组合电路是不依靠触发信号触发 (b)的电路,同步电路是依靠触发信号触发的电路;异步电路触发信号使用不同时钟驱动(c) 时序电路是不依靠触发信号触发的电路,组合电路是依靠触发信号触发的电路,同步电路的触发信号由同一个时钟驱动,异步电路的触发信号使用不同时钟驱动(d)时序电路是依靠触发信号触发的电路,组合电路是触发信号使用不同时钟驱动的电路,同步电路是触发信号由同一个时钟驱动;异步电路是依靠时钟触发的电路共7页第 3 页共 7 页第 4 页7图(共7页第 5 页第第7)题图(c) 74190功能表和逻辑符号分)试求出的补数的最简“与或非”表达式,用的示意图如图所示,为了画图简便,输入变量及控制端可以在图的上端表明即可,不使用的线可以不画)输入PAL16L8的示意图共7页第 6 页第10)题 图74194双向移位寄存器逻辑符号简图和功能表如下图所示。
信号与系统标准试题库附答案

35.线性系统具有( D) A.分解特性 B。零状态线性 C。零输入线性 D。ABC
36.设系统零状态响应与激励的关系是: y zs (t ) f (t ) ,则以下表述不对的是( A ) A.系统是线性的 B。系统是时不变的 C。系统是因果的 ( B ) C。4 Hz D。8 Hz D。系统是稳定的
17、如图所示:f(t)为原始信号,f1(t)为变换信号,则 f1(t)的表达式是( D
)
A、f(-t+1) C、f(-2t+1)
B、f(t+1) D、f(-t/2+1)
4
18、若系统的冲激响应为 h(t),输入信号为 f(t),系统的零状态响应是( C )
19。信号 f (t ) 2 cos
1 > 2 , 则信号 f (t ) f 1 (t 1) f 2 (t 2) 的奈奎斯特取样频率为( C )
A. 1 B。 2 C。 1 + 2 D。 1 2
58.某信号的频谱是周期的离散谱,则对应的时域信号为( D ) A.连续的周期信号 C.离散的非周期信号 B。连续的非周期信号 D。离散的周期信号
D。50 rad/s
3
15、已知信号 f (t ) 如下图(a)所示,其反转右移的信号 f1(t) 是( D
)
16、已知信号 f1 (t ) 如下图所示,其表达式是( B)
A、ε(t)+2ε(t-2)-ε(t-3) C、ε(t)+ε(t-2)-ε(t-3)
B、ε(t-1)+ε(t-2)-2ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3)
6
33.设一个矩形脉冲的面积为 S,则矩形脉冲的 FT(傅氏变换)在原点处的函数值等于( D A.S/2 B。S/3 C。S/4 D。S
大学考试试卷《信号与系统》及参考答案

信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。
2. 连续信号,该信号的拉普拉斯变换收敛域为()。
A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。
7. 下列论断正确的为()。
A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。
8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。
B. 若起始状态为零,则零状态响应为零。
C. 若系统的零状态响应为零,则强迫响应也为零。
D. 若激励信号为零,零输入响应就是自由响应。
2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。
东 南 大 学 考 试 卷11-12-A答案

东 南 大 学 考 试 卷答案( A 卷)课程名称 信号与线性系统考试学期 11-12-3 得分适用专业信息科学与工程学院、吴健雄学院、理科班考试形式闭卷考试时间长度 120分钟一、简单计算或论述证明题(共7 题,共计56分)1、已知某LTI 连续因果系统的特征多项式为5432()2222D s s s s s s =+++++,试分析其特征根在s 左半开平面、虚轴以及s 右半开平面上的个数;并判断该系统的稳定性。
解:S 5 1 2 2S 4 1 2 2 S 3 )(0ϕ )(0ϕS 2 1 2 S 1 -4 0 S 0 2 0坐标轴左半平面2个根,右半平面3个根,所以该系统不稳定。
2、求序列1(){1,2,0,2,1;2,1,0,1,2}f k k =--=--和2(){1,2,1;1,0,1}f k k =-=-的卷积和。
解:-1 -2 0 2 1 -1 2 1 -1 -2 0 2 1 -2 -4 0 4 2 1 2 0 -2 -11 0 -5 -4 3 4 13、已知LTI 离散因果系统11(2)(1)()(1)2()66y k y k y k e k e k +++-=++,求该系统在激励()2,ke k k =-∞<<+∞作用下的输出响应。
