碳纳米管增强复合材料研究与展望

碳纳米管增强复合材料研究与展望
碳纳米管增强复合材料研究与展望

尼龙_碳纳米管复合材料研究进展

基金项目:河南省教育厅自然科学基金项目(200510459101); 作者简介:李中原(1971-),男,博士研究生; 3通讯联系人:E 2mail :zhucs @https://www.360docs.net/doc/1112324571.html,. 尼龙Π碳纳米管复合材料研究进展 李中原,刘文涛,许书珍,何素芹3,朱诚身3 (郑州大学材料科学与工程学院 郑州 450052) 摘要:碳纳米管(C NTs )由于其独特的结构,较高的长径比,较大的比表面积,且具有超强的力学性能和良好 的导热性,已经证明是塑料的非常优异的导电填料,聚合物基碳纳米管复合材料可望应用于材料领域的多个方面,尤其在汽车、飞机及其它飞行器的制造等军事和商业应用上带来革命性的突破。本文介绍了碳纳米管的结构形态和碳纳米管的制备、纯化、修饰方法及聚合物基碳纳米管复合材料的制备、性能,并综述了近几年来尼龙Π碳纳米管复合材料的研究进展及应用前景。 关键词:碳纳米管;尼龙;复合材料 引言 聚酰胺具有优良的机械性能、耐磨性、耐酸碱性、自润滑性等优点,居于五大工程塑料之首,被广泛用作注射及挤出成型材料,主要用于在机械、仪器仪表、汽车、纺织等方面,并将在轴承、齿轮、风扇叶片、汽车部件、医疗器材、油管、油箱、电子电器制品的制造方面发挥重要作用,尤其是作为汽车零部件及电器元件。由于酰胺极性基团存在极易吸水、尺寸稳定性差等缺点,使其应用受到了很大限制[1]。纳米复合材料是近年来发展十分迅速的一种新兴复合材料,被认为是21世纪最有发展前途的材料,已成为材料学、物理学、化学、现代仪器学等多学科领域研究的热点。热塑性塑料基纳米复合材料是研究最早、最多、应用最广的材料,聚合物Π蒙脱土纳米复合材料目前有的已实现了产业化[2]。碳纳米管由于其独特的结构、 奇异的性能和潜在的应用价值,在理论上是复合材料理想的增强材料。近年来聚合物Π碳纳米管复合材料的研究已成为纳米科学研究中的一个新热点。碳纳米管的发现可以追溯到1985年C 60 [3]的发现,1991年日本学者Iijima [4]在对电弧放电后的石墨棒进行显微观察时发现阳极上形成了圆柱状沉积,沉积主要 由柱状排列的平行的中空管状物形成,管状物的直径一般在几个到几十个纳米之间,而管壁厚度仅为几个纳米,故称之为碳纳米管C NTs (carbon nanotubes ),并在自然杂志上发表。碳纳米管具有超级的力学性能[5],在碳纳米管中,碳原子之间存在着三种基本的原子力包括:强的δ键合,C C 键之间的π键合以及多壁碳纳米管层与层之间的相互作用力,它们对碳纳米管的力学性能有着重要的贡献,理论和实验结果显示碳纳米管具有相当高的弹性模量,可达1TPa ,强度是钢的10~100倍,多壁碳纳米管MWC NTs (multiwalled carbon nanotubes )的轴向杨氏模量实验值为200G ~4000G Pa ,轴向弯曲强度为14G Pa ,轴向压缩强度为100G Pa ,并且具有超高的韧性,理论最大延伸率可达20%,密度却只有钢的六分之一。它耐强酸、强碱、耐热冲击、有优异的热,电性能;高温强度高、有生物相容性和自润滑性。在真空中2800℃以下不氧化,在空气中700℃以下基本不氧化,热传导是金刚石的两倍,导电性和铜一样。本文将从碳纳米管的纯化与修饰,尼龙Π碳纳米管复合材料的制备方法及其性能特征三方面对尼龙Π碳纳米管复合材料的研究进展进行总结。

