各种模态分析方法总结与比较
模态分析实验报告

模态分析实验报告1.引言模态分析是一种常用的结构动力学方法,旨在研究结构在不同频率下的振动特性,对于结构设计和加固具有重要意义。
本实验旨在通过模态分析方法,研究一个简单的结构体系的固有频率和振型。
2.实验目标通过实验测量和计算,得到结构的第一、第二和第三固有频率,并利用模态分析方法绘制结构的振型图。
同时,通过实验结果对比,验证模态分析方法的有效性。
3.实验材料和方法(1)材料:实验所用的结构是一个简单的桥梁模型,由若干根长木棒组成。
(2)方法:悬挂测频仪对结构进行激振,通过麦克风捕捉振动信号,并用计算机进行分析和处理。
4.实验过程(1)组装结构体系:根据实验设计要求,组装简单桥梁模型,确保结构的稳定性和一致性。
(2)悬挂测频仪:将测频仪正确安装在结构体系的一侧,并调整好位置和角度。
(3)激振:根据测频仪的说明书,调节激振源的频率和幅值,使结构产生振动。
(4)数据记录:用麦克风将振动信号转化为电信号,并通过计算机采集和记录数据。
(5)模态分析:利用采集的数据,进行模态分析,计算结构的固有频率和振型。
(6)数据处理:整理和分析实验结果,绘制振型图并与理论值进行比较。
5.结果分析通过实验和数据处理,得到结构的第一、第二和第三固有频率分别为f1、f2和f3、根据模态分析方法,绘制结构的振型图。
将实验结果与理论值进行比较,进行误差分析、灵敏度分析等。
6.结论本实验利用模态分析方法,研究了一个简单的结构体系的固有频率和振型,并通过实验结果与理论值的比较,验证了模态分析方法的有效性。
通过本实验,我们更深入地理解了结构振动的基本原理和方法,具备了一定的模态分析实验技能。
7.实验总结本实验通过模态分析方法研究了结构的振动特性,对于结构设计和加固具有重要意义。
在实验过程中,我们遇到了一些困难和问题,通过积极探索和思考,取得了一定的实验成果。
但我们也发现了许多不足之处,如实验设计和数据处理的精确性等,需要进一步改进和完善。
《2024年应用语言学研究的多模态分析方法》范文

《应用语言学研究的多模态分析方法》篇一一、引言应用语言学作为一门跨学科的研究领域,旨在探讨语言在不同社会、文化、科技背景下的应用与变化。
随着信息技术的飞速发展,多模态交流逐渐成为人们日常生活和工作中不可或缺的一部分。
因此,应用语言学研究需要引入多模态分析方法,以更全面、深入地了解语言的使用与演变。
本文将详细探讨应用语言学研究的多模态分析方法,旨在为相关研究提供有益的参考。
二、多模态分析方法概述多模态分析方法是一种综合运用多种符号和媒体模式来分析语言和其他交流形式的方法。
它涵盖了视觉、听觉、触觉等多种感官体验,包括文字、图像、声音、动作等多种模态。
在应用语言学研究中,多模态分析方法可以帮助研究者更全面地了解语言在不同模态中的使用情况,从而揭示语言的本质和功能。
三、多模态分析方法在应用语言学研究中的应用1. 跨文化交际研究多模态分析方法可以用于跨文化交际研究,通过对比不同文化背景下人们使用语言的模态差异,揭示文化对语言使用的影响。
例如,在研究不同国家人们的社交媒体交流时,可以通过分析文字、图像、表情符号等不同模态的使用情况,探讨文化差异对社交媒体交流的影响。
2. 多媒体语言教学研究多模态分析方法可以用于多媒体语言教学研究,通过分析多媒体教学资源中文字、图像、音频、视频等不同模态的组合与运用,探讨多媒体教学资源对语言教学效果的影响。
例如,在研究外语教学中视频材料的应用时,可以通过分析视频中的语音、文字、图像等模态的配合与互动,评估视频材料对学习者理解和掌握语言的效果。
3. 语言演变与变化研究多模态分析方法还可以用于语言演变与变化研究,通过观察和分析语言在不同模态中的使用情况和变化趋势,揭示语言的发展规律和趋势。
例如,在研究网络语言的演变时,可以通过分析网络文本、表情符号、图像等不同模态的使用情况和变化趋势,探讨网络语言的发展规律和特点。
四、多模态分析方法的实施步骤1. 确定研究目的和问题首先需要明确研究的目的和问题,确定研究的主要内容和研究对象。
机械工程中的模态分析方法

机械工程中的模态分析方法在机械工程领域,模态分析是一种重要的工具,用于研究和评估机械系统或结构的动力特性。
通过模态分析,工程师可以了解结构的固有振动频率、振型及其相关参数,从而对系统进行设计、改进和优化。
一、模态分析的基本原理模态分析基于结构的自由振动特性。
当结构受到外界激励或内部失稳因素影响时,会出现自由振动。
模态分析通过对这种振动进行精确测量和分析,得到结构的模态参数。
在模态分析中,最关键的一步是确定结构的固有频率和相应的振型。
固有频率是结构在自由振动时所表现出的振动频率,它与结构的刚度密切相关。
振型则描述了结构在不同固有频率下的变形形态,是结构动态响应的关键指标。
