2021届高考数学(理)一轮复习学案:第2章函数第7节对数与对数函数

合集下载

2021年高三数学一轮复习 对数与对数函数1导学案 新人教版

2021年高三数学一轮复习 对数与对数函数1导学案 新人教版

2021年高三数学一轮复习 对数与对数函数1导学案 新人教版一、学习目标:(1)理解对数的概念及其运算性质,会用换底公式将一般对数化成自然对数或常用对数及相应的对数式的化简。

(2)理解对数函数的概念,体会对数函数是另一类重要的函数模型,掌握对数函数的单调性与特殊点。

二、自主学习:1.计算:(1)= ;(2)1324lg2493-= (3)= (4)= 22.设,且,则3. 方程的解是4.已知,则12; 已知=5. 已知,那么等于 ;三、合作探究例1 设,,且,求的最小值.解:令 ,∵,,∴.由得,∴,∴,∵,∴,即,∴,∴222244(2)4T x y x x x =-=-=--,∵,∴当时,.例2.设、、为正数,且满足.(1)求证:22log (1)log (1)1b c a c a b+-+++= (2)若,,求、、的值.证明:(1)左边222log log log ()a b c a b c a b c a b c a b a b+++-+++-=+=⋅ 22222222222()22log log log log 21a b c a ab b c ab c c ab ab ab+-++-+-=====; 解:(2)由得,∴……………①由得………… ……………②由①②得……………………………………………③由①得,代入得,∵,∴……………………………………………………④由③、④解得,,从而.例3.比较与的大小。

log log ()a a x x a 2122<<解:采用取差法log log lg lg lg lg a a x x x a x a -=-2222∴->>>lg lg lg lg 20020a a a ,,∴<<<<当时,,则;01022x x x x a a lg log log当时,,则;x x x x a a ===1022lg log log当时,,则x x x x a a >>>1022lg log log变式: 若,且,,都是正数,试比较,,的大小.令,由于,,都是正数,则,,,,∴2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y ⋅--=-=>⋅,∴; 同理可得:,∴,∴.四、课堂总结(1)对数与对数运算:1.; 2.. 3.,.4.当0,0,1,0>>≠>N M a a 时:⑴()N M MN a a a log log log +=⑵N M N M a a a log log log -=⎪⎭⎫ ⎝⎛;⑶. 5.换底公式: ()0,1,0,1,0>≠>≠>b c c a a .6. .(2)不同底的对数运算问题,应化为同底对数式进行运算;重视指数式与对数式的互化; 运用对数的运算公式解题时,要注意公式成立的前提.五、检测巩固1. 若(a>0) ,则 42. 已知,下面四个等式中:①;②; ③ ; ④.其中正确命题的个数为 ( B )A .1个B .2个C .3个D .4个3. (xx 年山东文科卷)已知,则8(2)(4)(8)(2)f f f f ++++的值等于 xx .解析 本小题主要考查对数函数问题。

2021版高考数学一轮复习 第二章 函数 2.7 对数与对数函数教学案 苏教版

2021版高考数学一轮复习 第二章 函数 2.7 对数与对数函数教学案 苏教版

第七节对数与对数函数[最新考纲] 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

2。

理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,错误!的对数函数的图象。

3.体会对数函数是一类重要的函数模型.4。

了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念如果a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)换底公式:log a b=错误!(a,c均大于0且不等于1,b>0).(3)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:①log a(M·N)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R).3.对数函数的定义、图象与性质定义函数y=log a x(a>0且a≠1)叫做对数函数图象a>10<a<1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.错误!1.换底公式的两个重要结论(1)log a b=错误!;(2)log am b n=错误!log a b。

其中a>0且a≠1,b>0且b≠1,m,n∈R,m≠0。

2.对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.一、思考辨析(正确的打“√",错误的打“×")(1)函数y=log2(x+1)是对数函数.()(2)log2x2=2log2x. ( )(3)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( )(4)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象不在第二、三象限.()[答案](1)×(2)×(3)√(4)√二、教材改编1.(log29)·(log34)=()A。