颗粒增强铝基复合材料的制备方法及其存在的问题20091311

颗粒增强铝基复合材料的制备方法及其存在的问题 冶金0901班 张莹 20091311

近年来,随着不断追求轻量化、高性能化、长寿命、高效能的发展目标带动牵引了轻质高强多功能颗粒增强铝基复合材料的持续发展。提出的低密度、高比强度、高比模量、低膨胀、高导热、高可靠等优异以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等综合性能要求,传统轻质材料已很难全面满足要求,如铝合金模量低、线胀系数较大; 钛合金密度较大、热导率极低; 纤维增强树脂基复合材料在空间环境下使用易老化等,颗粒增强铝基复合材料经过30 多年的发展,已在国外航空航天领域得到了规模应用,这充分验证了与铝合金、钛合金、纤维树脂基复合材料等传统材料相比具有的显著性能优势,奠定了颗粒增强铝基复合材料在材料体系中的地位和竞争态势。而且更重要的是,在世界范围内有丰富的铝资源,加之易于进行工艺加工成型和处理,因而制各和生产铝基复合材料比其他金属基复合材料更为经济,易于推广,可广泛应用于航空航天、军事、汽车、电子、体育运动等领域,因此,这种材料在国内外受到普遍重视。 颗粒增强铝基复合材料已成为当下世界金属基复合材料研究领域中的一个最为重要的热点,各国已经相继进入了颗粒增强铝基复台材料的应用开发阶段,在美国和欧洲发达国家,该类复台材料的工业应用已开始,并且被列为二十一世纪新材料应用开发的重要方向并日益向工业规模化生产和应用的方向发展。本文旨在探讨颗粒增强铝基复合材料的制备方法及在亟待解决的各方面的问题,推进其应用发展的进程。 主要制备方法介绍: 增强体颗粒的分布均匀性和界面结合状况是影响复合材料性能的重要因素。因此,如何使增强体颗粒均匀分布于铝基体井与铝基体形成良好的界面结台是颗粒增强铝基复台材料制备过程中必须解决的两个最关键问题。以下是制备颗粒增强铝基复合材料的一些方法: 1、原位法 原位法的原理是通过元素间或元素与化合物之间反应制备陶瓷增强金属基复合材料,是近年来迅速发展的一种新的复合工艺方法,目前已成功地在铝基中实现了硼化物、碳化物、氮化物等的原位反应。由于这些增强相引入的特殊性,不仅它的尺寸非常细小,而且与基体具有良好的界面相容性,使得这种复合材料较传统外加增强相复合材料具有更高的强度和模量,以及良好的高温性能和抗疲劳、耐磨损性能。 原位自生铝基复合材料的制备方法较多,下面进行简略介绍。 (1)自蔓延高温合成法:该技术是利用热脉冲使放热反应起始于反应剂粉末压坯的一端,其生成热使邻近的粉末温度骤然升高.发生化学反应并以燃烧波的形式蔓延通过整个反应物,当燃烧波推行前移时反应物转变成产物。该技术的特点是在无需外加热源的情况下,利用高放热化学反应放出的热量使其在引发后自身延续合成材料,节能,粉末纯度高,粒径细小,活性高,易于烧结并能获得高性能的材料。 (2)原位热压放热反应合成法:该技术是在原位热压技术的基础上发展起来的一种新下艺。在制备过程中将反应物的物料混合或与某种基体原料混合后通过热压工艺制备,组成物相在热压过程中原位生成。该技术的突出优点是利用燃烧合成过程的放热反应,在产物处于反应高温时,施加一定的压力。使材料的致密与反应合成同时完成。获得了事半功倍的效果。 (3)放热弥散技术:这种方法法是美国一个实验室在自蔓延法的基础上改进而来的。

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.360docs.net/doc/1112324571.html,;cxpan@https://www.360docs.net/doc/1112324571.html, 个人网页:https://www.360docs.net/doc/1112324571.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

碳纳米管吸波材料的研究现状与展望

3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com 碳纳米管吸波材料的研究现状与展望3 王生浩,文 峰,李 志,郝万军,曹 阳 (热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如 吸波材料,但目前国内关于此类研究的报道还不多。较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。 关键词 碳纳米管 吸波材料 吸波性能 复合 The R esearch Status and Prospect of Electromagnetic W ave 2 absorbing C arbon N anotubes WAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang (Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science , School of Science and Engineering ,Hainan University ,Haikou 570228) Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemical properties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM. K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagnetic wave absorbing properties ,composite   0 引言 随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。 自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。近 年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的 热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。 1 碳纳米管的吸波机理 碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的

