专题一 几何证明之三角形中的存在性问题 2020年中考数学冲刺难点突破 几何证明问题(解析版)

合集下载

2020年中考数学难题突破:函数中特殊三角形存在性问题解析与练习及参考答案

2020年中考数学难题突破:函数中特殊三角形存在性问题解析与练习及参考答案

(3 ) ①x= 1 (1 ,a)
②三 AQ= BQ,AB=BQ, AQ=AB
解: (1) ∵直线 y=3x+ 3,
∴当 x=0 时, y= 3,当 y=0 时, x=- 1,
∴点 A 的坐标为 ( -1,0) ,点 B 的坐标为 (0 ,3) .
(2) 设抛物线对应的函数表达式为
y=ax2+ bx+c,由题意,得
③当 AQ= AB时,如图③, 由勾股定理,得 22+a2= 10,解得 a=± 6,此时点 Q的坐标是 (1 , 6) 或(1 ,- 6) . 综上所述,存在符合条件的点 Q,点 Q的坐标为 (1 ,1) 或 (1 ,0) 或 (1 , 6) 或(1 ,- 6) . 类型 2 直角三角形、全等三角形存在性问题 例 2 如图 2,已知直线 y=kx -6 与抛物线 y= ax2+bx+c 相交于 A,B 两点,且点 A(1,- 4) 为抛 物线的顶点,点 B 在 x 轴上.
解得
1- m= 2
13
1+ m= 2
13 >0,舍去

∴点 P 的坐标为
1- 2
13 ,
13-1 . 2
(3) 如图,①当∠ Q1AB=90°时,△ DAQ∽1 △ DOB,
AD DQ1
5 DQ1
∴OD= DB,即6= 3ຫໍສະໝຸດ , 557
∴DQ1= 2,∴ OQ1=2,
7 即点 Q1的坐标为 0,- 2 ;
C(3,0) .
(1) 求点 A,B 的坐标.
(2) 求抛物线对应的函数表达式.
图1
(3) 在抛物线的对称轴上是否存在点 Q,使△ ABQ是等腰三角形?若存在, 求出符合条件的点 Q的坐
标;若不存在,请说明理由.

中考数学专题讲解:直角三角形的存在性问题

中考数学专题讲解:直角三角形的存在性问题

中考专题讲解:直角三角形的存在性问题 一、学习目标1.经历探索直角三角形存在性问题的过程,熟练掌握解题技巧2.体会分类讨论的数学思想,体验解决问题方法的多样性二、课前准备1.已知直角三角形的两边长分别为3和4,则第三边的长为2.如图,A(0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为三、探究理解如图,A(0,1),C(4,3)是直线121+=x y 上的两点,点P 是x 轴上的一个动点,问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标.问题:(1)这样的问题,你怎么思考的? 针对直角顶点进行分类(2)一般会有几种情况? 3种(3)分类时候需要做什么? 画图(4)解题有那些方法?(5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点总结:直角三角形的存在性问题的解题策略:四、反馈练习1.如图,点O (0,0),A(1,2),若存在格点P ,使△APO 为直角三角形, 则点P 的个数有 个2.在△ABC 中,∠C=900,AC=8 cm,BC=6 cm ,动点P 、Q 分别同时从点A 、B 出发,其中点P 在线段AB 上向点B 移动,速度是2 cm/s,点Q 在线段BC上向点C 运动,速度为1cm/s ,设运动时间为t s,当t= 时,△BPQ 是直角三角形.3.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB>1,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB=x.若△ABC 为直角三角形,(1)求x 的值.(2)x 的取值是多少.五、链接中考如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线834942++-=x x y 经过A 、C 两点,与AB 边交于点D ,Q 是AC 上一点,且AQ=5.请问在抛物线对称轴l 上是否存在点F ,使得△FDQ 为直角三角形?若存在,请直接写出所有符合条件的点F 的坐标,若不存在,请说明理由六、课堂小结直角三角形的存在性问题解题策略分类画图(1)角:构造相似三角形解题 (2) 边:勾股定理(3)函数:k 1·k 2=-1六、课后练习在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0),如图所示,B 点在抛物线221212-+=x x y 图像上,过点B 作BD ⊥X 轴,垂足为D ,且B 点的横坐标为-3.(1)求证:△BDC ≌△COA(2)求BC 所在直线的函数关系式(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由。

专题一 几何证明之四边形中的存在性问题 2020年中考数学冲刺难点突破 几何证明问题(解析版)

专题一 几何证明之四边形中的存在性问题 2020年中考数学冲刺难点突破 几何证明问题(解析版)

