2017年高考文科数学分类汇编 函数
全国卷文科2010-2017高考真题整理-------函数

全国卷2010----2017文科数学高考真题-------函数(2017新课标3)7.函数2sin 1x y x x =++的部分图像大致为 12.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .11621.(12(1(2(2017A .(1421.(12(1)讨论的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.(2017新课标1)8.函数sin21cos x y x=-的部分图像大致为A .B .C .9A .f C .y =14.曲线21.(12(1(2(2016新课标3)(7)已知4213332,3,25a b c ===,则(A)b a c << (B)a b c << (C)b c a << (D)c a b <<(16)已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是_________.(21)(本小题满分12分)设函数()ln 1f x x x =-+.(I )讨论()f x 的单调性;(II )证明当(1,)x ∈+∞时,11ln x x x-<<; (x(2016( (12)x 1,y 1),(x 2,(20)((((2016新课标1)(8)若a >b >0,0<c <1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b(9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C(12(A (21((2015DA 运动,记BOP ∠12.A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ 二、填空题:本大题共4小题,每小题5分,共20分13.已知函数()32f x ax x =-的图像过点(-1,4),则a =.16.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a =.21.(本小题满分12分)已知()()ln 1f x x a x =+-.(I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.(2015(A (12a =()(A )1-1421.(I (II (201415.偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.(2014新课标1)5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B.)(|)(|x g x f 是奇函数C.|)(|)(x g x f 是奇函数D.|)()(|x g x f 是奇函数12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 ()2,+∞(B )()1,+∞(C )(),2-∞-(D )(),1-∞-15.21.0 (1)求(2(2014f (9)=()A.-21.(1(2(2013(A )a >c >b (B )b >c >a (C )c >b >a (D )c >a >b11.已知函数f(x)=32x ax bx c +++,下列结论中错误的是()(A )∃0x R ∈,f(0x )=0 (B )函数y=f(x)的图像是中心对称图形(C )若0x 是f(x)的极小值点,则f(x)在区间(-∞,0x )单调递减 (D )若0x 是f (x )的极值点,则'f (0x )=012.若存在正数x 使2x (x-a )<1成立,则a 的取值范围是()(A )(-∞,+∞)(B )(-2,+∞)(C)(0,+∞)(D)(-1,+∞)(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值。
2017年数学真题及解析_2017年全国统一高考数学试卷(文科)(新课标ⅲ)

2017年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(5分)函数y=1+x+的部分图象大致为()A. B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
2017高考十年高考数学(文科)分项版 专题02 函数(北京专版)(解析版) 含解析

1。
【2008高考北京文第2题】若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 【答案】A【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0,2。
【2008高考北京文第5题】函数2()(1)1(1)f x x x =-+<的反函数为( ) A .1()11(1)f x x x -=->B .1()11(1)f x x x -=-> C .1()11(1)fx x x -=-≥D .1()11(1)fx x x -=-≥【答案】B 【解析】221(1)1,(1)1,11,x y x x y x y <⇒=-+∴-=-⇒-=--所以反函数为1()11(1)fx x x -=->3。
【2009高考北京文第4题】为了得到函数3lg 10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度w 。
w.w..c 。
o.mB .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 【答案】C4。
【2010高考北京文第6题】给定函数①y=x12,②y=12log(1)x+,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是…… ()A.①② B.②③ C.③④ D.①④【答案】B【解析】试题分析:①y=x12在(0,1)上单调递增,②y=12log(x+1)在(0,1)上单调递减,③y=|x-1|在(0,1)上单调递减,④y=2x+1在(0,1)上单调递增.5。
2017高考数学精彩试题分类总汇编-不等式(含文科理科及详细解析汇报)