解:61262)(-++=z z z z H ,2524)(2==z z H ,+∞<<-∞=k k y kzs ,22524)( 4、已知某系统函数为()9.5(0.5)(10)H z zz z =--求在以下两种收敛域:10z >和0.510z <<情况下系统的单位样值响应,并说明这两种情况下系统的稳定性与因果性。
解:10105.0105.0)(,102121---=-+-=>z z z k z k z H z ,)()105.0()(k k h kk ε-= 由此判断该系统不稳定,为因果系统。
东南大学《信号与系统、数字电路》真题2008年

东南大学《信号与系统、数字电路》真题2008年(总分:60.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:5,分数:15.00)1.对于一个逻辑函数表达式,______是唯一的。
∙ A.最简“与或”表达式∙ B.两级“与非”表达式∙ C.异或构成的表达式∙ D.最大项构成的表达式(分数:3.00)A.B.C.D. √解析:2.下列说法中,______是正确的。
∙ A.寄存器一般是边沿触发的,仅在时钟的边沿改变状态;锁存器一般指电平触发的触发器,特点是当控制端有效时,输入端的变化会随时传递到输出端∙ B.同步计数器各触发器的CP脉冲相同,异步计数器的各CP脉冲不同,异步计数器的速度可能比同步计数器速度快∙ C.异或门当反相器使用时,把多余输入端接低电平∙ D.组合逻辑电路如果产生了可以采用增加冗余项方法消除的险象,这种险象属于功能险象(分数:3.00)A. √B.C.D.解析:3.对于半导体存储器,下列叙述______是正确的。
∙ A.随机存取的存储器,使用时需要进行刷新和再生∙ B.半导体存储器的数据读/写是依靠地址译码器选中相应的存储单元,对单元进行读/写的,由于是数字信号,因此从存储矩阵中获取的信号可以不经处理,送到相应的数字逻辑电路中∙ C.随机存取的存储器断电后数据丢失;只读存储器断电后数据不会丢失,通电后又可以继续使用∙ D.可编程的只读存储器使用电进行编程,用紫外线可以擦除原来的信息(分数:3.00)A.B.C. √D.解析:4.以下关于时序电路和组合电路、同步电路和异步电路的解释,______是正确的。
∙ A.时序电路是依靠触发信号触发的电路,组合电路不是依靠触发信号触发的电路,同步电路触发信号由同一个时钟驱动,异步电路触发信号使用不同时钟驱动∙ B.时序电路是触发信号由同一个时钟驱动的电路,组合电路不是依靠触发信号触发的电路,同步电路是依靠触发信号触发的电路;异步电路触发信号使用不同时钟驱动∙ C.时序电路不是依靠触发信号触发的电路,组合电路是依靠触发信号触发的电路,同步电路的触发信号由同一个时钟驱动,异步电路的触发信号使用不同时钟驱动∙ D.时序电路是依靠触发信号触发的电路,组合电路是触发信号使用不同时钟驱动的电路,同步电路是触发信号由同一个时钟驱动;异步电路是依靠时钟触发的电路(分数:3.00)A. √B.C.D.解析:5.关于数模与模数转换,下列概念正确的是______。
东南大学信号与系统期中考试试卷及答案

F { f (t )} = 2 Sa (ω ) − 2 e
'
− jω
= jω F ( jω )
2 − jω F ( jω ) = [ Sa (ω ) − e ] jω
4。 计算卷积: 2 * t[ε(t+2)-ε(t-2)] 。 (5分)
2
f1 (t )
0
−2 2
t
f 2 (t )
0 2
t
= ∫ τ [ε (τ + 2) − ε (τ − 2)]2dτ
解: 引入辅助函数q(t), 得
d 3 q (t ) d 2 q (t ) dq ( t ) 4 5 + + + 6 q (t ) = e (t ) 3 2 dt dt dt dq ( t ) r (t ) = 7 + 8 q (t ) dt
7
e (t )
Σ
q ′′′
∫
-4 -5 -6
q ′′
∫
q′
(t ) = (t ) =
e
− 2 t
− 2 c
e
− 2 t
, t ≥
在输入为零时 r(0+)= r(0-)= 0,r´(0+)= r´(0-)= 2, 代入上列二式
c1 + c 2 = 0 , → − 2 c 2 = 2 ∴ r zi ( t ) = ( 1 − e
(2)系统转移算子为:
解法2:因 e(t)=5,(-∞<t<∞),故由直流稳态解,可设 r(t)=A (常数),代入系统方程,得 5A=3x5, ∴ r(t)= A =3