2020年中考数学冲刺难点突破几何证明问题专题一几何证明之四边形中的存在性问题1、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的边长4且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴Rt△CDF中,OC=DF=×=.2、如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证DG=BE;(2)连接FC,求tan∠FCN的值;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=3,BC=8,E是线段BC上一动点(不含端点B,C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.当点E由B向C运动时,判断tan∠FCN的值是否为定值?若是,求出该定值;若不是,请说明理由.解:(1)如图1,∵正方形ABCD和正方形AEFG中,∴∠BAD=∠EAG=90°,AB=AD,AE=AG,∴△BAE≌△GAD(SAS),∴DG=BE;(2)如图2,过点F作FM⊥BN于M,则∠B=∠AEF=∠FME=90°,∴∠BAE+∠AEB=∠FEM+∠AEB=90°,即∠BAE=∠FEM,又AE=EF,∴△BAE≌△MEF(ASA),∴FM=BE,EM=AB,又BE+EC=AB,EM=EC+CM,∴CM=FM,在Rt△FCM中,tan∠FCN==1;(3)如图2,过点F作FM⊥BN于M,则∠B=∠AEF=∠FME=90°,∴∠BAE+∠AEB=∠FEM+∠AEB=90°,同理可证∠GAD=∠FEM,又AG=EF,∴△DAG≌△MEF,△BAE∽△MEF,∴EM=AD=BC=8,=,设BE=a,则EM=EC+CM=BC=BE+EC,∴CM=BE=a,∴=,∴FM=,∴tan∠FCN===,即tan∠FCN的值为定值.3、如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值?若存在,求此时的值;若不存在,请说明理由.解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD===.即=.4、如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交BC边于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,请探究:当∠BFD与∠A之间满足怎样的数量关系时,能使四边形BECD成为矩形?为什么?(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,,∴△BEF≌△CDF(ASA);(2)解:∠BFD=2∠A时,四边形BECD成为矩形.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.5、如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD边上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE.(2)若DE=BC,求证:四边形BECF是正方形.(1)证明:∵AD是BC边上的中线,AB=AC,∴BD=CD,∵BF∥EC,∴∠DBF=∠DCE,∵∠BDF=∠CDE,∴△BDF≌△CDE(ASA);(2)证明:∵△BDF≌△CDE,∴BF=CE,DE=DF,∵BF∥CE,∴四边形BECF是平行四边形,∵AB=AC,AD是中线,∴四边形BECF是菱形,∵DE=BC,DE=DF=EF,∴EF=BC,∴四边形BECF是正方形.6、在平面直角坐标系中,点O为坐标原点,点A(5,0)在x轴的正半轴上,四边形OABC为平行四边形,对角线OB=OA,BC交y轴于点D,且S▱OABC=20.(1)如图①,求点B的坐标:(2)如图②,点P在线段OD上,设点P的纵坐标为t,△PAB的面积为S,请用含t的式子表示S;(3)在(2)的条件下,如图③,点Q在x轴上,点R为坐标平面内一点,若∠OCB﹣∠CBP=45°,且四边形PQBR为菱形,求t的值并直接写出点Q的坐标.解:(1)∵点A(5,0),OB=OA,∴OA=OB=5,∵S▱OABC=OA×OD=5OD=20,∴OD=4,∵四边形OABC为平行四边形,∴BC∥AO,BC=AO=5,∴∠BDO=90°,∴DB===3,∴点B(3,4);(2)∵点P的纵坐标为t,∴OP=t,∴DP=4﹣t,∴S=×(3+5)×4﹣×3×(4﹣t)﹣×5×t=﹣t+10;(3)如图,由(1)知,B(3,4),OA=5,BC∥OA,∴C(﹣2,4),∴CD=2取OD的中点E,则DE=OD=2,∴DE=CD,∴∠DCE=45°,∴∠OCB﹣∠OCE=45°,∵∠OCB﹣∠CBP=45°,∴∠OCE=∠CBP,过点E作EF⊥OC于F,∴∠CFE=90°=∠BDP,∴△CFE∽△BDP,∴,在Rt△CDE中,CD=DE=2,∴CE=2,在Rt△ODC中,CD=2,OD=4,∴OC=2,∵CE是△OCD的中线,∴S△OCE=S△CDO=××2×4=2∵S△OCE=OC•EF=×EF=2,∴EF=,在Rt△CFE中,根据勾股定理得,CF=,∴,∴DP=1,∴OP=OD﹣DP=3,∴t=3,∴P(0,3),设Q(m,0),∵B(3,4),∴PQ2=m2+9,BQ2=(m﹣3)2+16,∵四边形PQBR为菱形,∴PQ=BQ,∴m2+9=(m﹣3)2+16,∴m=,即Q(,0).7、已知在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=4,BC=6.(1)如图1,P为AB边上一点,以PD,PC为边作平行四边形PCQD,过点Q作QH⊥BC,交BC的延长线于H.求证:△ADP≌△HCQ;(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE.请问对角线PQ的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.(3)如图2,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE,PB为边作平行四边形PBQE.请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.解:(1)∵AD∥BC,∴∠ADC=∠DCH,∴∠ADP+∠PDC=∠DCQ+∠QCH,∵四边形PCQD是平行四边形,∴PD∥CQ,PD=CQ,∴∠PDC=∠DCQ,∴∠ADP=∠QCH,在△ADP和△HCQ中,,∴△ADP≌△HCQ(AAS);(2)存在最小值,最小值为10,如图1,作QH⊥BC,交BC的延长线于H,设PQ与DC相交于点G,∵PE∥CQ,∴△DPG∽△CQG,∴==,由(1)可知,∠ADP=∠QCH,∴Rt△ADP∽Rt△QCH,∴==,∴CH=2AD=4,∴BH=BC+CH=6+4=10,∴当PQ⊥AB时,PQ的长最小,即为10;(3)存在最小值,最小值为(n+4),如图2,作QH∥DC,交CB的延长线于H,作CK⊥CD,交QH的延长线于K,∵PE∥BQ,AE=nPA,∴==,∵AD∥BC,∴∠ADP+∠DCH=90°,∵CD∥QK,∴∠QHC+∠DCH=180°,∴∠QHC=∠ADQ,∵∠PAD+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,∴∠PAD=∠QBH,∴△ADP∽△BHQ,∴==,∴BH=2n+2,∴CH=BC+BH=6+2n+2=2n+8,过点D作DM⊥BC于M,又∠DAB=∠ABM=90°,∴四边形ABMD是矩形,∴BM=AD=2,DM=AB=4,∴MC=BC﹣BM=6﹣2=4=DM,∴∠DCM=45°,∴∠HCK=45°,∴CK=CH•cos45°=(2n+8)=(n+4),∴当PQ⊥CD时,PQ的长最小,最小值为(n+4).8、已知:如图①,在Rt△ABC中,∠ACB=90°,BC=8,AB=10,点P,E,F分别是AB,AC,BC上的动点,且AP=2CE=2BF,连结PE,PF,以PE,PF为邻边作平行四边形PFQE.(1)当点P是AB的中点时,试求线段PF的长.(2)在运动过程中,设CE=m,若平行四边形PFQE的面积恰好被线段BC或射线AC分成1:3的两部分,试求m的值.(3)如图②,设直找FQ与直线AC交于点N,在运动过程中,以点Q,N,E为顶点的三角形能否构成直角三角形?若能,请直接写出符合要求的CE的长;若不能,请说明理由.解:(1)如图①,作PH⊥BC于点H,∵∠ACB=90°,BC=8,AB=10,∴AC=6.∵AP=2CE=2BF,∵点P是AB的中点,∴PA=PB=5.∴CE=BF=,PH=3,BH=CH=4,∴FH=.∴PF==.(2)如图②,平行四边形PFQE的面积恰好被线段BC分成1:3的两部分时,则EM=PF.∵PH⊥BC,∴∠PHF=90°=∠ACB,∴PH∥AC,∴△CEM∽△HPF,△PBH∽△ABC,∴PH=2CE=2m,=.∴=,∴m=.如图③,平行四边形PFQE的面积恰好被线段AC分成1:3的两部分时,则FD=QD,QN=PG,∴CF=PG.∵△APG∽△ABC,∴=.∴=,∴m=.∴m的值为或.(3)如图④,当∠QNE=90°时,则点N与点C重合,设CE=x,∵△PBH∽△ABC,∴=,∴=,∴x=.如图⑤,当∠QNE=90°时,则点P与点B重合,则2x=10,∴x=5.如图⑥,当∠QNE=90°时,∵△FPR∽△PES,∴=,∴=,∴x=.经检验,x值符合题意.综上,CE的长为或5或.9、如图,长方形ABCD在平面直角坐标系中,AD∥BC∥x轴,AB∥DC∥y轴,x轴与y轴夹角为90°,点M,N分别在xy轴上,点A(1,8),B(1,6),C(7,6),D(7,8).(1)连接线段OB、OD、BD,求△OBD的面积;(2)若长方形ABCD在第一象限内以每秒0.5个单位长度的速度向下平移,经过多少秒时,△OBD的面积与长方形ABCD的面积相等请直接写出答案;(3)见备用图,连接OB,OD,OD交BC于点E,∠BON的平分线和∠BEO的平分线交于点F.①当∠BEO的度数为n,∠BON的度数为m时,求∠OFE的度数.②请直接写出∠OFE和∠BOE之间的数量关系.解:(1)如图1,延长DA交y轴于H,如图1所示:则AH⊥y轴.