证明(二)之直角三角形

合集下载

第一章 证明(二)

第一章  证明(二)

第一章证明(二)1. 你能证明它们吗(一)第一章证明(二)第一章证明(二)2.直角三角形(一)2.直角三角形(二)1.3 线段的垂直平分线(1)设计人:刘庆飞郭靖杜彩艳刘杰◇教学目标:1.要求学生掌握线段垂直平分线的性质定理及判定定理,能够利用这两个定理解决一些问题。

2.能够证明线段垂直平分线的性质定理及判定定理。

3.通过探索、猜测、证明的过程,进一步拓展学生的推理证明意识和能力。

◇教学重点:线段垂直平分线性质定理及其逆定理。

◇教学难点:线段垂直平分线的性质定理及其逆定理的内涵和证明。

◇教学方法:引导探索◇教学过程:一、知识回顾什么是线段的垂平分线?二、学习新知识(一)线段垂直平分线上的点到这条线段两个端点的距离相等1.让学生把准备好的方方正正的纸拿出来,按照下图的样子进行对折,并比较对折之后的折痕EB和E’B、FB和F’B的关系。

2.让学生说出他们观察猜测的结果是什么,并评价指正他们的结论。

3.证明猜想让学生把文字语言变成数学语言,根据图形写出已知和求证并证明。

4.选取证明完成地较好和较差的两位同学到黑板上板演自己的证明,其他同学在练习本上完成。

(针对两位同学的板书讲解证法,规范学生的证明过程,培养学生的逻辑思维能力)5.师生共同总结出线段垂直平分线的性质定理(二)到一条线段两个端点距离相等的点,在这条线段的垂直平分线上让学生写出以上命题的逆命题,类比原命题画出图形、写出已知和求证并证明该逆命题,(之后教师评价指正证明过程)师生总结得:线段垂直平分线逆定理:(三)用尺规作线段的垂直平分线已知:线段AB 求作:线段AB 的垂直平分线。

作法:1、分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点C 和D ,2、作直线CD 。

直线CD 就是线段AB 的垂直平分线。

请你说明CD 为什么是AB 的垂直平分线,并与同伴进行交流。

(1、到一条线段两个端点距离相等的点在这条线段的垂直平分线上2、两点确定一条直线)说明:因为直线CD 与线段AB 的交点就是AB 的中点,所以我们也用这种方法作线段的中点。

直角三角形的证明方法

直角三角形的证明方法

直角三角形的证明方法
证明直角三角形
直角三角形是几何学上常见的几何概念,被广泛应用于数学计算、建筑施工等
方面,经常会被人们当作判断两条直线是否相交的依据。

那么我们如何证明一个三角形是直角三角形呢?
一、直角三角形的定义
1.直角三角形又称正角三角形,是由三条线段组成的三角形,其中有一个内角
等于90°,其余两个内角小于90°。

2.直角三角形满足勾股定理:对角线长平方等于其他两边长度的平方之和,即:a2+b2=c2。

二、垂直定理证明直角三角形
1.垂直定理:在平面内,两条平行直线上的任意一点的垂线段,与两条平行直
线相联合,则构成的四边形中有两个内角乃是直角。

2.当直角三角形的两条直角直线垂直且相交时,相交点即为这两条直线相联合
时所构成的四边形的一角。

而另一角正是符合垂直定理的另一个直角,因此该三角形乃是直角三角形。

三、正弦定理证明直角三角形
1.正弦定理:任一三角形的内角的正弦与两边的比值是一定的,其锐角的正弦
与两条腰的比值等于1。

2.当直角三角形的一个内角等于90°,其余两个内角小于90°时,其锐角的
正弦与两边的比值就是1,满足正弦定理,该三角形乃是直角三角形。

总之,通过垂直定理和正弦定理可以证明三角形是直角三角形,从而使用这些
理论和定理,我们便可以判断两条直线是否相交,或绘制一个准确的直角三角形。

专题02 三角形的证明——直角三角形(原卷版)

专题02 三角形的证明——直角三角形(原卷版)