二、模态分析的常用方法1.加速度法加速度法是最常用的模态分析方法之一。
它基于物体的加速度与力的关系,通过测量结构上的加速度响应来推导出结构的模态参数。
具体操作中,可以通过加速度传感器将结构上的振动信号采集下来,再使用信号处理算法对信号进行分析。
2.激励-响应法激励-响应法是另一种常见的模态分析方法。
该方法将结构受到的激励信号与结构的振动响应进行对比,从而得到结构的模态参数。
激励信号可以是一个冲击物、一次瞬态激励或周期性激励。
3.频率域方法频率域方法是一种基于结构在频域内的特性进行模态分析的方法。
它以傅里叶变换为基础,将结构的时域信号转化为频域信号,进而得到结构的固有频率和振型。
频率域方法具有计算效率高、信号处理简易等优点。
4.有限元法有限元法是一种数值方法,常用于模态分析中的结构模态分析。
该方法将结构分解为多个小单元,利用有限元理论和方法对结构进行数值模拟。
通过进行有限元分析和计算,可以得到结构的固有频率和振型。
三、模态分析的应用领域模态分析在机械工程领域中具有广泛的应用。
它可以帮助工程师了解和评估结构的动力特性,发现结构的固有频率、共振点和脆弱部位,从而进行系统的设计和优化。
模态分析在航空航天领域中有着重要的应用。
通过对飞机、火箭等结构进行模态分析,可以评估其动态特性和共振情况,保证飞行安全性和运行可靠性。
机械系统动力学特性的模态分析

机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
模态分析方法与步骤

模态分析方法与步骤下面我将从模态分析的定义、方法、步骤和案例实践等方面进行详细介绍。
一、模态分析的定义模态分析是指通过对系统的不同动态模态(如结构模态、振动模态等)进行分析和评估,以揭示系统的特性、行为和潜在问题。
其目的是为了更好地了解系统的功能、性能、稳定性等,并为系统的优化提供依据。
二、模态分析的方法1.实验方法:通过实际测试和测量,获取系统的模态参数(如固有频率、阻尼比、模态形态等),从而分析系统的动态特性。
2.数值模拟方法:利用数学建模和计算机仿真技术,建立系统的动力学模型,并进行模拟分析,以获取系统的模态响应和模态特性。
3.统计分析方法:通过对大量历史数据或采样数据的分析,探索系统的模态变化规律和概率分布情况。
三、模态分析的步骤1.确定分析目标:明确需要进行模态分析的对象、目的和要求。
例如,是为了定位系统的故障、评估系统的稳定性、优化系统的结构等。
2.数据采集和处理:根据分析目标,确定所需的数据类型和采集方法,例如使用传感器进行采集或获取历史数据。
然后对采集到的数据进行处理,如滤波、时域变换、频域分析等。
3.建立模型:根据已有的数据和系统特性,建立适当的模型。
例如,对其中一结构物进行模态分析时,可以建立结构的有限元模型。
4.分析模态特性:利用实验、仿真或统计方法,分析系统的模态特性,如固有频率、振型等。
可以绘制频谱图、振型图等,以便直观地展示结果。
5.识别问题和改进方案:基于对系统模态特性的分析,识别潜在问题,并提出相应的改进方案。
例如,如果发现其中一模态频率太低,可能意味着系统存在过度振动或共振问题,需要采取相应的措施来改进。
6.验证和优化:对改进方案进行验证和优化,以确保其有效性和可行性。
可以通过迭代分析和实验评估来逐步完善方案。
四、模态分析的案例实践1.桥梁的模态分析:对大跨度桥梁的模态分析可以帮助提前发现潜在的共振问题,并优化桥梁的设计和结构。
例如,可以通过数值模拟方法对桥梁的振动特性进行分析,以确定固有频率和振型,并预测桥梁在不同外界激励下的动态响应。
full法和模态叠加法

full法和模态叠加法一、引言模态分析是结构工程领域中的重要研究方法,常用于钢结构、混凝土结构和土木工程等方面。
在模态分析中,有两种常见的分析方法,即full法和模态叠加法。
本文将对这两种方法进行具体介绍和比较。
二、full法1. 定义full法是指在模态分析中,考虑全部的模态,并将这些模态组合起来分析结构的动力响应。
full法通常包括以下步骤:•构建结构的刚度矩阵;•求解结构的动力特征值和模态(振型);•将结构的动力响应表示为各个模态的幅值和相位的线性叠加。
2. 优点full法的优点主要有:•能够准确地考虑结构的全部模态,包括高阶模态;•结果具有较高的准确性和可靠性;•适用于各种结构、工况和加载条件。
3. 缺点full法的缺点包括:•计算量大,需要求解结构的全部模态;•对于复杂结构,求解动力特征值和模态比较困难;•只考虑了结构的线性特性,不能捕捉结构的非线性行为。
三、模态叠加法1. 定义模态叠加法是指利用有限个已知的模态来近似描述结构的动力响应。
