方差分析例题

合集下载

方差分析习题与答案完整版

方差分析习题与答案完整版

方差分析习题与答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映的是样本数据与其组平均值的差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B的离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4.单因素方差分析中,计算F统计量,其分子与分母的自由度各为()A r,nB r-n,n-rC r-1.n-rD n-r,r-1二、多项选择题1.应用方差分析的前提条件是()A 各个总体报从正态分布B 各个总体均值相等C 各个总体具有相同的方差D 各个总体均值不等E 各个总体相互独立2.若检验统计量F= 近似等于1,说明()A 组间方差中不包含系统因素的影响B 组内方差中不包含系统因素的影响C 组间方差中包含系统因素的影响D 方差分析中应拒绝原假设E方差分析中应接受原假设3.对于单因素方差分析的组内误差,下面哪种说法是对的()A 其自由度为r-1B 反映的是随机因素的影响C 反映的是随机因素和系统因素的影响D 组内误差一定小于组间误差E 其自由度为n-r4.为研究溶液温度对液体植物的影响,将水温控制在三个水平上,则称这种方差分析是()A 单因素方差分析B 双因素方差分析C 三因素方差分析D 单因素三水平方差分析E 双因素三水平方差分析三、填空题1.方差分析的目的是检验因变量y与自变量x是否,而实现这个目的的手段是通过的比较。

2.总变差平方和、组间变差平方和、组内变差平方和三者之间的关系是。

3.方差分析中的因变量是,自变量可以是,也可以是。

4.方差分析是通过对组间均值变异的分析研究判断多个是否相等的一种统计方法。

5.在试验设计中,把要考虑的那些可以控制的条件称为,把因素变化的多个等级状态称为。

方差分析例题讲解

方差分析例题讲解

例题讲解例3。

1、某灯泡厂用4种不同材料的灯丝生产了四批灯泡,在每批灯泡中随机抽取若干只观测其使用寿命(单位:小时)。

观测数据如下:甲灯丝:1600 1610 1650 1680 1700 1720 1800 乙灯丝:1580 1640 1640 1700 1750丙灯丝:1540 1550 1600 1620 1640 1660 1740 1820 丁灯丝:1510 1520 1530 1570 1600 1680问这四种灯丝生产的灯泡的使用寿命有无显著差异(0.05α=)? 第一种方法:直接用手工计算解:由题意知要检验的假设为H0: 四种灯丝生产的灯泡的使用寿命无显著差异。

为了简化计算,把各观测值都减去一个数1600,简化后的数据及有关计算如下:其中i t 表示重复次数;2221111111,,,,ii i t t t rr i i i ij i i ij ij i j j i j i n t t x x t x x K x P K t n =====⎛⎫===== ⎪⎝⎭∑∑∑∑∑,2211111,;ii t t rrij ij i j i j i W x R x t ====⎛⎫== ⎪⎝⎭∑∑∑∑所以2180549.297044360.726A S R P =-=-=,21231900970195711.526T S W P =-=-=,151350.8E T A S S S =-=.最后填写方差分析表。

因为2.15<3.05,接受H0,故四种灯泡的使用寿命无显著差异。

第一种方法:用SPSS 软件操作 操作过程与结果如下: 操作步骤1、建立数据文件。

假设在SPSS环境下建立数据文件,该文件中定义两个数值型变量:一个变量为寿命time,宽度按默认值设置;另一个是属性变量kind,宽度为3,无小数位,它表示四批灯丝的类别,例如用1表示甲、2表示乙、3表示丙、4表示丁。

其部分数据见图3—1所示。

单独观测值的方差分析 例题

单独观测值的方差分析 例题
单独观测值的方差分析
这种分析方法要求用正交表设计试验时, 必须留有不排入因素的空例,以作为误差的估 计值。 【例3】某食品厂生产口香糖,检验口香糖的 质量好坏需要分析:①拉伸率(越大越好); ②变形(越小越好);③耐弯曲次数(越多越 好)这3种指标,要求对3种指标都取得较好水 平,现要进行口香糖配方的试验分析,因素水 平表见表11-17,结果分析见表11-18。
K
1、计算各项平方和与自由度
矫正数
C = T2/n = 81352/16 = 4136139.063
总平方和 SST =Σy2-C =5452+4902+…+4752 - 4136139.063 =10167.9375
A因素平方和 2 SSA=Σ TA /a-C
=(20552+19562+21312+19932)/ 4 –4136139.063=4403.6875 B因素平方和 2 SSB = Σ TB /b-C =(21382+20022+20202+19752)/4 -4136139.063 =3897.1875
表11-18中,Ki为各因素同一水平试验指标(拉伸 率%)之和。 如 A因素第1水平
K1=y1+y2+y3 +y4 =545+490+515+505=2055
A因素第2水平
K2=y5+y6 + y7 +y8 =492+485+499+480=1956,
A因素第3水平
K3=y9+y10+y11+y12 =566+539+511+515=2131,