∵A(1,8),B(1,6),C(7,6),D(7,8)∴OH=8,DH=7,AH=1,AD=6,AB=2,∴S△OBD=S△ODH﹣S△ABD﹣S梯形AHOB=×OH×DH﹣×AB×AD﹣×(AB+OH)×AH=×8×7﹣×2×6﹣×(2+8)×1=17;(2)∵S长方形ABCD=2×6=12,∴S△OBD=S△ODH﹣S△ABD﹣S梯形AHOB=12,∴×(8﹣0.5t)×7﹣×2×6﹣×(2+8﹣0.5t)×1=12,∴t=;(3)①如图2,延长CB交y轴于P,延长EF交y轴于点G,∵EF平分∠BEO,OF平分∠NOB,∴∠GOF=∠NOB=m,∠BEF=∠BEO=n,∵∠EFO=∠GOF+∠FGO,∠FGO=∠GPE+∠BEF,∴∠EFO=∠GOF+∠GPE+∠BEF=m+n+90°;②∵EF平分∠BEO,OF平分∠NOB,∴∠GOF=∠NOB,∠BEF=∠BEO,∵∠EFO=∠GOF+∠FGO,∠FGO=∠GPE+∠BEF,∴∠EFO=∠GOF+∠GPE+∠BEF=90°+∠NOB+∠BEO,∵∠BOE=90°﹣∠BON﹣∠BEO,∴2∠EFO+∠BOE=270°.10、将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(8,0),点C(0,6).P是边OC上的﹣一点(点P不与点O,C重合),沿着AP折叠该纸片,得点O的对应点O'.(Ⅰ)如图①,当点O'落在边BC上时,求点O'的坐标;(Ⅱ)若点O'落在边BC的上方,O'P,O'A与分别与边BC交于点D,E.①如图②,当∠OAP=30°时,求点D的坐标;②当CD=O'D时,求点D的坐标(直接写出结果即可).解:(Ⅰ)∵点A(8,0),点C(0,6),OABC为矩形,∴AB=OC=6,OA=CB=8,∠B=90°.根据题意,由折叠可知△AOP≌△AO'P,∴O'A=OA=8.在Rt△AO'B中,BO'==2.∴CO'=BC﹣BO'=8﹣2.∴点O'的坐标为(8﹣2,6).(Ⅱ)①∵∠OAP=30°,∴∠OPA=60°,∵∠OPA=∠O'PA,∴∠CPD=180°﹣∠OPA﹣∠O'PA=60°.∵OA=8,∴OP=OA•tan30°=.∴CP=6﹣OP=6﹣.∴CD=CP•tan60°=6﹣8.∴点D的坐标为(6﹣8,6).②连接AD,如图:设CD=x,则BD=BC﹣CD=8﹣x,O'D=CD=x,根据折叠可知AO'=AO=8,∠PO'A=∠POA=90°,∴在Rt△ADO'中,AD2=AO'2+DO'2=82+x2=x2+64;在Rt△ABD中,AD2=BD2+AB2=(8﹣x)2+62=x2﹣16x+100;∴x2+64=x2﹣16x+100,解得:x=,∴CD=,∴D(,6).11、在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.(1)梯形ABCD的面积等于.(2)如图1,动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.当PQ∥AB 时,P点离开D点多少时间?(3)如图2,点K是线段AD上的点,M、N为边BC上的点,BM=CN=5,连接AN、DM,分别交BK、CK于点E、F,记△ADG和△BKC重叠部分的面积为S,求S的最大值.解:(1)如图1,作AE⊥BC于E,DF⊥BC于F,则AE∥DF,∵AD∥BC,AE⊥BC,∴四边形ADFE是矩形,∴AE=DF,AD=EF=6,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),∴BE=CF,∴BE=CF==3,由勾股定理得,AE===4,梯形ABCD的面积=×(AD+BC)×AE=×(12+6)×4=36,故答案为:36;(2)如图3,过D作DE∥AB,交BC于点E,∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,∴BE=AD=6,∴EC=6,当PQ∥AB时,PQ∥DE,∴△CQP~△CED,∴,即=,解得,t=;(3)如图2,过G作GH⊥BC,延长HG交AD于I,过E作EX⊥BC,延长XE交AD于Y,过F作FU⊥BC 于U,延长UF交AD于W,∵BM=CN=5,∴MN=12﹣5﹣5=2,∴BN=CM=7,∵MN∥AD,∴△MGN~△DGA,∴=,即=,解得,HG=1,设AK=x,∵AD∥BC,∴△BEN~△KEA,∴=,即=,解得,EX=,同理:FU=,S=S△BKC﹣S△BEN﹣S△CFM+S△MNG=×12×4﹣×7×﹣×7×+×2×1 =,当x=3时,S的最大值为25﹣=5.4.12、【探索规律】如图①,在△ABC中,点D,E,F分别在AB,BC,AC上,且DF∥BC,EF∥AB.设△ADF的边DF 上的高为h1,△EFC的边CE上的高为h2.(1)若△ADF、△EFC的面积分别为3,1,则=;(2)设△ADF、△EFC、四边形BDFE的面积分别为S1,S2,S,求证:S=2;【解决问题】(3)如图②,在△ABC中,点D,E分别在AB,AC上,点F,G在BC上,且DE∥BC,DF∥BG.若△ADE、△DBF、△EGC的面积分别为3,7,5,求△ABC的面积.解:(1)∵DF∥BC,EF∥AB,∴∠AFD=∠ACB,∠DAF=∠EFC,∴△ADF∽△FEC,∵△ADF、△EFC的面积分别为3,1,∴,∴,∵△ADF的边DF上的高为h1,△EFC的边CE上的高为h2,∴;故答案为:.(2)证明:如图①,设AD=a,BD=b,DB与EF间的距离为h,∵EF∥AB,DF∥BC,∴四边形DBFE是平行四边形,∴BD=EF=b,由(1)知△ADF∽△FEC,∴,∵S1=ah,∴S2=,∴S1S2=,∴bh=2,∵S=bh,∴S=2.(3)如图②,过点D作DM∥AC交BC于点M,∴∠DMF=∠ECG,∵DE∥BC,DF∥BG,∴四边形DFGE为平行四边形,∴∠DF=EG,∠DFM=∠EGC,∴△DFM≌△EGC(AAS),∴S△DFM=S△EGC=5,∵S△DBF=7,∴S△BDM=7+5=12,∵DE∥BM,DM∥AC,∴∠ADE=∠DBM,∠BDM=∠BAE,∴△DAE∽△BDM,∴=,∴,∴,同理,△ADE∽△ABC,∴S△ABC=9S△ADE=9×3=27.13、已知:如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=AD=10cm,CD=4cm.点P从点A出发,沿AB方向匀速运动,速度为2cm/s;同时点Q从点C出发,沿DC方向在DC的延长线上匀速运动,速度为1cm/s;当点P到达点B时,点Q停止运动.过点P作PE∥BD,交AD于点E.连接EQ,BQ.设运动时间为t(s)(0<t<5),解答下列问题:(1)连接PQ,当t为何值时,PQ∥AD?(2)设四边形PBQE的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PBQE的面积为四边形ABQD面积的,若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使EQ⊥BD?若存在,求出t的值;若不存在,请说明理由.解:(1)当PQ∥AD时,∵DC∥AB,∴四边形APQD是平行四边形,∴AP=DQ,即2t=4+t,解得,t=4,∴当t为4s时,PQ∥AD;(2)过点D作DF⊥AB于F,过点E作EM⊥AB于M,延长ME交CD的延长线于点N,∴∠DFA=∠DFB=90°,∠EMA=∠EMB=90°,∵AB∥CD,∴∠CDF=90°,∠CNM=90°,∵∠ABC=90°,∴四边形DFBC、NMFD是矩形,∴BF=DC=4,∴AF=6,∴DF==8,∴MN=BC=DF=8,∵PE∥BD,∴,∵AB=AD,∴AE=AP=2t,∵∠A=∠A,∠EMA=∠DFA,∴△AEM∽△ADF,∴,即,∴,∴,∴y=S=S梯形ABQD﹣S△AEP﹣S△QED四边形PBQE===﹣t2+t+40,∴y与的函数关系式为:y═﹣t2+t+40(0<t<5);(3)假设存在某一时刻t,四边形PBQE的面积为四边形ABQD面积的,则﹣t2+t+40=××(4+t+10)×8,解得,t1=4,t2=﹣(不合题意,舍去),答:当t=4时,四边形PBQE的面积为四边形ABQD面积的;(4)若存在某一时刻t,使EQ⊥BD,垂足为O,∴∠DOE=∠DOQ=90°,∵AB∥CD,∴∠BDC=∠DBA,∵AB=AD,∴∠BDA=∠DBA,∴∠BDC=∠BDA,∴DE=DQ,∴4+t=10﹣2t,∴t=2,∴当t为2s时,EQ⊥BD.14、已知菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,连接PC,在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.(1)如图,当点P在边AB上,且BP=3时,求PC的长;(2)当点P在射线BA上,且BP=n(0≤n<8)时,求QC的长;(用含n的式子表示)(3)连接PQ,直线PQ与直线BC相交于点E,如果△QCE与△BCP相似,请直接写出线段BP的长.解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC═==.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴,∴,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=QC,∴PC=QC,在Rt△PHB中,BP=n,∴BH=n,PH=n,∵PC2=PH2+CH2,∴3QC2=(n)2+(4﹣n)2,∴QC=(0≤n<8).(3)①如图2中,若直线QP交直线BC于B点左侧的点E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于点C右侧的点E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时BP=2+2,③如图4中,当点P在AB的延长线上时,∵△CBE与△CBP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠CBP=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCB=45°,∴BF=BC=2,CF=PF=2,∴BP=2﹣2.综上所述,满足条件的BP的值为2+2或2﹣2.。