高考数学一轮复习 2.8 对数与对数函数教案

高考数学一轮复习 2.8 对数与对数函数教案

2.8 对数与对数函数●知识梳理 1.对数(1)对数的定义:如果a b=N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b=N ⇔log a N =b (a >0,a ≠1,N >0). 两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aN M=log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. ●点击双基1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是 解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25.答案:[2,25] 4.若log x 7y =z ,则x 、y 、z 之间满足 A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z=7y ⇒x 7z=y ,即y =x 7z.答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则 A.a <b <c B.a <c <b C.b <a <c D.c <a <b 解析:∵1<m <n ,∴0<log n m <1.∴log n (log n m )<0. 答案:D ●典例剖析【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241.答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).评述:研究函数的性质时,利用图象更直观.深化拓展已知y =log 21[a 2x+2(ab )x -b 2x +1](a 、b ∈R +),如何求使y 为负值的x 的取值范围?提示:要使y <0,必须a 2x +2(ab )x -b 2x +1>1,即a 2x +2(ab )x -b 2x>0. ∵b 2x>0,∴(b a )2x +2(b a )x-1>0. ∴(b a )x >2-1或(b a )x<-2-1(舍去).再分b a >1,b a =1,ba<1三种情况进行讨论.答案:a >b >0时,x >log ba (2-1);a =b >0时,x ∈R ;0<a <b 时,x <log ba (2-1).【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.特别提示讨论复合函数的单调性要注意定义域.●闯关训练 夯实基础1.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22 C.41 D.21 解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42.答案:A2.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a 1)|,对称轴为x =a 1,由a 1=-2得a =-21.答案:B评述:此题还可用特殊值法解决,如利用f (0)=f (-4),可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1.∵a ≠0,∴a =-21.3.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b=8,∴a +b =3.答案:C4.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:25.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0.综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.培养能力7.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 探究创新9.(2004年苏州市模拟题)已知函数f (x )=3x+k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点,∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3.∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +x m +2m ≥3在x >0时恒成立,只要(x +x m+2m )min ≥3. 又x +x m ≥2m (当且仅当x =x m ,即x =m 时等号成立),∴(x +xm+2m )min =4m ,即4m ≥3.∴m ≥169.●思悟小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.●教师下载中心 教学点睛1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.希望在讲解有关的例题时,要强化这方面的意识.拓展题例【例1】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例2】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A。

