高三数学平面向量的基本性质与运算1

合集下载

高三数学向量专题复习(高考题型汇总及讲解)(1)

高三数学向量专题复习(高考题型汇总及讲解)(1)

向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。

一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。

2、了解平面向量基本定理和空间向量基本定理。

3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。

4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B )一. 教学内容:平面向量的概念及运算向量的概念、向量的线性运算、向量的分解和向量的坐标运算二. 课标要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义;②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义。

(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义;②掌握平面向量的正交分解及其坐标表示;③会用坐标表示平面向量的加、减与数乘运算;④理解用坐标表示的平面向量共线的条件。

三. 命题走向本讲内容属于平面向量的基础性内容,与平面向量的数量积比较,出题量小。

以选择题、填空题考查本章的基本概念和性质,重点考查向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。

此类题难度不大,分值5~9分。

预测高考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。

【教学过程】一. 基本知识要点回顾1. 向量的概念①向量:既有大小又有方向的量。

向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。

向量的大小即向量的模(长度),记作|AB |,即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

高中数学备课教案平面向量的引入与基本运算

高中数学备课教案平面向量的引入与基本运算

高中数学备课教案平面向量的引入与基本运算高中数学备课教案平面向量的引入与基本运算一、引言在高中数学教学中,平面向量是一个重要的概念。

通过引入平面向量的基本知识和运算规则,学生可以更好地理解和应用数学知识,提高解决实际问题的能力。

本教案将介绍平面向量的引入方法和基本运算规则。

二、引入平面向量1. 定义平面向量平面向量是具有大小和方向的几何对象,通常用箭头表示。

在二维平面中,平面向量可以表示为有序实数组成的二元组。

例如,向量AB可以表示为向量→AB=(x,y),其中x和y分别表示向量在x轴和y轴上的分量。

2. 表示平面向量平面向量可以用箭头表示,箭头的起点表示向量的起点,箭头的终点表示向量的终点。

常见的表示方法还包括使用坐标表示向量的分量,例如→AB=(3,4),表示向量AB的x轴分量为3,y轴分量为4。

3. 向量的模长和方向角向量的模长是指向量的长度,可以通过勾股定理求得,即∣→AB∣=√(x²+y²)。

向量的方向角是指向量与x轴的夹角α,可以通过三角函数求得,其中tan(α)=y/x。

三、平面向量的基本运算1. 向量的加法和减法向量的加法满足平行四边形法则,即→AB+→BC=→AC。

向量的减法可以通过向量加法和取负得到,即→AB-→BC=→AB+(-→BC)。

2. 向量的数量积向量的数量积也称为点乘,表示为→AB·→BC=|→AB||→BC|cosθ,其中θ为向量→AB和→BC之间的夹角。

若两向量夹角为直角,则向量的数量积为0,即→AB·→BC=0。

3. 向量的数量积的性质向量数量积具有以下性质:- 交换律:→AB·→BC=→BC·→AB- 分配律:(→AB+→BC)·→CD=→AB·→CD+→BC·→CD4. 向量的向量积向量的向量积也称为叉乘,表示为→AB×→BC=|→AB||→BC|sinθn,其中θ为向量→AB和→BC之间的夹角,n为单位法向量。

高三数学平面向量考点解析

高三数学平面向量考点解析

高三数学平面向量考点解析1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。

向量和数量是数学中讨论的两种量的形式,数量是实数。

2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。

3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。

模也叫作绝对值、大小、长度,这几个说法是一个意思。

(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。

(3)相反向量:方向相反、大小相等的向量叫做相反向量。

一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。

(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。

因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。

两个非零向量平行时,必定方向相同或相反。

规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。

(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。

规定零向量和任意向量都垂直,但不能说夹角90度。

(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。

规定零向量和任意向量都平行且垂直。

(7)单位向量:长度为1的向量叫做单位向量。

一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。

(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。

(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。

考点10 平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)