典型例题

典型例题

典型例题-G-方差分析-2某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。

通过对每个工人生产的产品数进行方差分析,得到如下表所示的结果。

每个工人生产产品数量的方差分析表(2)若显著性水平为α=0.05,检验三种方法组装的产品数量之间是否有显著差异。

解:(1)完成方差分析表,以表格中所标的①、②、③、④、⑤、⑥为顺序,来完成表格,具体步骤如下: ①求k -1根据题目中“该企业准备用三种方法组装一种新的产品”可知,因素水平(总体)的个数k =3,所以第一自由度df 1=k -1=3-1=2,即SSA 的自由度。

②求n -k由“随机抽取了30名工人”可知,全部观测值的个数n =30,因此可以推出第二自由度df 2=n -k =30-3=27,即SSE 的自由度。

③求组间平方和SSA已知第一自由度df 1=k -1=3-1=2,MSA =210 根据公式1-==k SSAMSA 自由度组间平方和所以,SSA =MSA ×(k -1)=210×2=420④求总误差平方和SST由上面③中可以知道SSA =420;此外从表格中可以知道:组内平方和SSE =3836,根据公式SST =SSA +SSE 可以得出SST =420+3836=4256,即总误差平方和SST=4256 ⑤求SSE 的均方MSE已知组内平方和SSE =3836,SSE 的自由度n -k =30-3=27 根据公式0741.142273836==-==k n SSE MSE 自由度组内平方和所以组内均方MSE =142.0741⑥求检验统计量F已知MSA =210,MSE =142.0741 根据4781.10741.142210===MSE MSA F所以F=1.4781(2)题目中假设α=0.05,根据第一自由度df 1=k -1=3-1=2和第二自由度df 2=n -k =30-3=27,查F 分布表得到临界值F 0.05(2,27)=3.354131,所以F =1.4781<F α=3.354131,所以接受原假设,即μ1=μ2=μ3成立,表明μ1、μ2、μ3之间没有显著差异,也就是说,用三种方法组装的产品数量之间没有显著差异。

方差分析习题答案

方差分析习题答案

方差分析习题答案【篇一:方差分析习题】lass=txt>班级_______ 学号_______ 姓名________ 得分_________一、单项选择题1、方差分析所要研究的问题是() a、各总体的方差是否相等 b、各样本数据之间是否有显著差异 c、分类型自变量对数值型因变量的影响是否显著 d、分类型因变量对数值型自变量是否显著2、组间误差是衡量因素的不同水平(不同总体)下各样本之间的误差,它()a、只包含随机误差b、只包含系统误差c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差3、组内误差() a、只包含随机误差b、只包含系统误差 c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差4、在单因素方差分析中,各次实验观察值应()a、相互关联b、相互独立c、计量逐步精确d、方法逐步改进5、在单因素方差分析中,若因子的水平个数为k,全部观察值的个数为n,那么()a、sst的自由度为n b 、ssa的自由度为k c、 sse的自由度为n-k-1 d、sst的自由度等于sse的自由度与ssa的自由度之和。

6、在方差分析中,如果拒绝原假设,则说明()a、自变量对因变量有显著影响b、所检验的各总体均值之间全部相等c、不能认为自变量对因变量有显著影响d、所检验的各样本均值之间全不相等7、在单因素分析中,用于检验的统计量f的计算公式为() a、ssa/sseb、ssa/sst c、msa/msed、mse/msa8、在单因素分析中,如果不能拒绝原假设,那么说明组间平方和ssa () a、等于0 b、等于总平方和c、完全由抽样的随机误差所决定d、显著含有系统误差9、ssa自由度为()a、r-1b、n-1c、n-rd、r-n二、实验分析题1、某公司采用四种颜色包装产品,为了检验不同包装方式的效果,抽样得到了一些数据并进行单因素方差分析实验。