模态叠加法通常包括以下步骤:•选择适当数量的模态;•对每个模态进行计算,得到各个模态的幅值和相位;•将各个模态的幅值和相位进行线性叠加,得到结构的动力响应。
2. 优点模态叠加法的优点包括:•计算简单,不需要求解全部模态;•适用于大型结构,能够准确地预测结构的动力响应;•可以考虑结构的非线性行为。
3. 缺点模态叠加法的缺点主要有:•只能利用有限个模态进行近似,可能导致结果的不准确性;•对于高阶模态的考虑较少,可能无法准确预测结构的振动响应。
四、full法与模态叠加法的比较1. 计算复杂度由于full法需要求解全部模态,计算复杂度较高。
而模态叠加法只需选择少量的模态进行计算,计算复杂度相对较低。
2. 结果准确性full法考虑了全部模态,能够提供较为准确和可靠的结果。
而模态叠加法通过近似描述,并不能保证结果的准确性,但在合理选择模态的情况下,结果仍然可以比较接近真实情况。
各种模态分析方法情况总结与比较

各种模态分析方法总结与比较一、模态分析模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。
模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
二、各模态分析方法的总结(一)单自由度法一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。
但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。
以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。
在给定的频带范围内,结构的动态特性的时域表达表示近似为:()[]}{}{T R R t r Q e t h rψψλ= 2-1而频域表示则近似为:()[]}}{{()[]2ωλωψψωLR UR j Q j h r tr r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。
结构模态分析讲解

结构模态分析讲解模态分析的目标是确定结构的固有频率、振型以及与这些固有特性相关的结构模态参数。
这些固有特性能够提供有关结构动态行为的重要信息,例如:结构的整体刚度、结构的固有频率、结构的不稳定性等等。
通过模态分析,我们可以更好地理解和设计结构的动力响应,例如对结构进行振动抑制和控制。
模态分析可以使用多种方法进行,包括模态超级成分法(MAC)、频响函数法、有限元法等等。
下面我们将重点介绍几种常见的模态分析方法。
首先是模态超级成分法(MAC)。
模态超级成分法是一种基于频响函数的方法,用于确定结构的模态特性。
该方法通过比较模态测试与有限元模型分析的结果,确定每个模态的成分(贡献)以及其对应的频率和振型。
模态超级成分法在实际工程中被广泛使用,它能够提供结构动力响应的详细信息。
其次是频响函数法。
频响函数法是一种通过测量结构在不同频率下的响应来确定结构固有特性的方法。
该方法通过施加频率相对较低的激励信号,并测量结构的响应信号。
通过分析激励信号与响应信号之间的频率响应,我们可以确定结构的固有频率和振型。
最后是有限元法。
有限元法是一种数值计算方法,用于求解结构的模态特性。
在有限元法中,我们将结构分解为小的有限元(子结构),并通过求解结构模态方程来确定结构的固有频率和振型。
有限元法可以提供较准确的模态频率和振型,对于复杂的结构分析非常有用。
在进行模态分析时,我们需要优化选择适合的振型数量。
过多的振型会导致计算复杂度过高,而过少的振型会无法精确描述结构的动力响应。
通常,我们可以通过观察模态参数的变化趋势以及相关性分析来确定适当的振型数量。
总结起来,结构模态分析是一种重要的工程方法,用于研究结构的动力响应。
通过模态分析,我们可以获得结构的固有频率、振型以及与这些固有特性相关的结构模态参数。
在实际应用中,我们可以根据需要选择适合的模态分析方法,并优化选择合适的振型数量。
模态分析对于结构设计和动力响应控制有着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种模态分析方法总结与比较一、模态分析模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。
模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
二、各模态分析方法的总结(一)单自由度法一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。
但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。