高考数学一轮复习7 第7讲 对数与对数函数

高考数学一轮复习7 第7讲 对数与对数函数

第7讲对数与对数函数最新考纲考向预测1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0且a≠1).命题趋势对数函数中利用性质比较对数值大小,求对数型函数的定义域、值域、最值等仍是高考考查的热点,题型多以选择、填空题为主,属中档题.核心素养数学运算、直观想象1.对数概念如果a x=N(a>0且a≠1),那么数x叫做以a为底数N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N(a>0,且a≠1) log a1=0,log a a=1,a log a N=N(a>0且a≠1)运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式log a b=logcblogca(a>0,且a≠1,c>0,且c≠1,b>0)a >1 0<a <1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.常用结论1.换底公式的三个重要结论①log a b =1logba ;②log a m b n =nm log a b ;③log a b ·log b c ·log c d =log a d . 2.对数函数图象的特点(1)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. (2)函数y =log a x 与y =log 1a x (a >0且a ≠1)的图象关于x 轴对称.(3)在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 常见误区1.在运算性质log a M n =n log a M 中,要特别注意M >0的条件,当n ∈N *,且n 为偶数时,在无M >0的条件下应为log a M n =n log a |M |.2.研究对数函数问题应注意函数的定义域.3.解决与对数函数有关的问题时,若底数不确定,应注意对a >1及0<a <1进行分类讨论.1.判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =log a x 2与函数y =2log a x 是相等函数.( ) (4)若M >N >0,则log a M >log a N .( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 2.log 29·log 34=( ) A .14 B .12 C .2D .4解析:选D.原式=log 232×log 322=4log 23×log 32=4×lg 3lg 2×lg 2lg 3=4. 3.函数y =log 2(x +1)的图象大致是( )解析:选C.函数y =log 2(x +1)的图象是把函数y =log 2x 的图象向左平移一个单位长度得到的,图象过定点(0,0),函数定义域为(-1,+∞),且在(-1,+∞)上是增函数,故选C.4.(易错题)函数f (x )=1lg (x +1)+2-x 的定义域为________.解析:由f (x )=1lg (x +1)+2-x ,得⎩⎨⎧x +1>0,lg (x +1)≠0,2-x≥0,得x ∈(-1,0)∪(0,2].答案:(-1,0)∪(0,2]5.(易错题)函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或a =12.答案:2或12对数式的化简与求值[题组练透]1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B.19 C.18D.16解析:选B.方法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.方法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a =3-2=132=19,故选B.方法三:因为a log 34=2,所以a 2=1log34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.方法四:因为a log 34=2,所以a =2log34=log39log34=log 49,所以4-a =14a =19,故选B.方法五:令4-a =t ,两边同时取对数得log 34-a =log 3t ,即a log 34=-log 3t =log 31t ,因为a log 34=2,所以log 31t =2,所以1t =32=9,所以t =19,即4-a =19,故选B.方法六:令4-a =t ,所以-a =log 4t ,即a =-log 4t =log 41t .由a log 34=2,得a =2log34=log39log34=log 49,所以log 41t =log 49,所以1t =9,t =19,即4-a =19,故选B. 2.计算:lg 427-lg 823+lg 75=________.解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12. 答案:12 3.计算:(1)⎝⎛⎭⎪⎫lg 14-lg 25÷100-12;(2)(1-log63)2+log6 2·log618log64.解:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log63+(log63)2+log663·log6(6×3)log64=1-2log63+(log63)2+1-(log63)2log64=2(1-log63)2log62=log66-log63log62=log62log62=1.[提醒] 对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.对数函数的图象及应用(1)若函数y =a |x |(a >0且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为____________.