专题01 三角形中的存在性问题(解析版)

专题01 三角形中的存在性问题(解析版)

专题01 三角形中的存在性问题1、如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴=+,解得:k=2.(3)∠BPD=∠BCD+∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.2、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证△A'CD是等边三角形;(2)如图2,设AC中点为E,A'B'中点为P,AC=a,连接EP.在旋转过程中,线段EP的长度是否存在最大值?如果存在,请求出这个最大值并说明此时旋转角θ的度数,如果不存在,请说明理由.(1)证明:∵AB∥CB',∴∠BCB'=∠ABC=30°,∵将△ABC绕顶点C顺时针旋转,∴∠ACA'=30°.又∵∠ACB=90°,∴∠A'CD=60°.又∵∠CA'B'=∠CAB=60°,∴△A'CD是等边三角形.(2)当θ=120°时,EP的长度最大,EP的最大值为a.解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA′=120°,∵∠B′=30°,∠A′CB′=90°,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=a.3、如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.设F点移动的时间为t.(1)求A、B两点的坐标;(2)计算:当△EFO面积最大时,t的值;(3)在(2)的条件下,边BC上是否还存在一个点D,使得△EFD≌△FEO?若存在,请直接写出D 点的坐标;若不存在,试说明理由.解:(1)∵CO=2,∴C(2,0).又∵AO=3OC=6,∴A(0,6),可设BO=x,且x>0;则:BC2=(2+x)2,AB2=AO2+OB2=36+x2;又∵BC=AB,∴(2+x)2=36+x2,故:x=8,∴B(﹣8,0);(2)过F点作FK⊥BC于K,可设F点移动的时间为t,且0<t<2,则:BF=5t,TO=FK=3t;∴AT=6﹣3t,又∵FE∥BC,∴△AFE∽△ABC,而AO⊥BC交EF于T,则:=,∴=,即:EF=10﹣5t,故:S△EFO=EF×TO=(10﹣5t)×3t,即:S△EFO=﹣(t﹣2)t=,∴当t=1时,△EFO的面积达到最大值;(3)在(2)的基础上,E、F分别是AC、AB的中点,若使D为BC的中点时,===,又∵==,∴FO=ED,EO=FD,EF=FE,∴△EFD≌△FEO(SSS),∵C(2,0),B(﹣8,0)∴D(﹣3,0).故:存在满足条件的D点,其坐标为(﹣3,0).4、如图,在平面直角坐标系xOy中,A(a,0),B(0,b),C(c,0).且满足:+(c+1)2+(b+2c)2=0.(1)求证:△ABC是直角三角形;(2)在y轴上是否存在点P,使得△ABP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在y轴上是否存在点D,使得∠BCD=45°?若存在,请求出点D的坐标;若不存在,请说明理由.(1)证明:∵+(c+1)2+(b+2c)2=0,≥0,(c+1)2≥0,(b+2c)2≥0,∴a﹣4=0,c+1=0,b+2c=0,解得,a=4,b=2,c=﹣1,∴BC2=12+22=5,AB2=22+42=20,AC2=25,∴BC2+AB2=AC2.∴△ABC是直角三角形;(2)解:AB==2,当BA=BP,点P在点B的上方时,OP=2+2,此时,点P的坐标为(0,2+2),当BA=BP,点P在点B的下方时,OP=2﹣2,此时,点P的坐标为(0,2﹣2),当AB=AP时,∵OA⊥BP,∴OP=OB=2,此时,点P的坐标为(0,2),当PA=PB时,设点P的坐标为(y,0),PB=2﹣x,PA=,则2﹣x=,解得,x=﹣3,此时,点P的坐标为(0,﹣3),综上所述,△ABP为等腰三角形时,点P的坐标为(0,2+2)或(0,2﹣2)或(0,2)或(0,﹣3);(3)解:假设存在点D,使得∠BCD=45°,点D的坐标为(0,b),作DH⊥BC于H,CD=,BD=2﹣b,在Rt△CDH中,∠BCD=45°,∴CH=DH=CD=,∴BH=﹣,在Rt△BHD中,BH2+DH2=BD2.即(﹣)2+()2=(2﹣b)2.解得,x1=(舍去),x2=,∴点D的坐标为(0,).5、已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)问题发现如图①,若点E、F分别是AB,AC的中点,连接DE,DF,EF,则线段DE与DF的数量关系是,线段DE与DF的位置关系是;(2)拓展探究如图②,若点E,F分别是AB,AC上的点,且BE=AF,连接DE,DF,EF,上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;(3)解决问题当点E,F分别为AB,CA延长线上的点,且BE=AF=AB=2,连接DE,DF,EF,直接写出△DEF 的面积.解:(1)结论:DE=DF,DE⊥DF.理由:连接AD,∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥BC,∴AD=BD=CD,∴∠ADB=∠ADC=90°,∵AE=EB,AF=FC,∴DE⊥AB,DF⊥AC,∴DE=AB,DF=AC,∴DE=DF.∵∠DEA=∠EAF=∠DFA=90°,∴∠EDF=90°,∴DE⊥DF,故答案为:DE=DF,DE⊥DF.(2)结论成立,DE=DF;DE⊥DF.证明:如解图①,连接AD,∵AB=AC,∠BAC=90°,点D为BC的中点,∴,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,点D为BC的中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴DF=DE,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,∴△DEF为等腰直角三角形,∵,∴AE=CF=2+4=6,在Rt△AEF中,EF2=AF2+AE2=22+62=40,∴,∴.6、在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.解:(1)如图1中,设AD交EC于点O,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°,∵BA=CA,∠ACE=∠ACB=∠B,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,故答案为30°.(2)(1)中的结论还成立.理由:如图2中,∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°,又∵∠ACM=∠ACB,∴∠B=∠ACM=30°,又∵CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠1=∠2,∴∠2+∠3=∠1+∠3=∠BAC=120°,即∠DAE=120°,又∵AD=AE,∴∠ADE=∠AED=30°.(3)∵AB=AC,AB=12,∴AC=12,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=12AF,∴,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时.,∴CF=AC﹣AF=12﹣3=9,∴CF的最大值为9.7、等腰直角△ABC和等腰直角△ACD,M、N分别在直线BC、CD上.(1)如图1所示,M、N分别在线段BC、CD上,若AM⊥MN,求证:AM=MN.(2)若M、N分别在线段BC、CD外(还在直线BC、CD上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图2,若AM=MN,求证:AM⊥MN.解:(1)延长DC,交AB的延长线于H,连接HM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∵等腰直角△ABC和等腰直角△ACD,∴∠MCD=135°,∴∠BCH=45°,∴△BHC为等腰直角三角形,∴BC=BH,∵AB=BC,∴AB=BH,∴BC是AH的垂直平分线,∴AM=BH,∴∠BHM=∠BAM,∴∠NMC=∠BHM,∵∠NMC+∠MNC=45°,∠BHM+∠MHC=45°,∴∠MHC=∠MNC,∴HM=MN,∴AM=MN;(2)(1)的结论依然成立,第一种情况:如图3所示,延长DC,交AB的延长线于H,连接HM;由(1)可知,MC是AH的垂直平分线,∴AM=MH,∴∠BAM=∠BHM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∴∠BHM=∠NMC,∵∠MHN=∠BHM+45°,∠MNH=∠NMC+45°,∴∠MHN=∠MNH,∴MN=MH,∴AM=MN;第二种情况:如图4所示,仿照第一种情况的证明方法,可以证明AM=MN;(3)如图2,延长DC,交AB的延长线于H,连接HM,由(1)可得BC是AH的垂直平分线,∴HM=AM=MN,∴∠MAB=∠MHB,∠MHC=∠MNC∵∠MHB+∠MHC=45°,∠MNC+∠NMC=45°,∴∠MHB=∠NMC,∵∠MHB=∠MAB,∴∠BAM=∠NMC,∵∠BAM+∠AMB=90°,∴∠AMB+∠NMC=90°,∴∠AMN=90°,∴AM⊥MN.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,D、E分别在AC、BC上,连接AE、BD交于点O,且CD=CE.(1)如图1,求证:AO=BO.(2)如图2,F是BD的中点,试探讨AE与CF的位置关系.(3)如图3,F、G分别是BD、AE的中点,若AC=,CE=,求△CGF的面积.解:(1)如图1中,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵CA=CB,∴∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB.(2)如图2,设AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,设AE与CF的交点为M,∵AC=,∴BC=AC=,∵CE=,∴CD=CE=,在Rt△BCD中,根据勾股定理得,BD==,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=××=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.9、如图,在平面直角坐标系中,点A在y轴上,点B、C在x轴上,∠ABO=30°,AB=2,OB=OC.(1)如图1,求点A、B、C的坐标;(2)如图2,若点D在第一象限且满足AD=AC,∠DAC=90°,线段BD交y轴于点G,求线段BG的长;(3)如图3,在(2)的条件下,若在第四象限有一点E,满足∠BEC=∠BDC.请探究BE、CE、AE 之间的数量关系.解:(1)∵∠AOB=90°,∠ABO=30°,AB=2,∴A(0,1),B(﹣,0),∵OB=OC,∴OC=,∴C(,0).(2)过点D作DM⊥y轴于点M,过点D作DN⊥x轴于点N,由题意,y轴是线段BC的垂直平分线,∴AB=AC,∴∠ABO=∠ACO=30°,∵∠DAC=90°,x轴⊥y轴,∴∠DAM=∠ACO=30°,又AD=AC,∠AMD=∠CAO,∴△AMD≌△COA(AAS),∴DM=AO,AM=CO,∵AO=1,CO=,∴DM=ON=1,AM=,∴DN=+1,又BN=OB+ON=+1,∴DN=BN,∴△BND是等腰直角三角形,∴∠DBN=45°,∴△GBO是等腰直角三角形,∴BG=OB==;(3)由(2)可知:∠DBN=45°,∠DCB=30°+45°=75°,∴∠BDC=180°﹣45°﹣75°=60°,∵∠BEC=∠BDC,∴∠BEC=60°,延长EB至F,使BF=CE,连接AF,∵∠ABC=∠ACB=30°,∴∠BAC=120°,∴∠ACE+∠ABE=180°,∵∠ABF+∠ABE=180°,∴∠ABF=∠ACE,又∵AB=AC,BF=CE,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAB,∴∠FAE=∠BAC=120°,∴FE=AE,∴BE+CE=BE+BF=FE=AE,即BE+CE=AE.11、已知:点B、C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上(1)特殊情况:如图1,当∠MAN=90°时,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.(2)一般情况:如图2,当∠MAN为任意锐角时,若∠BED=∠CFD=∠MAN,则(1)式结论是否仍然成立?若成立,请证明,若不成立,请说明理由.证明:(1)如图①中,∵∠MAN=90°,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF(AAS).(2)如图2,(1)中结论仍然成立,理由:如图②中,∵∠1=∠BAE+∠ABE,∠1=∠BAC,∴∠BAC=∠BAE+∠ABE,∵∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,∵∠1=∠BAE+∠ABE,∠2=∠CAF+∠ACF,∠1=∠2,∴∠BAE=∠ACF,∵AB=AC,∴△BAE≌△ACF(ASA).11、(1)如图1,AD∥BC,AD=BC,AC与BD相交于点O,求证:△AOD≌△BOC;(2)如图2,过线段AB的两个端点作射线AM,BN,使AM∥BN.①作∠MAB,∠NBA的平分线交于点E,∠AEB是什么角?为什么?②过点E任作一条直线,交AM于点D,交BN于点C.证明:DE=CE;③试说明无论DC的两个端点在AM,BN上如何移动,只要DC经过点E,AD+BC的值就不变.解:(1)∵AD∥BC,∴∠D=∠B,∠A=∠C,∵AD=BC,∴△AOD≌△BOC(ASA);(2)①∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠BAE+∠ABE=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠BAE﹣∠ABE=90°,即∠AEB为直角;②延长AE,交BN于点F,∵AM∥BN,∴∠MAF=∠AFB,∵∠MAE=∠BAE,∴∠BAF=∠AFB,∴BA=FB,∵∠AEB为直角,∴AE=EF,∵∠DAE=∠EFC,∠AED=∠CEF,∴△DAE≌△CFE(ASA),∴ED=EC;③由②中结论可知,AB=BF,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总有△DAE≌△CFE,总有AD=CF;所以总有AD+BC=2EF=AB.。