以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。
在给定的频带范围内,结构的动态特性的时域表达表示近似为:()[]}{}{T R R t r Q e t h rψψλ= 2-1而频域表示则近似为:()[]}}{{()[]2ωλωψψωLR UR j Q j h r tr r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。
这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。
然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。
单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。
然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。
1、峰值检测峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。
峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最小),而虚部和幅值最大(相移达90°,幅度达峰值)图1。
出现极值的那个固有频率就是阻尼固有频率r ω的良好估计。
相应的阻尼比r ζ,的估计可用半功率点法得到。
设1ω和2ω分处在阻尼固有频率的两侧(1ω<r ω<2ω),则:()()()221r j H j H J H ωωω== 2-3rr ωωωζ212-=2-4 2、模态检测模态检测是根据频域中的模态模型对复模态(或实模态)向量进行局部估计的一种单自由度方法。
在()[]}}{{()[]2ωλωψψωLRUR j Q j h r tr r r -+-=中略去剩余项则单个频响函数在r ω处的值近似为:()()()rjr rjrr r r r r jrr r r tj A Q j j Q j H σσψψωσωψψω-≈-≈+-≈111 2-5由此式可见,频响函数在r ω处的值乘以模态阻尼因r σ,就是留数(的估计值如图1。
利用这种模态检测方法之前,先要估计出r ω图1 对频响应函数的幅值进行峰值和模态检测3、圆拟合圆拟合是一种单自由度方法,用频域中的模态模型对系统极点和复模态(或实模态)向量进行局部估计。
此方法依据事实是:单自由度系统的速度频响函数(速度对力)在奈奎斯特图(即实部对虚部)上呈现为一个圆。
如果把其他模态的影响近似为一个复常数,那么在共振频率r ω附近,频响函数的基本公式为:()()1j R j jVU j H r tj ++-+-+=ωωσω 2-6因此,首先要选择共振频率附近的一组频率响应点,通过这些点拟合成一个圆。
阻尼固有频率r ω可以看成是复平面上数据点之间角度变化率最大(角间隔最大)的那个点的频率,也可以看成是相位角与圆心的相位角最为接近的那个数据点的频率。
对于分得开的模态而言,二者的差别是很小。
阻尼比r ζ估计如下:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=2tan 2tan 2112θθωωωζr r 2-7式中1ω,2ω:分居在r ω两侧的两个频率点:1θ,2θ:分别为频率点在1ω和2ω得半径与r ω得半径之间的夹角。
圆的直径和阻尼固有频率点的角位置含有复留数U+jV 的信息:()VUV U r =-+=ασφtan ,22 2-8式中φ:圆的直径α:园心与固有频率点的连线跟虚轴之间的夹角.圆拟合法速度也很快,但为避免结果出错,特别是在模态节点附近,需要操作者参与。
(二)单自由度与多自由度系统粘性阻尼单自由度SDOF 系统如图2的力平衡方程式表示惯性力、阻尼力、弹性力与外力之间的平衡图2 单自由度系统()()()()t f t Kx t x C t xM =++ 2-9 其中M :质量C: 阻尼K :xx x :加速度,速度,位移 f :外力 t 时间变量,把结构中所呈现出来的全部阻尼都近似为一般的粘性阻尼。
把上面的时间域方程变换到拉氏域复变量P ,并假设初始位移和初始速度为零,则得到拉氏域方程:()()p F K Cp Mp =++2,或()()()p F p X p Z = Z :动刚度经过变换可得传递函数的定义,()()p Z p H 1-= 即()()()p F p H p X =()()()M K p M C p Mp H ///12++=2-10上式右端的分母叫做系统特征方程,它的根即是系统的极点是:()()()()()M K M C M C /2/2/22,1-±-=λ 2-11如果没有阻尼C=0,则所论系统是保守系统。
