数学抽象的内涵
(完整版)数学抽象及其在教学中的应用

数学抽象及其在教学中的应用抽象性是数学的基本特点之一,所有的数学知识可以说都是经过抽象得到的,小学数学中的知识和方法亦是如此。
数学抽象也是一种基本的数学思想。
学生学习数学,不仅是要学习那些由前人抽象概括形成的数学知识,同时还要学习形成知识的抽象概括的方法。
了解数学抽象的特殊性以及如何在小学数学教学中有效应用数学抽象方法就显得十分必要。
本文将在分析数学抽象的内涵、分类、教育价值的基础上,探讨数学抽象在小学数学教学中的应用。
一、数学抽象的内涵和分类1.数学抽象的内涵。
“抽象”一词源于拉丁语“abstracio”,其本意是排除、抽取的意思。
现在人们对抽象的理解一般有两种,一种是用来形容那种远离具体经验,因而不太容易理解的对象性质的程度;另一种是指从具体事物中舍弃非本质属性而抽取本质属性的过程和方法。
后者反映出抽象是一种思维活动。
抽象性是数学的基本特点之一,抽象也是数学活动最基本的思维方法。
作为方法的数学抽象抽取的是事物在数量关系和空间形式等方面本质属性,进而提炼数学概念,构造数学模型,建立数学理论。
2.数学抽象的分类。
数学的一切活动,从概念到方法,实质上都是抽象的,大到组织一个数学体系所用的公理化方法,在实际应用中的数学模型方法,小到一个概念的给出,一个计算过程的建立,一个证明技巧的发现,甚至于一个问题的表征都需要用到数学抽象。
由此也可以看出数学抽象是多种多样的,也是多层次的。
了解数学抽象的分类有助于我们在教学中抓住抽象的重点和关键。
数学抽象根据抽象对象的性质可以分为“表征型抽象”“原理型抽象”和“建构型抽象”。
对事物所表现出来的特征的抽象,称为“表征型抽象”。
例如三角形、正方形、圆、立方体、轴对称等概念都是“表征型抽象”的结果。
对事物内在因果性、规律性、关系性的抽象,称为“原理型抽象”。
例如乘法分配律、三角形内角和为180º等基本数学关系都是“原理型抽象””的结果。
而建立在这些抽象基础上的数学建构性活动称为“建构型抽象”。
6个数学核心素养

数学模型搭建了数学与外部世界的桥梁, 是数学应用的重要形式。数学建模是应用数学 解决实际问题的基本手段,也是推动数学发展 的动力。
目标:
通过高中数学课程的学习,
数学建模国的际表STE现M:课程旨在学加生强能 有 意 识 地 用 数 学 语 言
科学(Science)、表技术达 现实世界 ,发 现和提出
发建现立和和提 求(((出 解TEMena问 模cgthhinn题 型eeomeloarigtniycg)s))、与的工数问 的融程学关题合联, 感 悟 数 学 与 现 实 之 间
检验和完善模型
学会用数学模型解决实际问 题,积累数学实践的经验
分析和解决问题
认识数学模型在科学、社会、
工程、技术诸多领域的作用,
平移、对称、旋转、折叠、展开、拆分、 组合、拉伸、压缩……,充分利用图形的变 化来分析、解决问题
增强运用几何直观和空间想象思考问题的意识; 形成数学直观,在具体的情境中感悟事物的本质。
直观和抽象是数学的两翼
无论是数学研究还是数学学习都需要 两者的相互支撑
直观和抽象作为数学素养的构成要素、分析数学问题
数学家希尔伯特(Hilbert)在其名著《直观 几何》一书中指出,图形可以帮助我们发现、 描述研究的问题;可以帮助我们寻求解决问 题的思路;可以帮助我们理解和记忆得到的 结果。几何直观在研究、学习数学中的价值 由此可见一般。
般)
例:运用数学抽象的思维方式 思考问题,把握问题的本质
这样,我们就有了共同的结构:
还可做进一步的推广:
b
a