中考数学压轴题分析:相似三角形的存在性问题

中考数学压轴题分析:相似三角形的存在性问题

中考数学压轴题分析:相似三角形的存在性问题几何图形的存在性问题是中考常见的问题。

本文内容选自2020年广东省中考数学压轴题,考查相似三角形的存在性问题,难度不小。

一个三角形形状大小确定,另外一个三角形有两个动点。

具体请看下面内容。

【中考真题】(2020·广东)如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上.当与相似时,请直接写出所有满足条件的点的坐标.【分析】题(1)利用待定系数法求解析式,根据BO=3AO=3,得出点,点坐标,代入求抛物线解析式。

题(2)求BD的解析式,需要确定点D的坐标。

由于题目已知BC与CD的比例关系,可以考虑过点D作x轴的垂线,得到一个A字型的相似,求出点D的横坐标,代入二次函数的解析式,然后即可得到结论。

当然,如果先设直线BD的解析式为y=kx-3k,联立二次函数的解析式,得到一元二次方程的两根x1与x2的关系即可求出k的值。

题(3)中需要确定与△ABD相似的△BPQ。

由于A、B、D三点的位置的固定的,坐标也是确定的。

那么形状与大小就确定了。

先求出3边长度,且易得∠BAD为钝角。

而∠PBQ不可能为钝角,所以只需要分两种情况讨论即可:①点B与点B对应;②点B与点D对应。

两种情况中边的比例又有两种情况,因此分为4种情况讨论。

设PQ的坐标,然后根据比例关系得出结论。

【答案】解:(1),点,点,抛物线解析式为:,,;(2)如图1,过点作于,,,,,,,点横坐标为,点坐标为,,设直线的函数解析式为:,由题意可得:,解得:,直线的函数解析式为;(3)点,点,点,,,,,对称轴为直线,直线与轴交于点,点,,,,如图2,过点作于,,,,,如图,设对称轴与轴的交点为,即点,若,,,,,当,,,点,;当,,,点,;若,,,当,,,点,;当,,,点,;综上所述:满足条件的点的坐标为,或,或,或,.。