【解析】 (1)由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a |x |在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象大致为选项B.(2)构造函数f (x )=4x 和g (x )=log a x , 当a >1时不满足条件, 当0<a <1时,画出两个函数在⎝⎛⎦⎥⎤0,12上的图象,可知,只需两图象在⎝⎛⎦⎥⎤0,12上有交点即可,则f ⎝ ⎛⎭⎪⎫12≥g ⎝ ⎛⎭⎪⎫12,即2≥log a 12,则a ≤22, 所以a 的取值范围为⎝ ⎛⎦⎥⎤0,22.【答案】 (1)B (2)⎝ ⎛⎦⎥⎤0,22对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.函数y =2log 4(1-x )的图象大致是( )解析:选 C.函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;函数y =2log 4(1-x )在定义域上单调递减,排除D.选C.对数函数的性质及应用 角度一 比较对数值的大小(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b【解析】 因为23<32,所以2<323,所以log 32<log 3323=23,所以a <c .因为33>52,所以3>523,所以log 53>log 5523=23,所以b >c ,所以a <c <b ,故选A.【答案】 A比较对数值的大小的方法角度二 解简单的对数不等式或方程(1)已知函数f (x )为奇函数,当x >0时,f (x )=log 3x ,则满足不等式f (x )>0的x的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧log2x ,x>0,log 12(-x ),x<0,若f (a )<f (-a ),则实数a 的取值范围是________.【解析】 (1)由题意知y =f (x )的图象如图所示,所以满足f (x )>0的x 的取值范围是(-1,0)∪(1,+∞).(2)由f (a )<f (-a )得⎩⎨⎧a>0,log2a<log 12a 或⎩⎨⎧a<0,log2(-a )>log 12(-a ),即⎩⎪⎨⎪⎧a>0,log2a<-log2a 或 ⎩⎪⎨⎪⎧a<0,log2(-a )>-log2(-a ),解得0<a <1或a <-1. 【答案】 (1)(-1,0)∪(1,+∞)(2)(-∞,-1)∪(0,1)解对数不等式的函数及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式. 角度三 对数型函数的综合问题(1)(多选)已知函数f (x )=ln(x -2)+ln(6-x ),则( ) A .f (x )在(2,6)上单调递增 B .f (x )在(2,6)上的最大值为2ln 2 C .f (x )在(2,6)上单调递减D .y =f (x )的图象关于直线x =4对称(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)【解析】 (1)f (x )=ln(x -2)+ln(6-x )=ln[(x -2)(6-x )],定义域为(2,6).令t =(x -2)(6-x ),则y =ln t .因为二次函数t =(x -2)(6-x )的图象的对称轴为直线x =4,又f (x )的定义域为(2,6),所以f (x )的图象关于直线x =4对称,且在(2,4)上单调递增,在(4,6)上单调递减,当x =4时,t 有最大值,所以f (x )max =ln(4-2)+ln(6-4)=2ln 2,故选BD.(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a≥1,即⎩⎪⎨⎪⎧2-a>0,a≥1,解得1≤a <2,即a ∈[1,2).【答案】 (1)BD (2)A解与对数函数有关的函数的单调性问题的步骤1.已知函数f (x )=log 2(1+2-x ),则函数f (x )的值域是( ) A .[0,2) B .(0,+∞) C .(0,2)D .[0,+∞)解析:选B.f (x )=log 2(1+2-x ),因为1+2-x >1,所以log 2(1+2-x )>0,所以函数f (x )的值域是(0,+∞),故选B.2.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则f (-2)________f (a +1).(填“<”“=”或“>”)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,所以a +1>2.因为f (x )是偶函数,所以f (-2)=f (2)<f (a +1).答案:<3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________.解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增, 则y =ax 2-x 在[3,4]上单调递增, 且y =ax 2-x >0恒成立, 即⎩⎨⎧12a ≤3,9a -3>0,解得a >13.答案:⎝ ⎛⎭⎪⎫13,+∞思想方法系列5 换元法的应用换元法又称变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者将题目变为熟悉的形式,简化复杂的计算和推证.若x ,y ,z ∈R +,且3x =4y =12z ,x +yz ∈(n ,n +1),n ∈N ,则n 的值是( ) A .2 B .3 C .4D .5【解析】 设3x =4y =12z =t (t >1), 则x =log 3t ,y =log 4t ,z =log 12t , 所以x +y z =log3t +log4t log12t =log3t log12t +log4t log12t =log 312+log 412 =2+log 34+log 43.因为1<log 34<2,0<log 43<1, 所以1<log 34+log 43<3.