2017年高考数学试题分类汇编:不等式1〔2017文〕0x ≥,0y ≥,且x +y =1,如此22x y +的取值X 围是__________.【考点】3W :二次函数的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质与应用. 【分析】利用条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x ≥0,y ≥0,且x+y=1,如此x 2+y 2=x 2+〔1﹣x 〕2=2x 2﹣2x+1,x ∈[0,1],如此令f 〔x 〕=2x 2﹣2x+1,x ∈[0,1],函数的对称轴为:x=,开口向上, 所以函数的最小值为:f 〔〕==.最大值为:f 〔1〕=2﹣2+1=1. 如此x 2+y 2的取值X 围是:[,1]. 故答案为:[,1].【点评】此题考查二次函数的简单性质的应用,考查转化思想以与计算能力.2〔2017某某〕a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,如此a 的取值X 围是___________.【考点】3H :函数的最值与其几何意义.【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质与应用. 【分析】通过转化可知|x+﹣a|+a ≤5且a ≤5,进而解绝对值不等式可知2a ﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:〔﹣∞,].【点评】此题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.3〔2017新课标Ⅲ文数〕[选修4—5:不等式选讲]〔10分〕f x=│x+1│–│x–2│.函数()f x≥1的解集;〔1〕求不等式()f x≥x2–x +m的解集非空,某某数m的取值X围.〔2〕假如不等式()【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【专题】32 :分类讨论;33 :函数思想;4C :分类法;4R:转化法;51 :函数的性质与应用;5T :不等式.【分析】〔1〕由于f〔x〕=|x+1|﹣|x﹣2|=,解不等式f〔x〕≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f〔x〕≥1的解集;,设g〔x〕=f〔x〕﹣x2+x,分x≤1、﹣1〔2〕依题意可得m≤[f〔x〕﹣x2+x]max=,从而可得m的取值X围.<x<2、x≥2三类讨论,可求得g〔x〕max【解答】解:〔1〕∵f〔x〕=|x+1|﹣|x﹣2|=,f〔x〕≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f〔x〕≥1的解集为{x|x≥1}.〔2〕原式等价于存在x∈R使得f〔x〕﹣x2+x≥m成立,,设g〔x〕=f〔x〕﹣x2+x.即m≤[f〔x〕﹣x2+x]max由〔1〕知,g〔x〕=,当x≤﹣1时,g〔x〕=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g〔x〕≤g〔﹣1〕=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g〔x〕=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈〔﹣1,2〕,∴g〔x〕≤g〔〕=﹣+﹣1=;当x≥2时,g〔x〕=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g〔x〕≤g〔2〕=﹣4+2+3=1;综上,g〔x〕=,max∴m 的取值X 围为〔﹣∞,].【点评】此题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.4〔2017新课标Ⅲ理数〕.[选修45:不等式选讲]〔10分〕函数f 〔x 〕=│x +1│–│x –2│. 〔1〕求不等式f 〔x 〕≥1的解集;〔2〕假如不等式f 〔x 〕≥x 2–x +m 的解集非空,求m 的取值X 围.解:〔1〕当1x ≤-时()()()1231f x x x =-++-=-≤无解当12x -<<时()1(2)212111f x x x x x x =++-=--≥≥∴12x <<当2x ≥时()1(2)3312f x x x x =+--=>∴≥综上所述()1f x ≥的解集为 [1,)+∞.〔2〕原式等价于存在x R ∈,使2()f x x x m -+≥成立,即 2max [()]f x x x m -+≥ 设2()()g x f x x x =-+由〔1〕知 2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-5〔2017新课标Ⅱ文〕[选修4−5:不等式选讲]〔10分〕330,0,2a b a b >>+=.证明:〔1〕55()()4a b a b ++≥; 〔2〕2a b +≤. 【解析】〔1〕()()()()()5565562333344222244++=+++=+-++=+-≥a b ab a ab a b ba b a b ab a b ab a b〔2〕因为()()()()()33223233323+3+3+2++244a +=+++=+≤=+b a a b ab b ab a b a b a b a b所以()3+8≤a b ,因此a+b ≤2.6〔2017新课标Ⅱ理〕[选修4—5:不等式选讲]〔10分〕330,0,2a b a b >>+=.证明:〔1〕55()()4a b a b ++≥; 〔2〕2a b +≤. 【解析】〔1〕()()()()()5565562333344222244++=+++=+-++=+-≥a b ab a ab a b ba b a b ab a b ab a b〔2〕因为()()()()()33223233323+3+3+2++244a +=+++=+≤=+b a a b ab b ab a b a b a b a b所以()3+8≤a b ,因此a+b ≤2.7〔2017新课标Ⅰ文数〕[选修4—5:不等式选讲]〔10分〕函数f 〔x 〕=–x 2+ax +4,g (x )=│x +1│+│x –1│. 〔1〕当a =1时,求不等式f 〔x 〕≥g 〔x 〕的解集;〔2〕假如不等式f 〔x 〕≥g 〔x 〕的解集包含[–1,1],求a 的取值X 围.解:〔1〕当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤. 所以()()f x g x ≥的解集为117{|1}2x x -+-<≤. 〔2〕当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值X 围为[1,1]-.8〔2017新课标Ⅰ理数〕设x 、y 、z 为正数,且235x y z==,如此A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【考点】72:不等式比拟大小.【专题】35 :转化思想;51 :函数的性质与应用;59 :不等式的解法与应用. 【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.