实验依据四种包装方式将数据分为4组,每组有5个观察值,用excel中的数据分析工具,在0.05的显著水平下得到如下方差分析表:方差分析(1)填表:请计算表中序号标出的七处缺失值,并直接填在表上。

方差分析例题精修订

方差分析例题精修订

方差分析例题标准化管理部编码-[99968T-6889628-J68568-1689N]1.某湖水在不同季节氯化物含量测定值如表5-3所示。

问不同季节氯化物含量有无差别?若有差别,进行32个水平的两两比较。

表5-3 某湖水不同季节氯化物含量(mg/L ) 春 夏 秋 冬 22.6 19.1 18.9 19.0 22.8 22.8 13.6 16.9 21.0 24.5 17.2 17.6 16.9 18.0 15.1 14.8 20.0 15.2 16.6 13.1 21.9 18.4 14.2 16.9 21.5 20.1 16.7 16.2 21.221.219.6 14.8167.9 159.3131.9129.3 588.408 8 8 8 3220.99 19.9116.4916.16 18.393548.51 3231.95 2206.27 2114.1111100.843.538.564.51 3.471.完全随机设计单因素芳差分析解:H 0:4个季节湖水中氯化物含量相等,即μ1=μ2=μ3=μ4H 1:4个季节湖水中氯化物含量不等或不全相等。

α=0.05 表5-8 方差分析表 变异来源 SS MS F总变异 组间变异组内变异 281.635 141.170140.465 31 32847.057 5.0179.380查F 界值表,95.228,3,05.0 F 。

因F >28,3,05.0F 所以P <0.05。

按α=0.05水准,拒绝H 0,接受H 1,认为不同季节湖水中氯化物含量不同或不全相同。

用SNK-q 检验进行各组均数间两两比较。

H:任意两对比组的总体均数相等,μA=μBH1:μA≠μBα=0.05表5-9 四个样本均数顺序排序组别春夏秋冬位次20.99119. 91216.49316.164表5-10 四组均数两两比较q检验对比组两均数之差组数q值P值1 , 4 1 , 31 , 22 , 42 , 33 , 44. 834. 501. 083. 303. 420. 334323226. 0995. 6821.3644. 7354. 3190. 417<0.01<0.01>0.05<0.01<0.01>0.05春与夏、秋与冬湖水中氯化物含量P>0.05,按α=0.05水准,不拒绝H0,即不能认为春与夏、秋与冬季湖水中氯化物含量有差别。

方差分析习题与答案

方差分析习题与答案

统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映地是样本数据与其组平均值地差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B地离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4A r,1AD2ACE3ACE4(AD12345.在试验设计中,把要考虑地那些可以控制地条件称为,把因素变化地多个等级状态称为 .6.在单因子方差分析中,计算F统计量地分子是方差,分母是方差.7.在单因子方差分析中,分子地自由度是,分母地自由度是 .四、计算题1.有三台机器生产规格相同地铝合金薄板,为检验三台机器生产薄板地厚度是否相同,随机从每台机器生产地薄板中各抽取了5个样品,测得结果如下:机器1:0.236,0.238,0.248,0.245,0.243机器2:0.257,0.253,0.255,0.254,0.261机器3:0.258,0.264,0.259,0.267,0.262问:三台机器生产薄板地厚度是否有显著差异?2.养鸡场要检验四种饲料配方对小鸡增重是否相同,用每一种饲料分别喂养了6只同一品种同时孵出地小鸡,共饲养了8周,每只鸡增重数据如下:(克)配方:370,420,450,490,500,450配方:490,380,400,390,500,410配方:330,340,400,380,470,360配方:410,480,400,420,380,410问:四种不同配方地饲料对小鸡增重是否相同?3.今有某种型号地电池三批,它们分别为一厂、二厂、三厂三个工厂所生产地.为评比其一厂二厂三厂41.1.1234567.四、计算题1.解:根据计算结果列出方差分析表因为(2,12)=3.89<32.92,故拒绝,认为各台机器生产地薄板厚度有显著差异.2.解:根据计算结果列出方差分析表。