又log 34+log 43>2log34·log43=2, 所以4<2+log 34+log 43<5, 即x +yz ∈(4,5). 所以n =4. 【答案】 C换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中再研究,从而使非标准型问题标准化、复杂问题简单化.换元法经常用于研究指数型、对数型函数的性质、三角函数式的化简求值、解析几何中计算等.函数f (x )=log 2x ·log 2(2x )的最小值为________.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log2x +122-14≥-14,当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14.答案:-14[A 级 基础练]1.已知log a 12=m ,log a 3=n ,则a m +2n =( ) A .3 B .34 C .9D .92解析:选D.因为log a 12=m ,log a 3=n ,所以a m =12,a n =3. 所以a m +2n =a m ·a 2n =a m ·(a n )2=12×32=92.2.函数y =log3(2x -1)+1的定义域是( ) A .[1,2]B .[1,2)C .⎣⎢⎡⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫23,+∞解析:选C.由⎩⎪⎨⎪⎧log3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log3(2x -1)≥log 313,x>12,解得x ≥23.故选C.3.(2021·河北九校第二次联考)设a =4-12,b =log 1213,c =log 32,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B.a =4-12=1412=12,b =log 1213=log 23>log 22=1,c =log 32>log 33=12,且c =log 32<log 33=1,即12<c <1,所以a <c <b ,故选B.4.(多选)在同一平面直角坐标系中,f (x )=kx +b 与g (x )=log b x 的图象如图,则下列关系不正确的是( )A .k <0,0<b <1B .k >0,b >1C .f ⎝ ⎛⎭⎪⎫1x g (1)>0(x >0)D .x >1时,f (x )-g (x )>0解析:选ABC.由直线方程可知,k >0,0<b <1,故A ,B 不正确;而g (1)=0,故C 不正确;而当x >1时,g (x )<0,f (x )>0,所以f (x )-g (x )>0.所以D 正确.5.(多选)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的为( )A .h (x )的图象关于原点对称B .h (x )的图象关于y 轴对称C .h (x )的最大值为0D .h (x )在区间(-1,1)上单调递增解析:选BC.函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称, 所以f (x )=log 2x ,h (x )=log 2(1-|x |),为偶函数,不是奇函数, 所以A 错误,B 正确; 根据偶函数性质可知D 错误;因为1-|x |≤1,所以h (x )≤log 21=0,故C 正确. 6.设2a =5b =m ,且1a +1b =2,则m =________.解析:因为2a =5b =m >0,所以a =log 2m ,b =log 5m ,所以1a +1b =1log2m +1log5m =log m 2+log m 5=log m 10=2.所以m 2=10, 所以m =10. 答案:107.(2021·贵州教学质量测评改编)已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,则点A 的坐标为________;若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.解析:令x +3=1可得x =-2,此时y =log a 1-89=-89,可知定点A 的坐标为⎝⎛⎭⎪⎫-2,-89.点A 也在函数f (x )=3x +b 的图象上,故-89=3-2+b ,解得b =-1.所以f (x )=3x -1,则f (log 32)=3log 32-1=2-1=1.答案:⎝ ⎛⎭⎪⎫-2,-89 18.已知函数f (x )=⎩⎨⎧ln x +b ,x>1,ex -2,x≤1,若f (e)=-3f (0),则b =________,函数f (x )的值域为________.解析:由f (e)=-3f (0)得1+b =-3×(-1),即b =2,即函数f (x )=⎩⎪⎨⎪⎧ln x +2,x>1,ex -2,x≤1.当x >1时,y =ln x +2>2;当x ≤1时,y =e x -2∈(-2,e -2].故函数f (x )的值域为(-2,e -2]∪(2,+∞).答案:2 (-2,e -2]∪(2,+∞) 9.已知函数f (x -3)=log a x6-x (a >0,a ≠1).(1)求f (x )的解析式;(2)判断f (x )的奇偶性,并说明理由.解:(1)令x -3=u ,则x =u +3,于是f (u )=log a 3+u 3-u(a >0,a ≠1,-3<u <3),所以f (x )=log a 3+x3-x (a >0,a ≠1,-3<x <3).(2)f (x )是奇函数,理由如下:因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x3-x =log a 1=0,所以f (-x )=-f (x ),又定义域(-3,3)关于原点对称. 所以f (x )是奇函数.10.设f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1),且f (1)=2. (1)求实数a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2.