3. 利用傅里叶变换的性质求下列波形信号的傅里叶 变换。 (8分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 ' x 2 x 2 ' x3 x ' x x 2 x e(t ) 1 2 3 状态方程: 3 2 x1 4 x2 6 x3 x1 3x2 4 x3 e(t ) y x3 输出方程:
H ( s)
s 3 6s 2 4s 2 s3 2s 2 s 1 。试给出该系统
的状态方程。
解:系统的微分方程为
y (t ) 2 y (t ) y (t ) y(t ) e(t ) 6e(t ) 4e(t ) 2e(t ) 取原来的辅助变量 q 及其各阶导数为状态变量并分别表示为 q x1 、 q' x2 、 q' ' x3 、
F ( j )
n
e
jn
。
e(t)
h(t)
y(t)
f (t )
图(a)
e(t) 2
h(t) 1
4 图(b)
4
t
0 图(c)
1
t
试:1) 分别画出 f (t ) 的频谱图和时域波形; 2) 求输出响应 y(t)并画出时域波形。 3) 子系统 h(t)是否是物理可实现的?为什么?请叙述理由;
出该系统的状态方程。
6、 求出下面框图所示离散时间系统的系统函数。
e( k )
z 1
-0.3
2
z 1
-0.2
r (k )
二、 (12 分)已知系统框图如图(a) ,输入信号 e(t)的时域波形如图(b) , 子 系 统 h(t) 的 冲 激 响 应 波 形 如 图 (c) 所 示 , 信 号 f (t ) 的 频 谱 为
k h(k ) cos (k ) 2 五(12 分) 、已知某离散时间系统的单位函数响应 。
1) 求其系统函数 H ( z ) ; 2) 粗略绘出该系统的幅频特性; 3) 画出该系统的框图。
六、 (10 分)请叙述并证明 z 变换的卷积定理。
答案
1 2 j 3 ,按照取样间隔 1、 已知某连续信号 f (t ) 的傅里叶变换为 T 1 对其进行取样得到离散时间序列 f (k ) ,序列 f (k ) 的 Z 变换。 F ( j )
三(12 分) 、已知电路如下图所示,激励信号为 e(t ) (t ) ,在 t=0 和 t=1 时测得系统的输出为 y(0) 1 , y(1) e
0.5
。分别求系统的零输入响应、零状
态响应、全响应、以及自然响应和受迫响应。
L=2H R1=2 e(t) R2=1 C=1F
``
e( k )
z 1
-0.3
2
z 1
-0.2
r (k )
解:
H ( z ) (1
2 1 z 2.3 ) 2 z 0.3 z 0.2 z 0.5 z 0.06
二、 (12 分)已知系统框图如图(a) ,输入信号 e(t)的时域波形如图(b) , 子 系 统 h(t) 的 冲 激 响 应 波 形 如 图 (c) 所 示 , 信 号 f (t ) 的 频 谱 为
f1 (k ) 1 ,2,1
f 2 (k ) 1 cos k (k ) 2 和 的卷积和。
3、 已知某双边序列的 Z 变换为
F ( z)
1 10 z 9 z 2 , 求该序列的时域表达式 f (k ) 。
2
解: 当收敛域为|z|>0.5 时,f(k)=(( 0.4)k1( 0.5)k1)(k1) 当收敛域为 0.4<|z|<0.5 时,f(k)= ( 0.4)k1(k1)+( 0.5)k1( k) 当收敛域为|z|<0.4 时,f(k)= ( 0.4)k1(k)+( 0.5)k1( k) 点评:此题应对收敛域分别讨论,很多学生只写出第一步答案,即只考虑单边序列。 4、已知某连续系统的特征多项式为:
或者写成矩阵形式,上式即为
1 x1 0 x1 ' 0 0 x ' Ax Be 0 1 0 2 x 2 0 e x 3 ' 1 1 2 x3 1 x1 y Cx De 1 3 4 x 2 e(t ) x3 6、求出下面框图所示离散时间系统的系统函数。
2 y(k 2) 3 y(k 1) y(k ) e(k 1) 其初始状态为 y zi (1) 2, y zi (2) 6 ,激励 e(k ) (k ) ;
求:1) 零输入响应 y zi (k ) 、零状态响应 y zs (k ) 及全响应 y (k ) ; 2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。
2
样间隔 T 1 对其进行取样得到离散Байду номын сангаас间序列 f (k ) ,序列 f (k ) 的 Z 变换。
2、 求序列
f1 (k ) 1 ,2,1
k 0
f 2 (k ) 1 cos k (k ) 2 和 的卷积和。
3、 已知某双边序列的 Z 变换为 达式 f (k ) 。
F ( z)
1 1 z 0.4 z 0.5 ,两个单阶极点为0.4、0.5
D(s) s 7 3s 6 6s 5 10s 4 11s 3 9s 2 6s 2 试判断该系统的稳定情况, 并指出系统含有负实部、零实部和正实部的根各有几 个?