通过抽象,把握对象的本质和基 本关系——模式识别
相似三角形的基本模式
例 等差数列
同构
数学核心素养内涵解释

数据分析与知识获取是从数据中获得有用信息,形成知识。数据包括记录、调查和试验获得的数集,现代数据还包括通过互联网、文本、声音、图像、视频等数字化得到的数集。数据分析与知识获取包括收集数据提取信息、利用图表展示数据、构建模型分析数据、解释数据获取知识。
伴随着大数据时代的到来,数据分析与知识获取已经深入到现代社会生活的各个方面,开拓了数学研究与应用的领域。数据分析与知识获取充分体现了归纳推理的有效性,体现了归纳推理是逻辑推理的本质特征。数据分析与知识获取能力已经成为公民应当具备的基本素养。在数学教学活动中,注重培养学生数据分析与获取知识的能力,有利于学生养成基于数据探究事物变化规律的习惯,有利于学生提升基于数据表达现实问题的能力,有利于学生学会基于数据提取有用信息、获得知识的能力。
直观想象
几何直观与想象主要指借助空间想象感知事物的形态与变化,利用几何图形理解和解决数学问题。主要包括利用图形描述数学问题,启迪解决问题的思路,建立形与数的联系,加深对事物本质和发展规律的理解和认知。
几何直观与想象是理解和发现、提出数学命题的重要辅助手段,是构建抽象结构和进行逻辑推理的思维基础。几何直观与想象是建立数学直觉的基本途径。在数学教学活动中,重视几何直观与想象核心素养的培养,有利于学生养成运用图形和空间想象思考问题的习惯,有利于学生提升数形结合的能力,有利于学生形成借助图形和空间想象进行分析、推理、论证的能力。
数学模型构建了数学与外部世界的桥梁,是数学应用的基本形式。数学建模是应用数学解决实际问题的基本手段,是推动数学发展的外部驱动力。建模能力与反思突出学生系统地运用数学知识解决实际问题的过程,帮助学生逐步积累数学活动经验,培养学生应用能力和创新意识。在数学教学活动中,加强建模能力与反思核心素养的培养,有利于学生养成用数学的眼光观察现实世界的习惯,有利于学生发展用数学的思维分析实际问题的能力,有利于学生形成用数学的语言表达实际问题的能力。
数学思想之数学抽象

例“圆”是在“点”、“距离”、“轨迹” 等概念及“相等”等关系的基础上,明确“定义” 逻辑地构建出来的. (3)数学抽象程度的高度性. A.多层次抽象;B.远离现实模型.
3.数学抽象的两个具体方法
(1)强抽象
从事物具有的若干属性中,强化或者添加某些属 性的抽象称为强抽象.
lim
t0
s t
.
例2.导数概念是高度抽象的结果
二级抽象:求物体直线运动的瞬时速度、曲线的 斜率以及电流的强度等概念进行抽象.
一级亚抽象 函数 y f ( x), x [a, b];
二级亚抽象 x x x0,y f ( x) f ( x0 ), x0 [a, b];
三级亚抽象 函数的平均变化率,y = f ( x0 x) f ( x0 );
x
x
四级亚抽象
导数
f ( x0 )
lim
x0
y x
lim
x0
f ( x0
x) x
f ( x0 ) .
数学抽象
数学思想方法简介
1.何谓数学抽象
何谓抽象,是指舍弃事物的个别的、非本 质的属性,抽取出本质属性的过程和方法.
数学抽象,是一种特殊抽象,是仅仅从 事物的量的属性进行抽取的抽象.
2.数学抽象的特点
(1)数学抽象内容的量的特定性. 仅仅从量的方面抽取,即只着眼于事物存在的
数量关系和空间形式.有别于其他科学. (2)数学抽象方法的逻辑建构性.
一组对边 平行
两组对边 平行
对角相等
对边相等
任意四边形
梯形
平行四边形
矩形
(2)弱抽象
从事物的若干属性中减弱或去掉某些属性的 抽象称为弱抽象.