由⎩⎪⎨⎪⎧1+x>0,3-x>0,得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.[B 级 综合练]11.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析:选C.当a >1时,y 有最小值,则说明x 2-ax +1有最小值,故x 2-ax +1=0中Δ<0,即a 2-4<0,所以2>a >1.当0<a <1时,y 有最小值,则说明x 2-ax +1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.12.(多选)已知函数f (x )=⎩⎨⎧log2(x -1),x>1,⎝ ⎛⎭⎪⎫12x ,x≤1,则()A .若f (a )=1,则a =0B .f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫2 0202 019=2 019C .若f (f (a ))=2-f (a ),则0≤a ≤3D .若方程f (x )=k 有两个不同的实数根,则k ≥1解析:选BC.由f (a )=1,得⎩⎪⎨⎪⎧a>1,log2(a -1)=1或⎩⎨⎧a≤1,⎝ ⎛⎭⎪⎫12a =1,解得a =3或a =0,故选项A 不正确;f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫2 0202 019=f ⎝ ⎛⎭⎪⎫log212 019=⎝ ⎛⎭⎪⎫12log212 019=2log 22 019=2 019,选项B 正确;f (f (a ))=2-f (a )=⎝ ⎛⎭⎪⎫12f (a ),所以f (a )≤1,得⎩⎪⎨⎪⎧a>1,log2(a -1)≤1或⎩⎨⎧a≤1,⎝ ⎛⎭⎪⎫12a ≤1,解得0≤a ≤3,选项C 正确;作出函数f (x )的图象(如图),结合函数图象可知,当方程f (x )=k 有两个不同的实数根时,k ≥12,选项D 不正确.13.已知函数f (x )=-log 2x ,则下列四个结论中正确的是________.(填序号) ①函数f (|x |)为偶函数;②若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1;③函数f (-x 2+2x )在(1,3)上单调递增.解析:对于①,f (|x |)=-log 2|x |,f (|-x |)=-log 2|-x |=-log 2|x |=f (|x |),所以函数f (|x |)为偶函数,故①正确;对于②,若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则f (a )=|f (b )|=-f (b ),即-log 2a =log 2b ,即log 2a +log 2b =log 2ab =0,得到ab =1,故②正确;对于③,函数f (-x 2+2x )=-log 2(-x 2+2x ),由-x 2+2x >0,解得0<x <2,所以函数f (-x 2+2x )的定义域为(0,2),因此在(1,3)上不具有单调性,故③错误.答案:①②14.已知函数f (x )=log 2⎝⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解:(1)因为函数f (x )是R 上的奇函数, 所以f (0)=0,求得a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0为所求.(2)因为函数f (x )的定义域是一切实数, 所以12x +a >0恒成立.即a >-12x 恒成立, 由于-12x ∈(-∞,0), 故只要a ≥0即可.(3)由已知得函数f (x )是减函数.故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝⎛⎭⎪⎫12+a ≥2⇒⎩⎨⎧a +12>0,a +1≥4a +2.故-12<a ≤-13.[C 级 创新练]15.形如y =1|x|-1的函数因其图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数f (x )=log a (x 2+x +1)(a >0,a ≠1)有最小值,则“囧函数”与函数y =log a |x |的图象的交点个数为( )A .1B .2C .4D .6解析:选 C.令u =x 2+x +1,则函数f (x )=log a u (a >0,a ≠1)有最小值.因为u =⎝ ⎛⎭⎪⎫x +122+34≥34,所以当函数f (x )是增函数时,f (x )在⎣⎢⎡⎭⎪⎫34,+∞上有最小值;当函数f (x )是减函数时,f (x )在⎣⎢⎡⎭⎪⎫34,+∞上无最小值.所以a >1,此时“囧函数”y =1|x|-1与函数y =log a |x |在同一平面直角坐标系内的图象如图,由图象可知,它们的图象的交点个数为4.故选C.16.我们知道,互为反函数的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称;而所有偶函数的图象都关于y 轴对称.现在我们定义:如果函数y =f (x )的图象关于直线y =x 对称,即已知函数f (x )的定义域为D ,∀x ∈D ,若y =f (x ),x =f (y )也成立,则称函数f (x )为“自反函数”.显然斜率为-1的一次函数f (x )=-x +b 都是“自反函数”,它们都是单调递减的函数.你认为是否还存在其他的“自反函数”?如果有,请举例说明,并对该“自反函数”的基本性质提出一些猜想;如果没有,请说明理由.解:有.举例如下:根据“自反函数”的定义,函数f (x )=kx (k ≠0)是“自反函数”.“自反函数”f (x )=kx (k ≠0)的定义域、值域均为(-∞,0)∪(0,+∞);当k >0时,f (x )=k x 在区间(-∞,0),(0,+∞)上为减函数;当k <0时,f (x )=kx 在区间(-∞,0),(0,+∞)上为增函数;f (x )=kx (k ≠0)是奇函数,但不是周期函数.。