解 构作罗斯-霍维茨阵列
L=2H R1=2 e(t) R2=1 C=1F
+ y(t) _
解:1)电路满足 KVL:得
y (t ) 1.5 y (t ) 0.5 y(t ) 0.5e(t ) 0.5s H ( s) 2 s 1.5s 0.5 ,特征根为 1=0.5,2=1 2)系统函数为:
F ( z)
1 10 z 9 z 2 , 求该序列的时域表
2
4、 已知某连续系统的特征多项式为:
D(s) s 7 3s 6 6s 5 10s 4 11s 3 9s 2 6s 2
试判断该系统的稳定情况,并指出系统含有负实部、零实部和正实部的 根各有几个?
s 3 6s 2 4s 2 H ( s) 3 s 2s 2 s 1 。试给 5、 已知某连续时间系统的系统函数为:
解:1)根据傅立叶变换的性质得:
f (t )
n
(t 2n)
f(t) (1)
-4
-2
2
4
t
F ( j )
n
( n)
F(jw)
2
w
2)y(t)=[e(t)f(t)]h(t)=[(t+2)+2(t)+ (t2)] h(t)= h(t+2)+2h(t)+ h(t2)
s 4 3s 2 2 0
令 s x 则有
2
可解得 相应地有
x2 3 x 2 0 x 1, 2
s1, 2 1
j j 2
s 3 ,4 2
这说明该系统的系统函数在虚轴上有四个单极点分别为土 j 及土 j 2 ,系统为临界稳定。 所以系统含有三个负实部的根、四个零实部的根,无正实部的根。 点评:此题得分率很低。很多学生对全零行不知如何处理。 5、已知某连续时间系统的系统函数为:
H ( z) z 2 z 3z 1 ,特征根为 1=0.5,2=1
2
解:
1) yzi(k)=(C10.5k+C2)(k); 代入初始条件得 C1=2,C2=2 零输入响应:yzi(k)= (220.5k)(k)
z z z z z 1 1 2 Yzs(z)=H(z)E(z)= 2 z 3z 1 z 1 z 0.5 z 1 ( z 1) = s 0.5 s 1
0.5s 1 1 1 Yzs(s)=H(s)E(s)= s 1.5s 0.5 s = s 0.5 s 1
2
零状态响应:yzs(t)=(e0.5t et)(t) yzs(0)=0,yzs(1)=(e0.5 e1); yzi(0)= y(0) yzs(0)=1,yzi(1)= y(1) yzs(1)= e1 ;
+ y(t) _
四(12 分)、已知某离散系统的差分方程为
2 y(k 2) 3 y(k 1) y(k ) e(k 1)
其初始状态为 y zi (1) 2,
y zi (2) 6 ,激励 e(k ) (k ) ;
求:1) 零输入响应 y zi (k ) 、零状态响应 y zs (k ) 及全响应 y (k ) ; 2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。
f(k)= (ek e2k )(k)= ((e ) (e ) ) (k )
z z 1 z e 2 F(z)=Z[f(k)]= z e
k 0 2、 求序列 解:f1(k)={1,2,1}=(k)+2(k1)+ (k2) f1(k)* f2(k)= f2(k)+ 2f2(k1)+ f2(k2)
y(t) 2
-2
-1
1
2
3
t
3)因 h(t)是有始因果信号,所以子系统 h(t)是物理可实现的。 点评:此题做对的非常少,大多数写不出 f(t)的表达方式。