颗粒增强铝基复合材料研究与应用进展

颗粒增强铝基复合材料研究与应用进展摘要:综述了颗粒增强铝基复合材料的研究现状,从基体、增强体的选择,铝基复合材料的制备方法,影响复合材料性能的因素和改善措施等方面进行阐述,并介绍了该复合材料的广泛应用。 关键词:颗粒;铝基复合材料;制备方法; 应用 Abstract :The research progress of particle reinforced aluminum matrix composite was summarized. The research status of the composite was reviewed in detail from the choice of the reinforcement and the matrix, the preparation technique of aluminum matrix composite, the factors which can affect the performance of the composite. Key words :particle; aluminum matrix composite; preparation methods; application 1.前言 铝基复合材料是以金属铝及其合金为基体 , 以金属或非金颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同 , 铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。由于颗粒增强铝基复合材料具有高的比强度、比刚度,优良的高温力学性能和耐磨性,并且价格便宜,适于批量生产,良好的耐磨性和导热性能等优点,在航天、航空、汽车、电子、光学等工业领域具有相当广泛的应用前景。 颗粒增强复合材料是指弥散的硬质增强相的体积超过 20%的复合材料,而不包括那些弥散质点体积比很低的弥散强化金属的金属基复合材料[1] 。此外,这种复合材料的颗粒直径和颗粒间距很大,一般大于1μm。在这种复合材料中,增强相是主要的承载相,而基体的作用则在于传递载荷和便于加工。这种材料虽然其增强效应远不及连续纤维,但它主要是可以弥补某些材料性能的不足,如增加刚度、耐磨性、耐热性、抗蠕变等。在这种复合材料中,硬质增强相造成的对基体的束缚作用能阻止基体屈服。颗粒复合材料的强度通常取决于颗粒的直径、间距和体积比,但基体很重要。除此之外,这种材料的性能还对界面性能及颗粒排列的几何形状十分敏感[2]。 2.铝基复合材料的选择

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

聚合物碳纳米管复合材料研究综述

聚合物/碳纳米管复合材料研究综述 摘要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。 关键词:碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散 Review of Research on Polymer /Carbon Nanotube Composite Abstract The current carbon nanotube-filled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewed.Several common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborated.Finally,the polymer /carbon nanotube in the study process and future research is analyzed and prospected. Key words: carbon nanotubes; percolation theory; composite; preparation; dispersion

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

碳纳米管材料的研究现状及发展展望[英文]

Research status and development prospect of carbon nanotubes Abstract: Carbon nanotubes due to their unique structure and excellent physical and chemical properties, and has wide application prospect and huge commercial value. This paper reviewed the methods for preparing carbon nanotubes, structural properties, application and development trend of carbon nanotubes. Keywords: carbon nanotubes; preparation; antistatic; stealth; radar absorbing coating Nanometer material because of its size in the transition region junction of atomic clusters and macroscopic objects, with the quantum size effect, small size effect, surface effect and the macroscopic quantum tunnel effect and other characteristics, exhibit many unique physical and chemical properties. Nanometer material nineteen eighties early after the formation of the concept, the world have paid great attention. It has unique properties, physical, chemical, material research, biology, medicine and other fields with meters of new opportunities. 1, carbon nanotube preparation, structure and properties 1.1, the preparation of carbon nanotubes