2021届新课标数学一轮复习讲义_第二章_第7讲_对数与对数函数

2021届新课标数学一轮复习讲义_第二章_第7讲_对数与对数函数

第7讲对数与对数函数1.对数概念如果a x=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x 负数和零没有对数1的对数是零:log a1=0底数的对数是1:log a a=1对数恒等式:a log a N=N运算性质log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式公式:log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0) 推广:log am b n=nm log a b;log a b=1log b a2.对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0当0<x<1时,y>0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.[做一做]1.计算:2log510+log50.25=()A .0B .1C .2D .4 答案:C2.函数f (x )=log 12x 2的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选B.因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间, 即求函数t =x 2的单调递减区间,结合函数的定义域,可知所求区间为(-∞,0). 3.f (x )=1-lg (x -2)的定义域为________.解析:∵1-lg(x -2)≥0,∴lg(x -2)≤1,∴0<x -2≤10,∴2<x ≤12, ∴f (x )=1-lg (x -2)的定义域为(2,12]. 答案:(2,12]1.辨明三个易误点(1)在运算性质中,要特别注意条件,底数和真数均大于0,底数不等于1; (2)对公式要熟记,防止混用;(3)对数函数的单调性、最值与底数a 有关,解题时要按0<a <1和a >1分类讨论,否则易出错. 2.对数函数图象的两个基本点(1)当a >1时,对数函数的图象“上升”; 当0<a <1时,对数函数的图象“下降”.(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限. [做一做]4.函数y =log a (3x -2)(a >0,a ≠1)的图象经过定点A ,则A 点坐标是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫23,0 C .(1,0) D .(0,1) 答案:C5.函数y =log 12(3x -a )的定义域是⎝⎛⎭⎫23,+∞,则a =________.答案:2考点一__对数式的化简与求值________________计算下列各式:(1)lg 25+lg 2·lg 50+(lg 2)2;(2)lg 37+lg 70-lg 3-(lg 3)2-lg 9+1;(3)(log 32+log 92)·(log 43+log 83).[解] (1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52 =(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5 =2(lg 2+lg 5)=2.(2)原式=lg 37×703-(lg 3)2-2lg 3+1=lg 10-(lg 3-1)2 =1-|lg 3-1|=lg 3.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 2lg 9⎝⎛⎭⎫lg 3lg 4+lg 3lg 8=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3⎝⎛⎭⎫lg 32lg 2+lg 33lg 2 =3lg 22lg 3·5lg 36lg 2=54. [规律方法] 对数运算的一般思路:(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数的运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.[注意] 在运算中要注意对数化同底和指数与对数的互化.1.(1)计算:(1-log 63)2+log 62·log 618log 64; (2)已知log a 2=m ,log a 3=n ,求a 2m +n .解:(1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n , ∴a m =2,a n =3,∴a 2m +n =(a m )2·a n =22×3=12.考点二__对数函数的图象及应用______________(1)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )(2)若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________. [解析] (1)法一:分a >1,0<a <1两种情形讨论.当a >1时,y =x a 与y =log a x 均为增函数,但y =x a 递增较快,排除C ;当0<a <1时,y =x a 为增函数,y =log a x 为减函数,排除A ,由于y =x a 递增较慢,所以选D.法二:幂函数f (x )=x a 的图象不过(0,1)点,排除A ;B 项中由对数函数g (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数g (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故C 错.(2)设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 图象的下方即可.当0<a <1时,显然不成立; 当a >1时,如图所示,要使x ∈(1,2)时f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只需f 1(2)≤f 2(2), 即(2-1)2≤log a 2,log a 2≥1,∴1<a ≤2,即实数a 的取值范围是(1,2]. [答案] (1)D (2)(1,2]若本例(2)变为:已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解:由x 2-log a x <0,得x 2<log a x .设f (x )=x 2,g (x )=log a x .由题意知,当x ∈⎝⎛⎭⎫0,12时,函数f (x )的图象在函数g (x )的图象的下方, 如图,可知⎩⎪⎨⎪⎧0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,即⎩⎪⎨⎪⎧0<a <1,⎝⎛⎭⎫122≤log a 12,解得116≤a <1. ∴实数a 的取值范围是⎣⎡⎭⎫116,1.[规律方法] (1)研究对数型函数的图象时,一般从最基本的对数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,要注意底数a >1或0<a <1的两种不同情况.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.2.(1)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )(2)不等式log a x >(x -1)2恰有三个整数解,则a 的取值范围为________.解析:(1)由题意y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x=⎝⎛⎭⎫13x,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符.故选B.(2)不等式log a x >(x -1)2恰有三个整数解,画出示意图可知a >1,其整数解集为{2,3,4},则应满足⎩⎪⎨⎪⎧log a 4>(4-1)2,log a 5≤(5-1)2,得165≤a <94,则a 的取值范围为[165,94).答案:(1)B (2)[165,94)考点三__对数函数的性质及应用(高频考点)对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有. 高考对对数函数性质的考查主要有以下四个命题角度: (1)考查对数函数的定义域; (2)考查对数函数的单调性、奇偶性;(3)比较对数值的大小; (4)解简单的对数不等式.(1)已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a (2)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. ①求f (x )的定义域;②判断f (x )的奇偶性并予以证明;③当a >1时,求使f (x )>0的x 的取值范围.[解析] (1)0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,即0<a <1,b <0,c >1,所以c >a >b .[答案] C(2)解:①f (x )=log a (x +1)-log a (1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求定义域为{x |-1<x <1}. ②f (x )为奇函数.证明如下:由①知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ). 故f (x )为奇函数.③由f (x )>0,得log a (x +1)-log a (1-x )>0, ∴log a (x +1)>log a (1-x ),又a >1,∴⎩⎪⎨⎪⎧x +1>01-x >0x +1>1-x,解得0<x <1.所以使f (x )>0的x 的取值范围是{x |0<x <1}. [规律方法] 利用对数函数的性质,求与对数函数有关的复合函数的值域和单调性问题时,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.3.