2020中考数学冲刺练习-第21讲 函数中三角形存在问题--含解析

2020中考数学冲刺练习-第21讲 函数中三角形存在问题--含解析

2020数学中考冲刺专项练习专题21函数中三角形存在问题【难点突破】着眼思路,方法点拨, 疑难突破;三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,考查分类讨论、画图及建等式计算.主要思路为:①由判定定理确定三角形所满足的特殊关系;②分类讨论,画图;③建等式,对结果验证取舍.对于目标三角形不确定、点的位置难以寻找等存在性问题的思考方向为:①从角度入手,通过角的对应关系尝试画出一种情形.②解决第一种情形.能根据几何特征表达线段长的,借助对应边成比例、或线段长转坐标代入函数表达式求解;不能直接表达线段长的,观察点的位置,考虑联立函数表达式求解.③分类讨论,类比解决其他情形.分类时,先考虑点的位置,再考虑对应关系,用同样方法解决问题.解题策略可以从以下几方面进行分析:①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线k值乘积为1;②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合一找相似建等式;③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线段长,借助函数或几何特征建等式.④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【名师原创】原创检测,关注素养,提炼主题;【原创1】如图所示,抛物线y=ax2+bx+c与坐标轴分别相交于点A、B、C,其坐标分别为A(3,0),B(0,3),C(-1,0),直线y=kx+d经过A、B两点,点D为抛物线的顶点.(1)求此抛物线的解析式;(2)在x 轴上是否存在点N 使△ADN 为直角三角形?若存在,确定点N 的坐标;若不存在,请说明理由. (3)是否存在点P,使以A,B,C,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax 2+bx+c 与y 轴交点为(0,3),故c=3, 又因为A (3,0),C (-1,0), 代入抛物线y=ax 2+bx+c 有,309330a b a b -+=⎧⎨++=⎩ ∴12a b =-⎧⎨=⎩∴抛物线的解析式y=-x 2+2x+3.(2)由抛物线解析式为y=-x 2+2x+3=-(x-1)2+4, 得D (1,4),ΘA (3,0),点N 在x 轴上,显然∠DAN=90°不成立. ①∠DNA=90°,易得N 1(1,0). ②∠ADN=90°设N (x ,0).过D 作DE ⊥x 轴于E ,易证△ADE ∽△DNE , 得DE 2=NE •EA,∴42=(1-x )⨯2∴x=-7,∴N 2(-7 ,0).(3)答:P 1(2 ,-3),P 2(-4 ,3),P 3(4 ,3).①当PC//AB 时,有两个点存在,可看作线段AB 向下平移三个单位,向左平移一个单位,或者看作线段AB 向左平移四个单位,即有P 1(2 ,-3)或P 2(-4 ,3);②当CP 为对角线时,则BP//CA ,可以看作点B 向右平移四个单位,即(4 ,3); 综上所述,点P 的坐标为(2 ,-3)、(-4 ,3)或(4 ,3).【原创2】如图,在平面直角坐标系中,抛物线y =ax 2+2x +c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BD M的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣),【典题精练】典例精讲,运筹帷幄,举一反三; 【例题1】等腰三角形存在性问题如图,直线y =3x +3交x 轴于点A ,交y 轴于点B ,过A ,B 两点的抛物线交x 轴于另一点C (3,0). (1)求点A ,B 的坐标.(2)求抛物线对应的函数表达式.(3)在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的点Q 的坐标;若不存在,请说明理由. 【分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x =1 (1,a )②三 AQ =BQ ,AB =BQ ,AQ =AB 【解析】:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x=1,设Q(1,a).①当AQ=BQ时,如图①,设抛物线的对称轴交x轴于点D,过点B作BF⊥DQ于点F.由勾股定理,得BQ=BF2+QF2=(1-0)2+(3-a)2,AQ=AD2+QD2=22+a2,得(1-0)2+(3-a)2=22+a2,解得a=1,∴点Q的坐标为(1,1).②当AB=BQ时,如图②,由勾股定理,得(1-0)2+(a-3)2=10,解得a=0或6,当点Q的坐标为(1,6)时,其在直线AB上,A,B,Q三点共线,舍去,∴点Q的坐标是(1,0).③当AQ=AB时,如图③,由勾股定理,得22+a2=10,解得a=±6,此时点Q的坐标是(1,6)或(1,-6).综上所述,存在符合条件的点Q,点Q的坐标为(1,1)或(1,0)或(1,6)或(1,-6).【归纳】对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.【例题2】直角三角形、全等三角形存在性问题如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【解析】(1)顶点点B待定系数(2)点A,B,Q解:(1)把(1,-4)代入y=kx-6,得k=2,∴直线AB对应的函数表达式为y=2x-6.令y=0,解得x=3,∴点B的坐标是(3,0).∵点A为抛物线的顶点,∴设抛物线对应的函数表达式为y=a(x-1)2-4,把(3,0)代入,得4a-4=0,解得a=1,∴抛物线对应的函数表达式为y=(x-1)2-4=x2-2x-3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时OP平分第二象限,即直线PO对应的函数表达式为y=-x.设P (m ,-m ),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去,∴点P 的坐标为⎝⎛⎭⎪⎫1-132,13-12. (3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝⎛⎭⎫0,32; ③当∠AQ 3B =90°时,过点A 作AE ⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝⎛⎭⎫0,-72或⎝⎛⎭⎫0,32或(0,-1)或(0,-3). 【归纳】本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.【最新试题】名校直考,巅峰冲刺,一步到位。

中考数学重难点突破:存在性问题

中考数学重难点突破:存在性问题

中考数学重难点突破:存在性问题
存在性类问题是近几年来各地中考的“热点、难点”。

解决存在性问题就是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

尤其以二次函数中的是否存在相似三角形、三角形的面积相等、等腰(直角)三角形、平行四边形作为考查对象是中考命题热点.这类题型对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对知识、能力的一次全面的考查。

典型例题
存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法
灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:
假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种或更多可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

【中考数学宝典】官方网站271初中数学网 网站所有教学资源均免注册,免费下载,终身免费!。

2020年中考专题练习题---相似三角形的存在性问题---教师版

2020年中考专题练习题---相似三角形的存在性问题---教师版

若ABC∆与DEF∆相似,理论上应有六种可能情况,但在中考中,6种情况未免过于复杂,所以题目中一般都还会隐含(或明示)着其中一组对应角关系,于是就只需讨论两种情况是否可能,并解出相关结果.可以将相似三角形的存在问题大致分为两类:以函数为背景的和以几何为背景的。

相比而言,以函数为背景的题目往往计算过程较为复杂,但思维过程相对简单,需要的是仔细认真;而以几何为背景的题目思维过程更为复杂,需要相对高的几何能力.1、知识内容:相似三角形的存在性问题内容分析知识结构模块一:以函数为背景的相似三角形问题知识精讲在纯几何问题中,证明三角形相似主要有三种方法:①两组角对应相等;②一组角相等且其两边对应成比例;③三组边对应成比例.在以函数为背景的压轴题中,基本都属于第二种情况,其他两种出现较少。