我们定义系统的无阻尼固有频率为:M K /1=Ω 2-4临界阻尼C c 的定义为使(2.3)式中根式项等于零的阻尼值:M K M C c /2= 2-5而临界阻尼分数或阻尼比ζ1为:ζ1=CC c ,阻尼有时也有用品质因数即Q 因数表示:()12/1ξ=Q 2-6系统按阻尼值的大小可以分成过阻尼系统(ζ1>1)、临界阻尼系统(ζ1=1)和欠阻尼系统(ζ1<1)。
过阻尼系统的响应只含有衰减成分、没有振荡趋势。
欠阻尼系统的响应时一种衰减振动,而临界阻尼系统则是过阻尼系统与欠阻尼系统之间的一种分界。
实际系统的阻尼比很少有大于10%的,除非这些系统含有很强的阻尼机制,因此我们只研究欠阻尼的情形。
在欠阻尼的情况下式2-11两个共轭复根:111ωσλj +=,11*1ωσλj -= 2-7 其中1σ为阻尼因子1ω为阻尼固有频率。
有关系统极点的另外一些关系式有:()121111Ω-+-=ζζλj 2-8 212111σωσζ+-= 2-9111Ω-=ζσ 2-10 21211σω+=Ω 2-112-2式写成 如下形式:()()()*11/1λλ-+-=p p Mp H 2-12在展开成部分分式形式,则有:()*1*111λλ-+-=p A p A p H ,这里112/1ωj M A = 2-13 这里的1A 和*1A 是留数。
多自由度系统多自由度系统可以用简单的力平衡代数方程演化成形式相似的一个矩阵的方程。
下面是以而自由度系统为例。
如图:图3 多自由度系统该系统的运动方程如下:()()()()()()()()()()()()()()t f t x K t x K K t x C t x C C xM t f t x K t x K K t x C t x C C xM 21223212232221221212212111=-++-++=-++-++ 2-14写成矩阵形式是⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+--++⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+--++⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡212132222121322221212100f f x x K K K K K K x x C C C C C C x x M M2-15或者[]{}[]{}[]{}{}f x K x C x M =++2-16 其中[M ]、[C ]、[K ]、{f(t)}和{x(t)}分别为质量矩阵、阻尼矩阵、刚度矩阵、方向量和响应向量。
把这个时间域的矩阵方程变换到拉氏域(变量为p )且假定初始位移和初始速度为零,则得:[][][]()(){}(){}p F p X K C p M p =++22-17或者是 ()[](){}(){}p F p X p Z = 式中:[Z(p )]动刚度矩阵 2-18可以得到传递函数矩阵为:()[]()[]()[]()()p Z p Z adj p Z p H ==-1 2-19式中 ()[]()p Z adj :()p Z 的伴随矩阵,等于[]Tijij Z ε;ij Z :()[]p Z 去掉第行第列后的行列式 ⎩⎨⎧+→-+→=等于奇数如果等于偶数如果j i j i ij 11ε; 传递函数矩阵含有幅值函数。
2-19式中的分母,即是()[]p Z 的韩烈士,叫做系统的特征方程。
与单自由度情况一样,系统特征方程的根,即系统极点,决定系统的共振频率。
根据特征值问题,可以求出系统特征方恒的根。
为了把系统方程2-17转化为一般的特征值问题公式,加入下面的恒等式:[][](){}{}0=-X M p M p 2-20将此式与2-17式结合在一起得:[][](){}{}'F Y B A p =+ 2-21其中 [][][][][]⎥⎦⎤⎢⎣⎡=C M M A 0 , [][][][][]⎥⎦⎤⎢⎣⎡-=K M B 00, {}{}{}⎭⎬⎫⎩⎨⎧=X X p Y , {}{}{}⎭⎬⎫⎩⎨⎧=F F 0' 。
如果力函数等于零,那么式2-19就成了关于实值矩阵的一般特征值问题,其特征值马祖下列方程的p 值:[][]0=+B A p 2-22它的根就是特征方程()0=p Z 的根。
对于N 各自由度系统,此方程有2N 个呈复共轭对出现的特征根:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ΛN N N N N N j j j j ωσωσωσωσλλλλ0000\\1111**112-23同单自由度系统一样,多自由度系统的极点的实部r σ是阻尼因子,虚部r ω是阻尼固有频率。