考点10  平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
①数量积:a·b=|a||b|cosθ=x1x2+y1y2.
②模:|a|= = .
③夹角:cosθ= = .
④两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
⑤|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ · .
,注意与平面向量平行的坐标表示区分.
3.(2021年全国高考甲卷)若向量 满足 ,则 _________.
【答案】
【分析】根据题目条件,利用 模的平方可以得出答案
【详解】∵

∴ .
故答案为: .
4.(2021年全国新高考Ⅰ卷)已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
【答案】AC
2.三个常用结论
(1)O为△ABC的重心的充要条件是 + + =0;
(2)四边形ABCD中,E为AD的中点,F为BC的中点,则 + =2 ;
(3)对于平面上的任一点O, , 不共线,满足 =x +y (x,y∈R),则P,A,B共线⇔x+y=1.
注意向量共线与三点共线的区别.
3.平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
【答案】D
【分析】根据所给图形,由向量的线性运算,逐项计算判断即可得解.
【详解】 + + = + =0,A正确;
+ + = + + =0,B正确;
+ + = + = + = ,C正确;
+ + = +0= = ≠ ,D错误,
故选:D.
2.(2020内蒙古鄂尔多斯市第一中学)下列结论正确的是
A.若向量 , 共线,则向量 , 的方向相同

平面向量的应用重难点解析版

平面向量的应用重难点解析版

突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。

考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。

平面向量的运算

平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。

平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。

本文将介绍平面向量的基本概念和运算规则。

一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。

可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。

二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。

具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。

三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。

对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。

四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。

设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。

五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。

设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。

高三数学总复习讲义——向量

高三数学总复习讲义——向量

高三数学总复习讲义——向量一、知识清单(一)向量的有关定义1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也叫向量的长度).用|表示|2.向量的表示方法:(1)字母表示法:如,,,a b c r r rL 等.(2)坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .(3)几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r 等.注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量a r 与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. (二)向量的运算 1.运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。

研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言符号语言坐标语言加法与减法OA --→+OB --→=OC --→OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2)则OA OB +uu u r uuu r=(x 1+x 2,y 1+y 2) OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积AB --→=λa →λ∈R记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积cos ,a b a b a b ⋅=⋅r r r r r r 记1122(,),(,)a x y b x y ==r r则a →·b →=x 1x 2+y 1y 22.运算律加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r (结合律) 实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b→)2=222a a b b →→→→±⋅+3.运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Байду номын сангаас
也是那段时光,让我对网络编辑有了最真实的体验与理解。网络编辑,在很多属于个人的时间里,默默无闻地为别人做着嫁衣。整篇文章,从头到尾读完,还要修改文中的标
点与别字,以及文中的病句,有时甚至会为给文章中寻找到一个恰当用词,思考半天,然后才能写出点评或者编者按,完成稿件的审核、发表。。 奇米电影

做过五年的原创文学频道编辑,也来到江山做过某社团的编辑,我真正地体会到:其实网络编辑,真的不容易,而坚守多年,不仅仅凭着对文字的热爱,还应该有对好文章的 期待,对网络文学纯净平台的维护。网络编辑,不只是一种称呼,更是一种责任。
写下这些文字,只为记录那一段文字里的花开时光,也记录下关于网络编辑的感受,还有那些一起写过文字、一起编辑过文字,一起关心问候、共同进步的朋友的怀念。 时光不语,最是深情。那时花开,馨香一直在岁月里流淌…… 至今,不能忘记45年前,那一个微型“芦苇荡”;那一顿猪头肉。 那年我15岁,正读初中,放年假以后要继续搂草。农历腊月二十八九日下午,吃了晌饭,我又带着镰刀、竹筢,撅上网包去田野了。 我在山里到处溜跶,寻找草源,半个下午过去了,几乎没看见一棵像样的野草。一个人慢腾腾地满山游荡,像个没有思想的幽灵。不知应该去哪里,不知道哪儿有草,还担心 一棵草也搂不回家怎么办?果真如此,大人肯定会严肃批评。你傍晚回家,把个空空如也的破网包烂竹筢,往院子里一放,说没有搂到一棵草、一根树枝,谁信?反正,山里有没 有野草,你都得搂到柴草带回家。这才是王道。
相关文档
最新文档