如此x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.如此x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比拟出大小关系.应当选:D.【点评】此题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.9〔2017新课标Ⅰ理数〕.[选修4—5:不等式选讲]〔10分〕函数f 〔x 〕=–x 2+ax +4,g (x )=│x +1│+│x –1│. 〔1〕当a =1时,求不等式f 〔x 〕≥g 〔x 〕的解集;〔2〕假如不等式f 〔x 〕≥g 〔x 〕的解集包含[–1,1],求a 的取值X 围.【解析】〔1〕当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①10〔2017某某文〕假如a ,b ∈R ,0ab >,如此4441a b ab++的最小值为 .【考点】7F :根本不等式.【专题】34 :方程思想;4R :转化法;5T :不等式.【分析】【方法一】两次利用根本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【方法二】将拆成+,利用柯西不等式求出最小值.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=〞;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即, 即a=,b=或a=﹣,b=﹣时取“=〞;∴上式的最小值为4.故答案为:4.【点评】此题考查了根本不等式的应用问题,是中档题.11〔2017某某理〕假如,a b ∈R ,0ab >,如此4441a b ab++的最小值为___________. 【答案】4【解析】442241414a b a b ab ab+++≥≥,当且仅当21a b ==时取等号 12〔2017某某文〕假如直线1(00)x y a b a b+=>,> 过点〔1,2〕,如此2a +b 的最小值为 .【答案】8〔7〕〔2017某某理〕假如0a b >>,且1ab =,如此如下不等式成立的是 〔A 〕()21log 2a b a a b b +<<+〔B 〕()21log 2a b a b a b<+<+〔C 〕()21log 2a b a a b b +<+<〔D 〕()21log 2a b a b a b +<+< 【答案】B【解析】221,01,1,log ()log 1,2a b a b a b ><<∴<+>= 12112log ()a b a a b a a b b b+>+>+⇒+>+,所以选B.13〔2017某某〕某公司一年购置某种货物600吨,每次购置x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,如此x 的值是 ▲ .【解析】总费用600900464()4240x x x x +⨯=+≥⨯,当且仅当900x x=,即30x =时等号成立.14(2017年某某卷)[选修4-5:不等式选讲]〔本小题总分为10分〕,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤ 【解析】由柯西不等式可得22222()()()a b c d ac bd ++≥+, 即2()41664ac bd +≤⨯=,故8ac bd +≤.15〔2017理〕能够说明“设a ,b ,c 是任意实数.假如a >b >c ,如此a +b >c 〞是假命题的一组整数a ,b ,c 的值依次为______________________________.【考点】FC :反证法.【专题】11 :计算题;35 :转化思想;4O :定义法;5L :简易逻辑.【分析】设a,b,c是任意实数.假如a>b>c,如此a+b>c〞是假命题,如此假如a>b>c,如此a+b≤c〞是真命题,举例即可,此题答案不唯一【解答】解:设a,b,c是任意实数.假如a>b>c,如此a+b>c〞是假命题,如此假如a>b>c,如此a+b≤c〞是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,〔答案不唯一〕,故答案为:﹣1,﹣2,﹣3【点评】此题考查了命题的真假,举例说明即可,属于根底题.16.〔2017•新课标Ⅲ文数〕设x,y满足约束条件如此z=x﹣y的取值X围是〔〕A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的X围即可.【解答】解:x,y满足约束条件的可行域如图:目标函数z=x﹣y,经过可行域的A,B时,目标函数取得最值,由解得A〔0,3〕,由解得B〔2,0〕,目标函数的最大值为:2,最小值为:﹣3,目标函数的取值X围:[﹣3,2].应当选:B.【点评】此题考查线性规划的简单应用,目标函数的最优解以与可行域的作法是解题的关键.。
2017年普通高等学校招生全国统一考试 数学 函数

2017年普通高等学校招生全国统一考试数学函数部分目录2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅰ) (1)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅰ) (3)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅱ) (3)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅱ) (5)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅲ) (8)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅲ) (10)2017年普通高等学校招生全国统一考试数学(上海卷) (13)2017年普通高等学校招生全国统一考试数学(江苏卷) (15)2017年普通高等学校招生全国统一考试数学(浙江卷) (17)2017年普通高等学校招生全国统一考试数学(理)(山东卷) (19)2017年普通高等学校招生全国统一考试数学(文)(山东卷) (22)2017年普通高等学校招生全国统一考试数学(理)(天津卷) (24)2017年普通高等学校招生全国统一考试数学(文)(天津卷) (26)2017年普通高等学校招生全国统一考试数学(理)(北京卷) (28)2017年普通高等学校招生全国统一考试数学(文)(北京卷) (29)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅰ)1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 211.