专题02 三角形的证明——直角三角形考点一直角三角形性质与判定运用【方法点拨】(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.【典例剖析】1.(2019春•港南区期中)具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C2.(2019秋•蠡县期中)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A3.(2019春•武侯区校级期中)如图,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1B.∠2C.∠B D.∠1、∠2和∠B4.(凉州区期末)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)5.(2018秋•诸暨市期末)在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=.6.(2018春•涟源市期末)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.7.(2019春•邵阳县期末)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF 与∠FBC的度数.8.(莲湖区期中)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.9.(丹阳市校级月考)如图所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,(1)求∠BAD和∠DAC的度数;(2)若DE平分∠ADB,求∠AED的度数.10.(新洲区期末)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.考点二直角三角形全等的判定【方法点拨】1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【典例剖析】1.(2019秋•兴化市期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2.(2018秋•太湖县期末)下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等3.(2019春•岐山县期末)在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点4.(2018秋•蔡甸区期末)如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.5.(汶上县期末)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB 全等.6.(2018秋•赣榆区期中)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.7.(2018秋•乐亭县期末)如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.8.(合浦县期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE =CF.求证:Rt△ABF≌Rt△DCE.9.(宣汉县期末)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,你能找出一对全等的三角形吗?为什么它们是全等的?10.(滨湖区校级期末)如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等.考点三含30°的特殊直角三角形的运用【方法点拨】(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.【典例剖析】1.(2019秋•兰州期末)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm2.(2018秋•江油市期末)如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=12AB B.BD=13AB C.BD=14AB D.BD=15AB3.(2018秋•双城区期末)如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为()A.8B.4C.12D.64.(2019秋•潮阳区期末)若三角形三个内角的度数之比为1:2:3,最短的边长是5cm,则其最长的边的长是.5.(2018秋•新疆期末)如图,△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,则∠ADE是度.6.(2019•乐陵市一模)如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=.7.(2018秋•潮阳区期末)如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC=3AD.8.(2019秋•邳州市期中)如图,△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求BC的长.9.(2019秋•崇川区校级月考)如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求:BC的长.10.(2019春•南山区期末)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB 和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.考点四直角三角形斜边上的中线【方法点拨】(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可一用来判定直角三角形.1.(2019春•广元期末)如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5B.6C.7D.82.(2019春•镇原县期末)直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.53.(2019春•盐湖区期末)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18B.14C.12D.64.(2018秋•秦淮区期末)若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.5.(2019春•永昌县期末)直角三角形中,两直角边分别是12和5,则斜边上的中线长是.6.(2019秋•南京月考)在直角三角形中,斜边长为10cm,则斜边上的中线长为.7.(2019春•南平期末)证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)8.(2019秋•盐都区期中)已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.9.(2019秋•江阴市期中)已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.求证:MN ⊥BD.10.(2019秋•长兴县期中)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD 的中点,AC=6.求EF的长.考点五直角三角形中的最值问题【方法点拨】实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.【典例剖析】1.(2019春•龙岗区期中)在△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()A.8cm B.6cm C.√5cm D.5cm2.(2019秋•海淀区校级月考)如图,△ABC中,∠C=90°,∠A=30°,AB=4,点P是AC边上的动点,则BP的最小值为()A .1B .2C .3D .43.(2019春•稷山县期末)如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 的长可能是( )A .5B .6.2C .7.8D .84.(2019•福建二模)如图,已知A (3,6)、B (0,n )(0<n ≤6),作AC ⊥AB ,交x 轴于点C ,M 为BC 的中点,若P (32,0),则PM 的最小值为( )A .3B .38√17C .45√5D .65√55.(2019•瑶海区一模)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,点D 、F 分别是边AB ,BC 上的动点,连接CD ,过点A 作AE ⊥CD 交BC 于点E ,垂足为G ,连接GF ,则GF +12FB 的最小值是( )A .√3−1B .√3+1C .3√32−1D .3√32+16.(2019•六合区模拟)图1所示的是某超市入口的双翼闸门,如图2,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度.。

直角三角形全等的判定(2)

直角三角形全等的判定(2)
课时编号
备课时间
课题
1、2直角三角形全等的判定(2)
教学目标
1、能证明角平分线的性质定理和逆定理、三角形三条角平分线交与一点;
2、从简单的数学例子中体会反证法的含义;
3、逐步学会分析的思考方法,发展演绎推理能力。
教学重点
从简单的数学例子中体会反证法的含义
教学难点
逐步学会分析的思考方法,发展演绎推理能力
教学过程
教学内容
教师活动
学生活动
一、情境创设:
证明:角平分线上的点到角的两边的距离相等。
1、你能用折纸的方法说明“角平分线上的点到角的两边的距离相等”吗?
引导学生通过“角是轴对称图形,角平分线所在的直线是它的对称轴,折叠得到的折痕(垂线段)重合来说明
二、探索活动
证明:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上
证明:……
……
……
引导学生进一步认识图形的位置关系与数量关系之间的内在联系:
角平分线上的点到角的两边的距离都相等;
反过来,在一个角内,到角的两边的距离相等的点都在这个角的平分线上,为问题三的思考做铺垫
初步引ห้องสมุดไป่ตู้反证法的证明思路
1)先假设命题不成立
2)通过定理证明得出矛盾
3)有矛盾得结论成立
证明:……
……
(初步渗透反证法)
例2、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同侧(如图①)且AD=CE,说明:BA⊥AC.
(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.
例3、如图,△ABC的角平分线AD、BE相交与点O。(1)点O到△ABC各边的距离相等吗?点O在∠C的平分线上吗?