碳纳米管的改性研究进展

碳纳米管的改性研究进展 摘要:碳纳米管因其独特的结构与优异的性能,在许多领域具有巨大的应用潜力而引起了广泛的关注。由于碳纳米管不溶于水和有机溶剂,极大地制约了其性能的应用,因此碳纳米管的功能化改性 就成为目前研究的热点。本文简要介绍了碳纳米管及其性质作,详细阐述了碳纳米管的改性研究进展,并对今后的研究方向进行了展望。 关键词:碳纳米管;结构与性能;功能化;共价改性;非共价改性 1. 碳纳米管及其性能简介 1.1碳纳米管的结构 碳纳米管(Carbon Nanotubes,CNTs)是1991年由日本筑波NEC公司基础研究实验室的Iijima在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时意外发现的一种具有一维管状结构的碳纳米材料。因其独特的准一维管状分子结构、优异的力学、电学和化学性质及其在高科技领域中潜在的应用价值,引起了世界各国科学家们的广泛关注,由此引发了碳纳米管的研究热潮和十多年来纳米科学和技术的飞速发展。 碳纳米管是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝、中空的 微管,每层纳米管是一个由碳原子通过SP2杂化与周围3个碳原子完全键合后所构成的 六边形平面组成的圆柱面。根据构成管壁碳原子层数的不同,CNTs可以分为:单壁碳纳 米管(single-walled carbon nanotube,SWNT)和多壁碳纳米管(multi-walled carbon nanotube, MWNT)两种形式。MWNTs的层间接近ABAB堆垛,其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。MWNTs的典型直径和长度分别为2~30nm 和0.1~50μm;SWNTs典型的直径和长度分别为0.75~3nm和1~50μm。与MWNTs 比,SWNTs是由单层圆柱型石墨层构成,其直径的分布范围小,缺陷少,具有更高的 均匀一致性。无论是MWNTs还是SWNTs都具有很大的长径比,一般为100~1000, 最大可达到1000~10000,可以认为是一维分子。CNTs有直形、弯曲、螺旋等不同外形。在MWNTs中不同石墨层的螺旋角各不相同,由Euler定理可知,在CNTs的弯曲处,一定要有成对出现的五元环和七元环才能使碳纳米管在弯曲处保持光滑连续,而封 闭的两端半球形或多面体的圆拱形是由五元环参与形成的。但是实际制备的CNTs或多 或少存在这样那样缺陷,主要缺陷有三种类型:拓扑学缺陷,重新杂化缺陷和非完全键

碳纳米管纳米复合材料的研究现状及问题(一)

碳纳米管纳米复合材料的研究现状及问题(一) 文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。 1.1溶液共混复合法 溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xuetal8]和Lauetal.9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。 1.2熔融共混复合法 熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jinetal.10]采用这种方法制备了PMMA/MWNT复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。 1.3原位复合法 将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jiaetal.11]采用原位聚合法制备了PMMA/SWNT复合材料。结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。这主要是因为AIBN在引发过程中打开碳纳米管的π键使之参与到PMMA的聚合反应中。采用经表面修饰的碳纳米管制备PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。 2聚合物/碳纳米管复合材料的研究现状 2.1聚合物/碳纳米管结构复合材料 碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

颗粒增强铝基复合材料的研究

颗粒增强铝基复合材料的研究 姓名:陈云班级:10161201 学号:1016120118 【摘要】本文简要介绍了常见的几种颗粒增强铝基复合材料的增强颗粒和性质,以及颗粒增强铝基复合材料的制备方法和应用。 【关键词】颗粒增强铝基复合材料碳化硅氧化铝碳化钛石墨粉末冶金原位反应合成 0 前言 金属基复合材料是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。铝基复合材料是金属基复合材料的一种,按照增强体形式不同可以分为长纤维增强铝基复合材料,短纤维增强铝基复合材料,晶须增强铝基复合材料及颗粒增强铝基复合材料。 颗粒增强铝基复合材料的增强颗粒克服了制备过程中出现的纤维损伤,微观组织不均匀,纤维与纤维相互接触,反应带过大等影响材料性能的缺点。同时,颗粒增强铝基复合材料制备成本低廉,回收性和再利用性好,使其在各个领域都具有广泛应用。因此,本文将简要介绍颗粒增强铝基复合材料的部分相关内容。 1 颗粒增强铝基复合材料 颗粒增强铝基复合材料具有密度小,比强度、比刚度高,剪切强度高,热膨胀系数低,热稳定性和导热、导电性能良好,以及抗磨耐磨性能和耐有机液体和溶剂侵蚀优良等一系列优点。颗粒的增强主要是弥散强化,颗粒越小,弥散强化的效果越好,材料的性能也就越佳。 颗粒增强铝基复合材料增强体的选择要求颗粒在基体中高度弥散均匀分散,尺寸大小要适度,与基体间要有一定粘结作用,而且它们之间各方面都要相匹配。常见的增强颗粒有:碳化硅、碳化钛、氧化铝和石墨颗粒。 1.1 碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基(SiC p/Al)复合材料是一种陶瓷颗粒增强金属基复合材料,它是用碳化硅颗粒作为增强体,采用铝或铝合金作基体,按设计要求,以一定形式、比例和分布状态,构成有明显界面的多组相复合材料。通过改变碳化硅颗粒在复合材料中的含量,可以对材料的性能进行调整。一般随碳化硅体积含量的增

相关文档
最新文档