方差分析例题

方差分析例题

第五章 方差分析习题一、选择题1.完全随机设计资料的方差分析中,必然有( )。

A. 组内组间SS SS >B.组内组间MS MS <C. 组内组间总+=SS SS SSD.组内组间总+MS MS MS =E. 组内组间νν>2.当组数等于2时,对于同一资料,方差分析结果与t 检验结果( )。

A. 完全等价且tF =B. 方差分析结果更准确C. t 检验结果更准确D. 完全等价且F t =E. 理论上不一致3.在随机区组设计的方差分析中,若),(05.021ννF F >处理,则统计推论是( )。

A. 各处理组间的总体均数不全相等B. 各处理组间的总体均数都不相等C. 各处理组间的样本均数都不相等D. 处理组的各样本均数间的差别均有显著性E. 各处理组间的总体方差不全相等 4.随机区组设计方差分析的实例中有( )。

A. 处理SS 不会小于区组SSB. 处理MS 不会小于区组MSC. 处理F 值不会小于1D. 区组F 值不会小于1E. F 值不会是负数5.完全随机设计方差分析中的组间均方是( )的统计量。

A. 表示抽样误差大小B. 表示某处理因素的效应作用大小C. 表示某处理因素的效应和随机误差两者综合影响的结果。

D. 表示n 个数据的离散程度E. 表示随机因素的效应大小6.完全随机设计资料,若满足正态性和方差齐性。

要对两小样本均数的差别做 比较,可选择( )。

A.完全随机设计的方差分析B. u 检验C. 配对t 检验D.2χ检验E. 秩和检验7.配对设计资料,若满足正态性和方差齐性。

要对两样本均数的差别做比较, 可选择( )。

A. 随机区组设计的方差分析B. u 检验C. 成组t 检验D. 2χ检验E. 秩和检验8.对k 个组进行多个样本的方差齐性检验(Bartlett 法),得2,05.02νχχ>,05.0<P 按05.0=α检验,可认为( )。

A. 22221,,,k σσσ 全不相等B. 22221,,,k σσσ 不全相等C. k S S S ,,,21 不全相等D. k X X X ,,,21 不全相等E. k μμμ,,,21 不全相等 三、计算题1、某课题研究四种衣料内棉花吸附十硼氢量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.某湖水在不同季节氯化物含量测定值如表5-3所示。

问不同季节氯化物含量有无差别?若有差别,进行32个水平的两两比较。

表5-3某湖水不同季节氯化物含量(mg/L)
春夏秋冬
22.6 19.1 18.9 19.0
22.8 22.8 13.6 16.9
21.0 24.5 17.2 17.6
16.9 18.0 15.1 14.8
20.0 15.2 16.6 13.1
21.9 18.4 14.2 16.9
21.5 20.1 16.7 16.2
21.2 21.2 19.6 14.8
167.9 159.3 131.9 129.3 588.40
?8 ?8 8 8 ??32
20.99 19.91 16.49 16.16 18.39
3548.51 3231.95 2206.27 2114.11 11100.84
3.53 8.56 ?
4.51 3.47
1.完全随机设计单因素芳差分析
解:H0:4个季节湖水中氯化物含量相等,即μ1=μ2=μ3=μ 4
H1:4个季节湖水中氯化物含量不等或不全相等。

α=0.05
表5-8方差分析表
变异来源
SS MS F
总变异组间变异组内变异281.635
141.170
31
??3
47.057
??5.017
9.380
查F
28
,3,
05
.028
,3,
05
.00
,接受H1,认为
不同季节湖水中氯化物含量不同或不全相同。

用SNK-q检验进行各组均数间两两比较。

H0:任意两对比组的总体均数相等,μA=μB
H1:μA≠μB
α=0.05
表5-9四个样本均数顺序排序
组别春夏秋冬
位次?20.99
???1 ??19.91
2
??16.49
3
??16.16
4
表5-10四组均数两两比较q检验
对比组两均数之差组数q值P值
1,4 1,3 1,2 2,4 2,3 3,4 4.83
4.50
1.08
3.30
3.42
0.33
4
3
2
3
2
2
6.099
5.682
1.364
4.735
4.319
0.417
<0.01
<0.01
>0.05
<0.01
<0.01
>0.05
春与夏、秋与冬湖水中氯化物含量P>0.05,按α=0.05水准,不拒绝H0,即不能认为春与夏、秋与冬季湖水中氯化物含量有差别。

而其它4组均有P<0.01,按α=0.05水准,拒绝H0,接受H1,即认为春夏两季湖水中氯化物含量高于秋冬两季。

相关文档
最新文档