直角三角形的性质及其证明(含勾股定理)初二

直角三角形的性质及其证明(含勾股定理)初二

直⾓三⾓形的性质及其证明(含勾股定理)初⼆00锐⾓互余
可能会有⼈说,你这不是凑数吗?直⾓三⾓形有⼀个直⾓,那么其余的两个⾓当然是和为九
⼗度的。

虽然这个道理浅显易懂,但是关键的是,把原本的三个内⾓的关系简化成了两个内⾓
的关系,⽽且互余,也是等量代换常⽤的条件(同⾓或等⾓的余⾓相等)。

所以重要程度可见
⼀斑。

01斜边中线
利⽤之前学的倍长中线模型可以证明。

02 三⼗度的对边
这个只有三⼗度的直⾓三⾓形才有的性质(其实是三⾓⽐的特殊⾓)
可以通过翻折证明,翻折后就是⼀个等边三⾓形。

03勾股定理
勾股定理可以说是最重要的⼀个性质了,⽽且有的教材(好像是⼤多数教材)都单独作为⼀
章来学习,当然它也是直⾓三⾓形的⼀个性质。

它是证明⽅法最多的定理(500多种),也被称
为最美的定理,接下来介绍⼏种有趣的证法
031教材课本
如图⼀般为课本上的证明⽅法,不需要⼏何证明过程也不需要代数过程,属于⽆字证明。

032青朱出⼊图(刘徽)
也是利⽤⾯积的相等填补
033弦图
内弦(斜边称为弦)图,稍稍⽤到了代数式计算
外弦图也是类似
034总统证法
是美国地20任总统加菲尔德的⽅法(其实他证明的时候还没当上总统)利⽤了梯形⾯积公
式。

035欧⼏⾥得
欧⼏⾥得在⼏何上可是响当当,他的证法(⼏何原本中的)是⾮常“⼏何”的⼀种证法。

⽤到了
⼿拉⼿的全等模型,和三⾓形的等积变换(如图底不变⾼不变)。

⼤正⽅形被分割的左边的矩
形⾯积等于,左边的⼩正⽅形⾯积S1.。

证明直角三角形的方法

证明直角三角形的方法

证明直角三角形的方法直角三角形是指一个三角形的一个角度为90度的三角形。

证明直角三角形的方法有多种,以下列举几种常见的方法。

在证明前,我们先假设有一个三角形ABC,边长分别为a,b,c,且角A为直角。

方法一:勾股定理证明勾股定理是其中一个最常用的证明直角三角形的方法。

勾股定理的表达式为a^2 + b^2 = c^2,其中c为斜边边长。

在证明时,我们可以通过验证这个等式是否成立来证明三角形ABC为直角三角形。

证明步骤如下:1. 将三角形ABC的三边长度分别记为a,b,c。

2. 根据直角三角形的定义,假设角A为直角角度。

3. 根据三角形的定义,我们可以得到c^2 = a^2 + b^2。

4. 证明c^2 = a^2 + b^2的方法有多种,其中一种常用的方法是通过代入角度的正弦、余弦或正切关系来证明。

- 使用正弦关系证明:由正弦定理,我们可以得到a/sin(A) = c/sin(C)和b/sin(B) = c/sin(C),其中C为角C的角度。

如果角A为90度,那么sin(A) = 1,由此可得a = c*sin(C)。

同理,由角B为90度可得出b = c*sin(C)。

将a 和b的表达式代入c^2 = a^2 + b^2,我们有c^2 = (c*sin(C))^2 +(c*sin(C))^2 = c^2*sin^2(C) + c^2*sin^2(C) = 2c^2*sin^2(C)。