1、核心素养之数学抽象.docx

核心素养之数学抽象数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽彖岀数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征.【抽象素养标准解读】1、抽象的概念界定从思维的角度看,抽象是指从众多事物中抽取出共同的、本质的属性而舍弃个别的、非本质的属性.在特定的语境中,抽象有时是指“抽象的产物(结果)”,有时是指“抽象的过程”或“抽象的方法”.从数学的角度看,抽象是数学的特性之一.抽彖对于数学学科的建立与发展来说,都是不可或缺的.可以毫不夸张地说,没有抽象就没有数学的研究对象.同样,数学的推理、数学的应用,也都离不开抽象.2、抽象内涵分解数学抽象的内涵有符号意识、数感、几何直观和空间想象.(1)符号意识符号意识主要是指能够理解并且运符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性,是实现具象与抽象的和谐统一.建立符号意识有助于学生理解符号的使用,是数学表达和进行数学思考的重要形式.符号意识内涵可分解为四点:1、从具体情境中抽彖出数量关系和变化规律,并用符号来表示;2、理解符号所代表的数量关系和变化规律;3、会进行符号间的转换;4、能选择适当的程序和方法解决用符号所表示的问题.纵观教材我们对以找到实例进行内涵剖析:1、使学生理解符号所代表的数量关系和变化规律;在现实情境中学生能够理解符号表示的意义并能解释代数式的意义.数学符号的表达是多样化的,比如,关系式、表格、图像等都是表达数量关系和变化规律的符号工具,即使是同一数学对象也可釆用多种符号予以表达.用符号表示具体情境小的数量关系,也像变通语言一样,首先要引进基本字母.在数学语言中,像数字以及表示数字的字母,表示点的字母,运算符号,关系符号等,都是用数学语言刻画各种现实问题的基础.学生不仅要会“用”符号表征,述要“懂”符号表征,深入理解符号所表征对象的内涵与外延.这就需要在符号表征的基础上适当进行符号间的转换把数量关系进行表格、关系式、图像、语言等表征方法之间的转换,加深学生的符号理解.如“a—b=c"可以读作:(1)a比b大c, (2) b比a小c, (3) a减去b等c, (4) G与b的差是c ,反Z亦然.用符号语言更能体现出数学语言的简练、明确等特点,能更地满足数学思想的需要.2、引导学生认识从具体到抽象,联系生活实际,尽可能在情境中帮助学生理解符号以及表达式、关系式的意义,在解决实际问题中渗透符号意识.例如,教学《乘法交换律》概念后,出示()X 0 = () x (),你看这题可以怎样填?可以表不:2 X 5 = 5 X 2也可以表示:3 X 4= 4X3追问:如杲按这样想下去,这样的算式能填完吗?答案是不能的,有无数个.那么更好的方法吗,如:aXb=bXa,其中d、b表示任意数.当然,还可以写为:△Xo = oX/k, △、。
数学核心素养“数学抽象”的认识及思考

1、函数图像的对称性(核心是中点的坐标公式):
①若函数 y f (x) 满足 f (x) f (2 x) ,则函数 y f (x) 图像关于 x0 1对称;
②若函数 y f (x) 满足 f (x) f (2 x),则函数 y f (x) 图像关于(1,0) 对称;
2
积 S 1 lr (其中 l 是弧长, r 是半径),其中,三角形的底 a 和
2