若ABC ∆与DEF ∆相似,且A D ∠=∠,则可能有两种情况:①AB DE AC DF =;②AB DFAC DE=. 2、 解题思路:(1) 寻找或证明两个三角形中一定相等的两个角; (2) 计算或表示出夹此两角的四条边中的三条;(3) 解出第四条边,并代回题面进行验证,舍去多余情况.【例1】 如图,在平面直角坐标系中,双曲线ky x=(0k ≠)与直线y = x +2都经过点 A (2,m ).(1)求k 与m 的值;(2)此双曲线又经过点B (n ,2),过点B 的直线BC 与直线y = x +2平行交y 轴于点 C ,联结AB 、AC ,求ABC ∆的面积;(3)在(2)的条件下,设直线y = x +2与y 轴交于点D ,在射线CB 上有一点E ,如 果以点A 、C 、E 所组成的三角形与ACD ∆相似,且相似比不为1,求点E 的坐标. 【答案】(1)k = 8,m = 4;(2)8;(3)(10,8). 【解析】(1)将A (2,m )代入y = x + 2,得m = 4;将A (2,4)代入ky x=,得k = 8; (2)将B (n ,2)代入8y x=,得n = 4; 例题解析xy1 1O设BC 为y x c =+,将B (4,2)代入,得2c =-, ∴直线BC 解析式为2y x =-. ∴C 点为(0,2-).∴ABC ∆的面积为()14662224482⨯-⨯+⨯+⨯=; △ABC 为直角三角形(4) D 点坐标为(2,0),∴E 点坐标为(10,8).【总结】本题一方面考查函数解析式与点的坐标的关系,另一方面考查几何图形的面积的确定以及相似三角形的存在性,注意根据公共角去分类讨论.【例2】 如图,在平面直角坐标系xOy 中,顶点为M 的抛物线y = ax 2+bx (a > 0)经过点A 和x 轴正半轴上的点B ,AO = BO = 2,∠AOB = 120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且ABC ∆与AOM ∆相似,求点C 的坐标.AB OMxy【答案】(1)2323y x x =;(2)150︒;(3)(4,0)或(8,0). 【解析】解:(1)∵120AOB ∠=︒,2AO BO ==,∴A 点坐标为(13-,,B 点坐标为()20,.∴代入2y ax bx =+,解得:3a ,23b =∴抛物线解析式为:2323y =. (2)过M 作MF ⊥OB 于F ,∵点M 的坐标为31,⎛ ⎝⎭,∴30FOM ∠=︒. ∴309030150AOM ∠=︒+︒+︒=︒.(3)∵30ABO ∠=︒,150AOM ∠=︒,∴C 点在B 点右侧,ABC ∠与AOM ∠为对应角,分情况讨论:① ABC AOM ∆∆∽时,∴AO MOAB BC=. ∵23MO =2BC =. ∴C 点坐标为(4,0); ② CAB AOM ∆∆∽时,∴BC ABAO MO=. ∴6BC =.∴C 点坐标为(8,0).综上所述,C 点坐标为(4,0)或(8,0).【总结】本题一方面考查二次函数背景下的角度的确定,注意对特殊角的发掘,另一方面考查相似的分类讨论,先找到相等的角,再分类讨论.【例3】 如图,平面直角坐标系xOy 中,已知B (1-,0),一次函数5y x =-+的图像与x轴、y 轴分别交于点A ,C 两点.二次函数2y x bx c =-++的图像经过点A 、点B .(1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求APC ∆的面积;(3)如果点Q 在线段AC 上,且ABC ∆与AOQ ∆相似,求点Q 的坐标. 【答案】(1)245y x x =-++;(2)15;(3)1Q (56,256)或2Q (2,3). 【解析】(1)∵直线5y x =-+,当0y =时,得5x =;当0x =时,得5y =; ∴A (5,0) C (0,5)∵二次函数2y x bx c =-++的图像经过点A (5,0)、点B (1-,0).∴255010b c b c -++=⎧⎨--+=⎩,解得:45b c =⎧⎨=⎩;∴二次函数的解析式为245y x x =-++.(2)由()224529y x x x =-++=--+,由题意得顶点P (2,9) . 设抛物线对称轴与x 轴交于G 点,∴S 1413.512.515APC AOC APG AOC AOCP OCPG S S S S S ∆∆∆∆=-=+-=+-=四边形梯形.(3)∠CAB =∠OAQ ,AB = 6,AO = 6,AC =52,○1ABC ∆∽AOQ ∆,∴AB AOAC AQ=, ∴2526AQ =,1Q (56,256); ○2ABC ∆∽AQO ∆,∴AB AQAC AO=, yxOCAB∴32AQ =,2Q (2,3),∴当点Q 的坐标为1Q (56,256)或2Q (2,3)时,ABC ∆与AOQ ∆相似. 【总结】本题主要考查二次函数背景下的面积问题及相似三角形的存在性问题,注意求面积的常用方法及相似的分类讨论.【例4】 如图,在平面直角坐标系xOy 中,直线AB 过点A (3,0)、B (0,m )(0>m ),tan 2BAO ∠=.(1)求直线AB 的表达式; (2)反比例函数1k y x=的图像与直线AB 交于第一象限内的C 、D 两点(BD < BC ),当AD = 2DB 时,求1k 的值;(3)设线段AB 的中点为E ,过点E 作x 轴的垂线,垂足为点M ,交反比例函数2k y x=的图像于点F ,分别联结OE 、OF ,当OEF ∆∽OBE ∆时,请直接写出满足条件的所有2k 的值.【答案】(1)26y x =-+;(2)14k =;(3)292k =-或22716k =. 【解析】解:(1)∵tan 2BAO ∠=,()3,0A ,∴()0,6B ,∴:26AB y x =-+;(2)∵2AD BD =,∴3A D x x =,∴()14D ,,∴14k =; xyABO(3)3,32E ⎛⎫⎪⎝⎭,BOE EFO ∠=∠○1当OBE EFO ∠=∠时,OB OEEF EO=, ∴61EF=,6EF =, ∴3,32F ⎛⎫- ⎪⎝⎭,∴292k =-;○2当OBE EOF ∠=∠时,OB OEEO EF=, ∴2158OE EF OB ==,∴39,28F ⎛⎫⎪⎝⎭,∴22716k =;综上:292k =-或22716k =.【总结】本题综合性较强,一方面考查了锐角三角比在函数背景下的运用,另一方面考查了点的坐标与距离间的关系,注意对符号的判定.模块二:以几何为背景的相似三角形问题知识精讲1、知识内容:在以几何为背景的此类压轴题中,几何推导的过程较为复杂,往往需要多次运用边、角关系的代换才能得到最终结果;在计算上也经常需要借助函数、方程的思想,来求得最后的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学冲刺难点突破几何证明问题专题一几何证明之三角形中的存在性问题1、如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴=+,解得:k=2.(3)∠BPD=∠BCD+∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.2、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证△A'CD是等边三角形;(2)如图2,设AC中点为E,A'B'中点为P,AC=a,连接EP.在旋转过程中,线段EP的长度是否存在最大值?如果存在,请求出这个最大值并说明此时旋转角θ的度数,如果不存在,请说明理由.(1)证明:∵AB∥CB',∴∠BCB'=∠ABC=30°,∵将△ABC绕顶点C顺时针旋转,∴∠ACA'=30°.又∵∠ACB=90°,∴∠A'CD=60°.又∵∠CA'B'=∠CAB=60°,∴△A'CD是等边三角形.(2)当θ=120°时,EP的长度最大,EP的最大值为a.解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA′=120°,∵∠B′=30°,∠A′CB′=90°,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=a.3、如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.设F点移动的时间为t.(1)求A、B两点的坐标;(2)计算:当△EFO面积最大时,t的值;(3)在(2)的条件下,边BC上是否还存在一个点D,使得△EFD≌△FEO?若存在,请直接写出D点的坐标;若不存在,试说明理由.解:(1)∵CO=2,∴C(2,0).又∵AO=3OC=6,∴A(0,6),可设BO=x,且x>0;则:BC2=(2+x)2,AB2=AO2+OB2=36+x2;又∵BC=AB,∴(2+x)2=36+x2,故:x=8,∴B(﹣8,0);(2)过F点作FK⊥BC于K,可设F点移动的时间为t,且0<t<2,则:BF=5t,TO=FK=3t;∴AT=6﹣3t,又∵FE∥BC,∴△AFE∽△ABC,而AO⊥BC交EF于T,则:=,∴=,即:EF=10﹣5t,故:S△EFO=EF×TO=(10﹣5t)×3t,即:S△EFO=﹣(t﹣2)t=,∴当t=1时,△EFO的面积达到最大值;(3)在(2)的基础上,E、F分别是AC、AB的中点,若使D为BC的中点时,===,又∵==,∴FO=ED,EO=FD,EF=FE,∴△EFD≌△FEO(SSS),∵C(2,0),B(﹣8,0)∴D(﹣3,0).故:存在满足条件的D点,其坐标为(﹣3,0).4、如图,在平面直角坐标系xOy中,A(a,0),B(0,b),C(c,0).且满足:+(c+1)2+(b+2c)2=0.(1)求证:△ABC是直角三角形;(2)在y轴上是否存在点P,使得△ABP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在y轴上是否存在点D,使得∠BCD=45°?若存在,请求出点D的坐标;若不存在,请说明理由.(1)证明:∵+(c+1)2+(b+2c)2=0,≥0,(c+1)2≥0,(b+2c)2≥0,∴a﹣4=0,c+1=0,b+2c=0,解得,a=4,b=2,c=﹣1,∴BC2=12+22=5,AB2=22+42=20,AC2=25,∴BC2+AB2=AC2.∴△ABC是直角三角形;(2)解:AB==2,当BA=BP,点P在点B的上方时,OP=2+2,此时,点P的坐标为(0,2+2),当BA=BP,点P在点B的下方时,OP=2﹣2,此时,点P的坐标为(0,2﹣2),当AB=AP时,∵OA⊥BP,∴OP=OB=2,此时,点P的坐标为(0,2),当PA=PB时,设点P的坐标为(y,0),PB=2﹣x,PA=,则2﹣x=,解得,x=﹣3,此时,点P的坐标为(0,﹣3),综上所述,△ABP为等腰三角形时,点P的坐标为(0,2+2)或(0,2﹣2)或(0,2)或(0,﹣3);(3)解:假设存在点D,使得∠BCD=45°,点D的坐标为(0,b),作DH⊥BC于H,CD=,BD=2﹣b,在Rt△CDH中,∠BCD=45°,∴CH=DH=CD=,∴BH=﹣,在Rt△BHD中,BH2+DH2=BD2.