可得出sin^2(C) = 1/2,即sin(C) = 1/sqrt(2)。

由此可得C的度数为45度,即角C为45度。

- 使用余弦关系证明:由余弦定理,我们可以得到c^2 = a^2 + b^2 -2ab*cos(C)。

如果角A为90度,那么cos(A) = 0,由此可得c^2 = a^2 + b^2。

同理,由角B为90度可得出c^2 = a^2 + b^2。

因此,c^2 = a^2 + b^2的等式成立。

- 使用正切关系证明:由正切定理,我们可以得到tan(A) = a/b和tan(B) = b/a。

资中县八中八年级数学下册第一章三角形的证明2直角三角形第2课时直角三角形全等的判定教案新版北师大版6

资中县八中八年级数学下册第一章三角形的证明2直角三角形第2课时直角三角形全等的判定教案新版北师大版6

第2课时直角三角形全等的判定1.掌握并利用“HL”定理解决实际问题.2.能用尺规完成已知一条直角边和斜边作直角三角形.3.进一步掌握推理证明的方法,发展演绎推理的能力,培养学生思维的灵活性与开放性.重点直角三角形“HL”判定定理的理解及运用.难点证明“HL”定理的思路的探究和分析.一、复习导入1.前面我们学习了判断两个三角形全等的方法,你还记得有哪几种吗?2.通过以上方法我们可以看出判断两个三角形全等,已知条件中至少有一条边对应相等.如果在两个三角形中已知两边对应相等时,附加一个什么条件可以说这两个三角形全等?3.如果附加的条件是其中一边的对角对应相等,那么这两个三角形还全等吗?你能画图举例说明吗?师:如果其中一边所对的角是直角,那么这两个三角形全等吗?让我们带着这个问题来继续学习直角三角形.二、探究新知1.猜想师:如果在两个直角三角形中,已知斜边和一条直角边分别对应相等,那么这两个直角三角形全等吗?处理方式:引导学生思考讨论,教师点拨.学生意见会不统一,有的认为全等,有的认为不一定全等.2.探究课件出示教材第18页“做一做”.已知一条直角边和斜边,求作一个直角三角形.已知:如图,线段a,c(a<c),直角α.求作:Rt△ABC,使∠C=∠α,BC=a,AB=c.画图过程展示:(1)作∠MCN=∠α=90°;(2)在射线CM截取CB=a;(3)以点B为圆心,线段c的长为半径作弧,交射线CN于点A;(4)连接AB,得到Rt△ABC.思考:通过刚才的画图,你有什么发现?3.总结师:你们所画的三角形都有哪些已知的相等量?你能得出什么结论?板书:斜边和一条直角边分别对应相等的两个直角三角形全等.4.证明师:你能证明这个命题是真命题吗?处理方式:学生先在小组内交流,然后独立写出已知、求证,并证明.完成后教师用多媒体展示学生的证明过程,并及时地评价,同时规范解题过程.证明过程展示:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC =A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC中,∵∠C=90°,∴BC2=AB2-AC2(勾股定理).同理,B′C′2=A′B′2-A′C′2(勾股定理).∵AB=A′B′,AC=A′C′,∴BC=B′C′.∴△ABC≌△A′B′C′ (SSS).师:通过以上证明,我们可以得出命题“斜边和一条直角边分别相等的两个直角三角形全等”是一个真命题.我们把这一定理简述为“斜边、直角边”或“HL”.三、举例分析例(课件出示教材第20页例题)处理方式:引导学生分析,并能用数学语言清楚地表达自己的想法,教师对学生的回答进行点评,示范解题过程.分析:本题主要利用“斜边、直角边”定理解决实际问题.依据已知条件,只需证明Rt△ABC≌Rt△DEF,再利用直角三角形的性质即可得出∠B和∠F的大小关系.解:根据题意,可知∠BAC=∠EDF=90°,BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL).∴∠B=∠DEF.∵∠DEF+∠F=90°,∴∠B+∠F=90°.四、练习巩固1.如图,已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来.2.如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF.求证:△ABC是等腰三角形.五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第20页“随堂练习”第1、2题.2.教材第21页习题1.6第1~5题.本节课讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——“HL”定理,并用此定理安排了一系列具体的、开放性的问题,不仅使学生进一步掌握了推理证明的方法,而且发展了他们演绎推理的能力二次根式的除法说课稿一、教材分析本节内容是在积的二次根式性质的基础上学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.二、重点难点分析:本节课是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.三、教法运用:1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.2. 本节内容可以分为两阶段,第一阶段讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二阶段讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现分式或分数的情况。