高 h 是垂直关系,扇形的弧 l 和半径 r 也具有“垂直”关系。 若将扇形的弧 l 和半径 r 类比地看成三角形的“底”和“高”, 则两者结论是一致的。也就是说,数学对象变化而关系相似,
则结论具有统一性。进而,我们可以利用数学知识的这种联
数学抽象(内涵、价值、表现、水平)
数学抽象是指通过对数量关系与空间形式的抽 象,得到数学研究对象的素养。主要包括:从数量 与数量关系、图形与图形关系中抽象出数学概念及 概念之间的关系,从事物的具体背景中抽象出一般 规律和结构,并用数学语言予以表征。
数学抽象是数学的基本思想,是形成理性思维 的重要基础,反映了数学的本质特征,贯穿在数学 产生、发展、应用的过程中。数学抽象使得数学成 为高度概括、表达准确、结论一般、有序多级的系 统。
对数学核心素养“数学抽 象”的认识及思考
本次课标修订(2017年版)是对2014 年版的继承和发展,在2014年版课标基础 上,凝练提出了本学科的6个核心素养,即 数学抽象、逻辑推理、数学建模、直观想 象、数学运算和数据分析。如何理解和认 识这6个核心素养,结合昨天鲍教授和章建 跃主编提出的要有具体样例支撑、要注意 数学学科核心素养与具体教学内容的关联 的思想(显性化),以核心素养“数学抽 象”为例,谈一点我个人的粗浅认识。
初中数学抽象的要义与培养关键点

投稿网it: 丧学占管屋2021年3月1日・39・初中数学抽象的要义与培养关键点吴小兵(江苏省南通市崇丿【I区教师发展中心,江苏南通,226000)摘要数学抽象是指从空间形式与数量关系中得到数学研究对象的思维过程。
初中学生数学抽象一般要借助数学直观而达成,发展初中数学抽象有利于实现数学学科育人以及回归数学学科本位。
初中数学抽象的培养关键点包括:情境创设,即从生活情境走向数学情境;深度学习,即从循环类比走向结构生成;实践体验,即从系统关联走向综合解决O关键词数学抽象学科育人情境创设深度学习数学抽象是指在研究空间形式与数量关系的过程中,抽离出本质的特征及属性,而舍弃其他非本质的特征或属性的思维过程,包括从复杂的图形与数量关系中抽离出一般性的规律和结构,并进一步用数学语言予以规范表征。
数学抽象一宜贯穿于数学的产生与发展,作为数学概念形成的必要手段和内隐的思维品质,是形成理性思维极其重要的基础,也成为初中数学六大关键能力E中的“首席”。
初中阶段学生数学抽象的培养是一个循序渐进的过程,但在实际教学中往往会面临着如下现象:一是很多教师教法相对传统单一,注重知识结论,但缺乏经历数学概念的完整抽象过程;二是很多数学教师认同数学抽象的重要性,但对具体如何培养学生数学抽象却不甚了解。
因此,有必要对初中阶段数学抽象的要义及培养关键点等予以探讨。
一、初中数学抽象的要义数学究其本质研究的是抽象的元素,柏拉图时期,西方已开始明确把数学概念看作抽象物,在研究哲学范畴时,将抽象观念作为数学思想融入其中,他们关心方法论中的推理过程,推崇以演绎得到知识,亚里斯多德则在奠定数学推理系统化、规范化的基础上创立逻辑学,而欧几里得的《原本》则当之无愧地成为数学公理化抽象和推理证明的巅峰之作。
一般而言,数学抽象可分为弱抽象(即在原型中只选取某一重要特征予以抽象,导致原型内涵减弱)、强抽象(即将新的特征引入原型,加强原型内涵)、构象化抽象(即在数学逻辑发展中,根据需要构造出原型之外的理想化的数学对象)、公理化抽象(即基于数学理论体系和谐统一的需要,构造出完全理想化的新公理)。
小学数学教材中抽象的概念如何更好地理解?