即(﹣)2+()2=(2﹣b)2.解得,x1=(舍去),x2=,∴点D的坐标为(0,).5、已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)问题发现如图①,若点E、F分别是AB,AC的中点,连接DE,DF,EF,则线段DE与DF的数量关系是,线段DE与DF的位置关系是;(2)拓展探究如图②,若点E,F分别是AB,AC上的点,且BE=AF,连接DE,DF,EF,上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;(3)解决问题当点E,F分别为AB,CA延长线上的点,且BE=AF=AB=2,连接DE,DF,EF,直接写出△DEF的面积.解:(1)结论:DE=DF,DE⊥DF.理由:连接AD,∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥BC,∴AD=BD=CD,∴∠ADB=∠ADC=90°,∵AE=EB,AF=FC,∴DE⊥AB,DF⊥AC,∴DE=AB,DF=AC,∴DE=DF.∵∠DEA=∠EAF=∠DFA=90°,∴∠EDF=90°,∴DE⊥DF,故答案为:DE=DF,DE⊥DF.(2)结论成立,DE=DF;DE⊥DF.证明:如解图①,连接AD,∵AB=AC,∠BAC=90°,点D为BC的中点,∴,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,点D为BC的中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴DF=DE,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,∴△DEF为等腰直角三角形,∵,∴AE=CF=2+4=6,在Rt△AEF中,EF2=AF2+AE2=22+62=40,∴,∴.6、在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.解:(1)如图1中,设AD交EC于点O,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°,∵BA=CA,∠ACE=∠ACB=∠B,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,故答案为30°.(2)(1)中的结论还成立.理由:如图2中,∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°,又∵∠ACM=∠ACB,∴∠B=∠ACM=30°,又∵CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠1=∠2,∴∠2+∠3=∠1+∠3=∠BAC=120°,即∠DAE=120°,又∵AD=AE,∴∠ADE=∠AED=30°.(3)∵AB=AC,AB=12,∴AC=12,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=12AF,∴,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时.,∴CF=AC﹣AF=12﹣3=9,∴CF的最大值为9.7、等腰直角△ABC和等腰直角△ACD,M、N分别在直线BC、CD上.(1)如图1所示,M、N分别在线段BC、CD上,若AM⊥MN,求证:AM=MN.(2)若M、N分别在线段BC、CD外(还在直线BC、CD上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图2,若AM=MN,求证:AM⊥MN.解:(1)延长DC,交AB的延长线于H,连接HM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∵等腰直角△ABC和等腰直角△ACD,∴∠MCD=135°,∴∠BCH=45°,∴△BHC为等腰直角三角形,∴BC=BH,∵AB=BC,∴AB=BH,∴BC是AH的垂直平分线,∴AM=BH,∴∠BHM=∠BAM,∴∠NMC=∠BHM,∵∠NMC+∠MNC=45°,∠BHM+∠MHC=45°,∴∠MHC=∠MNC,∴HM=MN,∴AM=MN;(2)(1)的结论依然成立,第一种情况:如图3所示,延长DC,交AB的延长线于H,连接HM;由(1)可知,MC是AH的垂直平分线,∴AM=MH,∴∠BAM=∠BHM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∴∠BHM=∠NMC,∵∠MHN=∠BHM+45°,∠MNH=∠NMC+45°,∴∠MHN=∠MNH,∴MN=MH,∴AM=MN;第二种情况:如图4所示,仿照第一种情况的证明方法,可以证明AM=MN;(3)如图2,延长DC,交AB的延长线于H,连接HM,由(1)可得BC是AH的垂直平分线,∴HM=AM=MN,∴∠MAB=∠MHB,∠MHC=∠MNC∵∠MHB+∠MHC=45°,∠MNC+∠NMC=45°,∴∠MHB=∠NMC,∵∠MHB=∠MAB,∴∠BAM=∠NMC,∵∠BAM+∠AMB=90°,∴∠AMB+∠NMC=90°,∴∠AMN=90°,∴AM⊥MN.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,D、E分别在AC、BC上,连接AE、BD交于点O,且CD=CE.(1)如图1,求证:AO=BO.(2)如图2,F是BD的中点,试探讨AE与CF的位置关系.(3)如图3,F、G分别是BD、AE的中点,若AC=,CE=,求△CGF的面积.解:(1)如图1中,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵CA=CB,∴∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB.(2)如图2,设AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,设AE与CF的交点为M,∵AC=,∴BC=AC=,∵CE=,∴CD=CE=,在Rt△BCD中,根据勾股定理得,BD==,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=××=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.9、如图,在平面直角坐标系中,点A在y轴上,点B、C在x轴上,∠ABO=30°,AB=2,OB=OC.(1)如图1,求点A、B、C的坐标;(2)如图2,若点D在第一象限且满足AD=AC,∠DAC=90°,线段BD交y轴于点G,求线段BG的长;(3)如图3,在(2)的条件下,若在第四象限有一点E,满足∠BEC=∠BDC.请探究BE、CE、AE之间的数量关系.解:(1)∵∠AOB=90°,∠ABO=30°,AB=2,∴OA=1,OB=,∴A(0,1),B(﹣,0),∵OB=OC,∴C(,0).(2)过点D作DM⊥y轴于点M,过点D作DN⊥x轴于点N,由题意,y轴是线段BC的垂直平分线,∴AB=AC,∴∠ABO=∠ACO=30°,∵∠DAC=90°,x轴⊥y轴,∴∠DAM=∠ACO=30°,又AD=AC,∠AMD=∠CAO,∴△AMD≌△COA(AAS),∴DM=AO,AM=CO,∵AO=1,CO=,∴DM=ON=1,AM=,∴D(1,+1),∴DN=+1,又BN=OB+ON=+1,∴△BND是等腰直角三角形,∴∠DBN=45°,∴△GBO是等腰直角三角形,∴BG=OB==;(3)由(2)可知:∠DBN=45°,∠DCB=30°+45°=75°,∴∠BDC=180°﹣45°﹣75°=60°,∵∠BEC=∠BDC,∴∠BEC=60°,延长EB至F,使BF=CE,连接AF,∵∠ABC=∠ACB=30°,∴∠BAC=120°,∴∠ACE+∠ABE=180°,∵∠ABF+∠ABE=180°,∴∠ABF=∠ACE,又∵AB=AC,BF=CE,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAB,∴∠FAE=∠BAC=120°,∴FE=AE,∴BE+CE=BE+BF=FE=AE,即BE+CE=AE.11、已知:点B、C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上(1)特殊情况:如图1,当∠MAN=90°时,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.(2)一般情况:如图2,当∠MAN为任意锐角时,若∠BED=∠CFD=∠MAN,则(1)式结论是否仍然成立?若成立,请证明,若不成立,请说明理由.证明:(1)如图①中,∵∠MAN=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF(AAS).(2)如图2,(1)中结论仍然成立,理由:如图②中,∵∠1=∠BAE+∠ABE,∠1=∠BAC,∴∠BAC=∠BAE+∠ABE,∵∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,∵∠1=∠BAE+∠ABE,∠2=∠CAF+∠ACF,∠1=∠2,∴∠BAE=∠ACF,∵AB=AC,11、(1)如图1,AD∥BC,AD=BC,AC与BD相交于点O,求证:△AOD≌△BOC;(2)如图2,过线段AB的两个端点作射线AM,BN,使AM∥BN.①作∠MAB,∠NBA的平分线交于点E,∠AEB是什么角?为什么?②过点E任作一条直线,交AM于点D,交BN于点C.证明:DE=CE;③试说明无论DC的两个端点在AM,BN上如何移动,只要DC经过点E,AD+BC的值就不变.解:(1)∵AD∥BC,∴∠D=∠B,∠A=∠C,∵AD=BC,∴△AOD≌△BOC(ASA);(2)①∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠BAE+∠ABE=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠BAE﹣∠ABE=90°,即∠AEB为直角;②延长AE,交BN于点F,∵AM∥BN,∴∠MAF=∠AFB,∵∠MAE=∠BAE,∴∠BAF=∠AFB,∴BA=FB,∵∠AEB为直角,∴AE=EF,∵∠DAE=∠EFC,∠AED=∠CEF,∴△DAE≌△CFE(ASA),∴ED=EC;③由②中结论可知,AB=BF,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总有△DAE≌△CFE,总有AD=CF;所以总有AD+BC=2EF=AB.。

相关文档
最新文档