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为23sin aA(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.21.(12分)已知函数)f x(a e2x+(a﹣2) e x﹣x.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.23.[选修4—5:不等式选讲](10分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅰ)1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R8..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
2017年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5 分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||5.(5 分)若a>1,则双曲线﹣y2=1 的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5 分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5 分)设x,y 满足约束条件,则z=2x+y 的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5 分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5 分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5 分)从分别写有1,2,3,4,5 的5 张卡片中随机抽取1 张,放回后再随机抽取1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5 分)过抛物线C:y2=4x 的焦点F,且斜率为的直线交C 于点M(M 在x 轴上方),l为C 的准线,点N 在l 上,且MN⊥l,则M 到直线NF 的距离为()A.B.2C.2D.3二、填空题,本题共4 小题,每小题5 分,共20 分13.(5 分)函数f(x)=2cosx+sinx 的最大值为.14.(5 分)已知函数f(x)是定义在R 上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5 分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.16.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70 分.解答应写出文字说明,证明过程或演算步骤,第17 至21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60 分.17.(12 分)已知等差数列{a n}的前n 项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12 分)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD 面积为2,求四棱锥P﹣ABCD 的体积.19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.050 0.010 0.001K 3.841 6.635 10.828K2=.20.(12 分)设O 为坐标原点,动点M 在椭圆C:+y2=1 上,过M 作x 轴的垂线,垂足为N,点P 满足= .(1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3 上,且•=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.(12 分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0 时,f(x)≤ax+1,求a 的取值范围.选考题:共10 分。
2017年全国高考数学(文科)真题汇总(6套)附答案

第 1页(共 15页)
A.60 B.30 C.20 D.10 7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.(5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇 宙中普通物质的原子总数 N 约为 1080,则下列各数中与 最接近的是( )
当 k=2 时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当 k=3 时,不满足进行循环的条件, 故输出结果为: ,
故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采 用模拟循环的方法解答.
4.(5 分)若 x,y 满足
,则 x+2y 的最大值为( )
A.1 B.3 C.5 D.9 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即 可.
该三棱锥的体积=
=10.
故选:D.
【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能 力,属于基础题.
7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件
第 6页(共 15页)
C.充分必要条件 D.既不充分也不必要条件 【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相 反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而
19.(14 分)已知椭圆 C 的两个顶点分别为 A(﹣2,0),B(2,0),焦点在 x 轴上,离心率为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M,N,过 D 作 AM 的垂线交 BN 于点 E.求证:△BDE 与△BDN 的面积之比为 4:5. 20.(13 分)已知函数 f(x)=excosx﹣x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间[0, ]上的最大值和最小值.