三角形的证明详细

三角形的证明详细

三角形的证明1.你能证明它们吗一、主要知识点1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性质是对应边相等,对应角相等。

2、等腰三角形的有关知识点。

等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。

(三线合一)3、等边三角形的有关知识点。

判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形。

性质:等边三角形的三边相等,三个角都是60°。

4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法二、重点例题分析例1:如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.例2 如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.例3:如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证: ① AC=AD;②CF=DF。

1例4 如图,在△ABC 中,AB=AC 、D 是AB 上一点,E 是AC 延长线上一点,且CE=BD ,连结DE 交BC 于F 。

(1)猜想DF 与EF 的大小关系;(2)请证明你的猜想。

2.直角三角形一、主要知识点1、直角三角形的有关知识。

直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。

2、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 二、典型例题分析例1 :说出下列命题的逆命题,并判断每对命题的真假: (1)四边形是多边形;(2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0,b=0;(4)在一个三角形中有两个角相等,那么这两个角所对的边相等 例2:如图,ABC ∆中,3590,12,,22C CD BD ∠=︒∠=∠==, 求AC 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时:直角三角形的证明
[知识要点]
1、勾股定理:直角三角形两直角边的平方和等于斜边的平方,即2
2
2
b a
c +=(c 为斜边).
2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有关系:2
22c b a =+,那么这
个三角形是直角
三角形,且c 边所对的角为直角.
3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
4、“HL ”公理作用:判定两个直角三形全等.
[典型例题]
例1 如图,在Rt △DBC 中,∠C=900,∠A=300,BD 是∠ABC 的平分线,AD=20,求BC 的长。

例2 如图所示,在ABC ∆中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直于AB 、
AC ,垂足为
E 、
F .求证:EB=FC .
例3 如图,在等腰直角三角形ABC 中,90=∠C º,D 是斜边AB 上任一点,AE ⊥CD 于E ,BF ⊥CD
并交CD 的延长线于F ,CH ⊥AB 于H ,交AE 于G .求证:
A B C
E F D A B D
C
[经典练习]
1、满足下述条件的三角形中,不是直角三角形的是( ).
A 、三内角之比为1:2:3 B.三边之比为
C 、三边长为41,40,9 D.
,8
2、不能判定两个直角三角形全等的方法是( )
A .两个直角边对应相等.
B .斜边和一锐角对应相等
C .斜边和一条直角边对应相等
D .面积相等
3、如图1所示,ABC ∆中AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于O ,AO 的延长线交
BC 于F ,则图中全等直角三角形的对数为( )
A .3对
B .4对
C .5对
D .6对 4、如图2所示,在ABC ∆中,MD 垂直平分AB 于M ,交BC 于D ,N
E 垂直平分AC 于N ,交BC 于E ,
若θ=∠BAC ,则∠DAE 等于( ) A .2θ B .180
º-2
θ
C .-θ290º
D .-θ2180º
o
5,、如图5, Rt △ABC 中,AC=6cm,BC=8cm,将此三角形折叠,使直角边AC 落在斜边AB 上,点C 与点D 重合,
折痕为AE,则BE 的长为( )。

6、如图7,直线L 过正方形ABCD 的顶点B,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。

图5 图6
7、点A 、E 、F 、C 在一条直线上,AE=CF ,过点E 、F 分别作DE ⊥AC ,BF ⊥AC ,若AB=CD 。

(1)求证:BD 平分EF A B
C E F D
图1 A
B
C
图2
A
D C
E D
L A C
B M N B
A
C
E
F
G
(2)若将△DEC 的边EC 沿AC 方向平行移动变为如图时,其余条件不变,(1)的结论是否成立? 请说明理由。

8、如图所示,A 、E 、F 、B 四点共线,AC ⊥CE ,BD ⊥DF ,AE=BF ,AC=BD .求证:ACF ∆≌BDE ∆.
[大展身手]
1、如图,在平面直角坐标系中,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 在第一象限,
将△OAB 绕点O 按逆时针方向旋转到△OA ′B ′,使点B 的对应点B ′落在y 轴的正半轴上,已知OB=2,∠BOA=300。

(1)求点B 与点A ′的坐标;
(2)求经过点B 与点B ′的直线所对应的一次函数解析式,并判断断点A ′是否在直线BB ′上.
B
A
C
F E
G A
B
C D
F
E。

相关文档
最新文档