小学数学教材中抽象的概念如何更好地理解?小学数学教材中充斥着抽象的概念,比如数的意义、运算规则、几何图形等,这些抽象概念对于小学生理解和掌握数学知识至关重要。
然而,小学生的认知特点决定了他们更偏向于具体的、感性大于理性的理解,因此如何将抽象的概念转化成为学生能明白和认可的知识,是小学数学教学中一个重要的课题。
一、抽象概念表述的挑战与策略1. 挑战:概念的抽象性和学生的认知特点小学生的思维发展正处于具体形象思维为主向抽象逻辑思维过渡的阶段,他们难以理解概念的抽象含义,不容易区分概念之间的区别。
例如,学生可能会解释“1+1=2”的具体情况,但难以理解加法的抽象意义。
2. 策略:从具体到抽象,循序渐进教师应从学生的生活经验和已有知识出发,选择贴近学生生活、易于理解的典型事例,帮助学生理解抽象概念的内涵。
也可以用实物演示数的加减运算,用图形帮助学生理解几何概念。
3. 策略:多种感官参与,多元化学习数学学习不局限于课堂上的讲解,还应帮助和鼓励学生通过多种感官学习。
比如,可以让学生实际动手操作、游戏等活动体验数学概念,并用绘画、朗读等方式表达自己的理解。
4. 策略:注重概念之间的联系,构建知识体系数学概念之间存在着密切的联系,教师应引导学生发现和理解这些联系,帮助学生构建完整的数学知识体系。
例如,解释分数概念时,可以先联系整数的概念,帮助学生理解分数与整数之间的关系。
二、针对不同概念的教学策略1. 数的概念:- 借用实物、图片等直观教具,指导学生理解数的意义和计数方法。
- 通过游戏、情景剧等让学生体验数的应用。
- 结合生活实际,让学生体会数可以解决生活中的问题。
2. 运算规则:- 通过操作实物、绘制图形等,帮助学生理解运算规则的含义。
- 利用故事、动画等形式,将运算规则融入具体的情景中。
- 鼓励学生自主探索,发现运算规则的规律。
3. 几何图形:- 利用实物模型、模型拼接等,帮助学生认识图形的特征。
- 通过游戏、折纸等活动,让学生在玩中学,体验图形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学抽象的内涵、特征及对中小学数学教育的启示。
一、内涵:数学抽象是指从研究的对象或问题中,把大量的关于其空间形式和数量关系的直观背景材料,通过去粗取精、去伪存真、由此及彼、由表及里的加工和制作、提炼数学概念、构造数学模型、建立数学理论。
即就是从研究对象或问题中抽取出数量关系或空间形式而舍弃其他的属性,借助定义和推理进行逻辑构建的思维过程和方法。
二、特征:1.数学抽象有着明显的目标,都是撇开对象的具体内容,仅仅保留空间形式和数量关系;2.数学抽象适用范围广泛,既有提炼数学概念的表征性抽象,又有探索数学理论的原理性抽象;3.数学抽象有着丰富的层次,不仅表现在直接从现实世界中抽象出相应的空间形式和数量关系,而且还表现为已有数学知识基础上的再抽象。
三、对中小学数学教育的启示
数学教育的是如何处理好“数学”和“教育”的关系。
从“数学”方面来看,因为数学的高度抽象性是数学的最本质的特点,因此数学教学是无法回避抽象性的。
并且,以抽象为突出特征的现代数学定位为主干课程是历史的必然趋势,学习数学最重要的就是学习抽象、学会抽象。
而从“教育”方面来看,就是通过恰当的教学组织,使学生在自己亲身体验的具体现实中去寻找与数学的联系,学会抽象。
从某种程度来说,中学生学习数学的过程就是逐步领会、掌握数学抽象的过程,它要经历一个由具体到抽象,又从抽象回到具体,由直观现实化抽象到概括形式化的发展过程。
因此,具体-抽象结合为一体,是数学教学中应遵循的基本规律。
《数学抽象在数学教学中的应用》潘建军
(一)抽象概念形象化、具体化
在理解、运用抽象概念时,基于具体问题引入概念,然后再通过典型的例子对概念做进一步的理解,将以往己形成的认识、记忆所带来的干扰予以排除,然后对抽象概念的内涵、外延做进一步、全新的、充分的理解,抽取概念的实质,分析不同例证。
此外,老师还要结合数学理论的抽象层次、结构,引导学生进一步构造抽象思维,形成抽象思维系统,最终实现抽象思维与具象层次的转化。
例如在学习苏教版必修四《弧度制》时,
(一)抽象概括问题本质
从某种程度而言,抽象概括数学问题的木质就是认识数学、解决数学问题的、普通思维方式的理性概括,与其它的数学知识、数学方法相比,抽象概括的层次相对更高,而新课标也要求学生具备由表及里、抽象概括数学问题本质的基本能力。
下面通过实例阐述其具体应用:如果实数
总之,数学教学中数学抽象性非但不能减弱,反而应当增加,采取可行的教学方法和手段,使学生在学习中真正感受到数学抽象性的巨大作用。