2017高考十年高考(文科)分项版 专题02 函数(浙江专版)(解析版) 含解析

一.基础题组1。
【2014年。
浙江卷.文7】已知函数cbx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则()A.3≤c B 。
63≤<c C 。
96≤<cD 。
9>c【答案】C 【解析】试题分析:设k f f f =-=-=-)3()2()1(,则一元二次方程0)(=-k x f 有三个根1-、2-、3-,所以0)3)(2(1()(=+++=-x x x a k x f ,由于)(x f 的最高次项的系数为1,所以1=a , 所以k x x xx f ++++=6116)(23,因为30≤<k ,所以966≤+=<k c .考点:考查函数与方程的关系,中等题. 2。
【2014年.浙江卷.文15】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a。
【答案】2考点:分段函数,复合函数,容易题。
3. 【2013年.浙江卷.文7】已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c 。
若f (0)=f (4)>f (1),则( ).A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 【答案】:A 【解析】:由f (0)=f (4)知二次函数f (x )=ax 2+bx +c 对称轴为x =2,即22b a-=。
所以4a +b =0,又f (0)>f (1)且f (0),f (1)在对称轴同侧,故函数f (x )在(-∞,2]上单调递减,则抛物线开口方向朝上,知a >0,故选A 。
4。
【2013年.浙江卷。
文11】已知函数f (x )f (a )=3,则实数a =__________。
【答案】:10 【解析】:由f (a3,得a -1=9,故a =10。
5。
【2012年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数1.【2017课标1,文8】函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C 【解析】【考点】函数图象【名师点睛】函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.2.【2017课标3,文7】函数2sin 1xy x x =++的部分图像大致为()A BD.C D【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f“”,即将函数值的大小转化自变量大小关系3.【2017浙江,5】若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】试题分析因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b无关,选B.【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上,且对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.4.【2017北京,文5】已知函数1()3()3x xf x =-,则()f x(A )是偶函数,且在R 上是增函数 (B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数 (D )是奇函数,且在R 上是增函数 【答案】B 【解析】【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.5.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据lg3≈0.48)(A )1033(B )1053(C )1073(D )1093【答案】D 【解析】 试题分析设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =.6.【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8 【答案】C 【解析】【考点】分段函数求值【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.7.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析由题意()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且0.822log 5log 4.12,122>><<, 据此0.822log 5log 4.12>>,结合函数的单调性有()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小 8.【2017课标II ,文8】函数2()ln(28)f x x x =--的单调递增区间是 A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则2280x x -->,解得2x <-或4x >,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.【考点】复合函数单调区间【名师点睛】求函数单调区间的常用方法(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点一是单调区间必须是函数定义域的子集二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性. 9.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 10.【2017山东,文10】若函数()e xf x (e=2.71828 ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2x x g x -=⋅,11'()e (22ln )e 2(1ln )022x x x x xg x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤①确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法①利用集合间的包含关系处理y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.11.【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )[2,2]-(B)[-(C)[-(D)[- 【答案】A【考点】1.分段函数;2.函数图形的应用;3.不等式恒成立.【名师点睛】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.12.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = ________. 【答案】12(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.13.【2017北京,文11】已知0x ≥,0y ≥,且x +y =1,则22x y +的取值范围是__________. 【答案】1,12⎡⎤⎢⎥⎣⎦【解析】【考点】二次函数【名师点睛】本题考查了转化与化归的能力,除了象本题的方法,转化为二次函数求取值范围,也可以转化为几何关系求取值范围,当0,0x y ≥≥,1x y +=表示线段,那么22x y +的几何意义就是线段上的点到原点距离的平方,这样会更加简单.14.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________. 【答案】1(,)4-+∞【解析】由题意得当12x >时12221x x -+>恒成立,即12x >;当102x <≤时12112x x +-+>恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞ . 【考点】分段函数解不等式【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.15.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6x f x -=,则f (919)= .【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 ①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式. ③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解. ④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.16.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内17【2017江苏,14】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 ▲ . 【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况在此范围内,x Q ∈且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质 因此10n mq p=,则10()nm q p =,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉因此方程解的个数为8个.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.。