(1)设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定(2)已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( ) A.12 B.14C .2D .4 (3)已知函数f (x )=ln(1-a2x )的定义域是(1,+∞),则实数a 的值为________.解析:(1)由已知得0<a <1,所以1<a +1<2,根据函数f (x )为偶函数, 可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).(2)显然函数y =a x 与y =log a x 在[1,2]上的单调性相同,因此函数f (x )=a x +log a x 在[1,2]上的最大值与最小值之和为f (1)+f (2)=(a +log a 1)+(a 2+log a 2)=a +a 2+log a 2=log a 2+6,故a +a 2=6,解得a =2或a =-3(舍去).故选C.(3)由题意得,不等式1-a 2x >0的解集是(1,+∞),由1-a2x >0,可得2x >a ,故x >log 2a ,由log 2a =1,得a =2. 答案:(1)A (2)C (3)2方法思想——求解不等关系中的参数问题(一题多解)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][解析] 法一:(推理计算法)若x ≤0,|f (x )|=|-x 2+2x |=x 2-2x , x =0时,不等式恒成立,x <0时,不等式可变形为a ≥x -2, 而x -2<-2,可得a ≥-2;若x >0,|f (x )|=|ln(x +1)|=ln(x +1),由ln(x +1)≥ax ,可得a ≤ln (x +1)x恒成立,令h (x )=ln (x +1)x ,则h ′(x )=xx +1-ln (x +1)x 2,再令g (x )=xx +1-ln(x +1),则g ′(x )=-x (x +1)2<0,故g (x )在(0,+∞)上单调递减,所以g (x )<g (0)=0, 可得h ′(x )=xx +1-ln (x +1)x 2<0,故h (x )在(0,+∞)上单调递减,x →+∞时,h (x )→0, 所以h (x )>0,a ≤0,综上可知,-2≤a ≤0,故选D.法二:(数形结合法) 由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C. ②当x ≤0,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax ,得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0]. 法三:(分离参数法)∵|f (x )|=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,ln (x +1),x >0,∴由|f (x )|≥ax 分两种情况:①⎩⎪⎨⎪⎧x ≤0,x 2-2x ≥ax 恒成立,可得a ≥x -2恒成立,则a ≥(x -2)max ,即a ≥-2,排除选项A ,B ; ②由⎩⎪⎨⎪⎧x >0,ln (x +1)≥ax 恒成立,根据函数图象可知a ≤0.综合①②得-2≤a ≤0,故选D. 法四:(特值法)作出函数y =|f (x )|的图象(如法二中图),取a 的特殊值进行检验,如取a =1不满足不等式,可排除选项B 、C ,取a =-5,不满足不等式,可排除选项A ,故选D.[答案] D[名师点评] 本题给出四种解法,方法二、三、四都利用了数形结合思想,而方法一是推理计算,在方法三中又利用了分离参数,所以当x ≤0时,把x 2-2x ≥ax 化为x [(x -2)-a ]≥0,得到(x -2)-a ≤0,就达到了参变分离的效果;当x >0时,采取画图,数形结合就可以看出a 的范围.高考试题大多数具有多种解决方法,选择不同的方法可能出现简与繁的较大差异,在高考复习中要注意试题(特别是选择题)的一些特殊解法.已知a =5log 2 3.4,b =5log 4 3.6,c =⎝⎛⎭⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b 解析:选C.c =⎝⎛⎭⎫15log 30.3=5-log30.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.由于y =5x 为增函数,∴5log 23.4>5log 3103>5log 43.6,∴a >c >b .法二:∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数,∴5log 2 3.4>5log 3 103.>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 30.3>5log 4 3.6,故a >c >b .1.函数f (x )=ln (x +3)1-2x 的定义域是( )A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)解析:选A.∵f (x )=ln (x +3)1-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>01-2x >0,即-3<x <0. 2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12x D .2x -2解析:选A.f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:选D.由对数函数的图象和性质及函数图象的平移变换知0<a <1,0<c <1. 4.设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a解析:选C.因为π>2,所以a =log 2π>1.因为π>1,所以b =log 12π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b . 5.已知函数f (x )=ln e x -e -x2,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减解析:选A.要使函数有意义,则e x >e -x ,解得x >0,即函数的定义域是(0,+∞),故函数是非奇非偶函数.又y =e x -e -x2在(0,+∞)上递增,所以f (x )在(0,+∞)上递增,故选A.6.函数y =log 3(x 2-2x )的单调减区间是________. 解析:令u =x 2-2x ,则y =log 3u .∵y =log 3u 是增函数,u =x 2-2x (u >0)的减区间是(-∞,0), ∴y =log 3(x 2-2x )的减区间是(-∞,0). 答案:(-∞,0)7.函数f (x )=log 2x ·log 2(2x )的最小值为________. 解析:f (x )=log 2x ·log2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R ),则原函数可以化为y =t (t +1)=⎝⎛⎭⎫t +122-14(t ∈R ),故该函数的最小值为-14.故f (x )的最小值为-14. 答案:-148.计算下列各题:(1)12lg 3249-43lg 8+lg 245; (2)log 34273·log 5[412log 210-(33)23-7log 72]. 解:(1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. (2)原式=log 33343·log 5[2log 210-(332)23-7log 72]=⎝⎛⎭⎫34log 33-log 33·log 5(10-3-2)=⎝⎛⎭⎫34-1·log 55=-14. 9.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求f (x )的定义域;(2)判断函数f (x )的单调性.解:(1)由a x -1>0,得a x >1,当a >1时,x >0;当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞);当0<a <1时,f (x )的定义域为(-∞,0).(2)当a >1时,设0<x 1<x 2,则1< a x 1< a x 2,故0< a x 1-1<a x 2-1,∴log a (a x 1-1)<log a (a x 2-1).∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数.类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.综上知,函数f (x )在定义域上单调递增.1.已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是( )解析:选B.∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除A.若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,结合图象知选B.2.已知函数f (x )=log a (2x -a )在区间⎣⎡⎦⎤12,23上恒有f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎣⎡⎭⎫13,1C.⎝⎛⎭⎫23,1D.⎣⎡⎭⎫23,1 解析:选A.当0<a <1时,函数f (x )在区间⎣⎡⎦⎤12,23上是减函数,所以log a ⎝⎛⎭⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a<1;当a>1时,函数f(x)在区间⎣⎡⎦⎤12,23上是增函数,所以log a(1-a)>0,即1-a>1,解得a<0,此时无解.综上所述,实数a的取值范围是⎝⎛⎭⎫13,1.3.设2a=5b=m,且1a+1b=2,则m=________.解析:由2a=5b=m,得a=log2m,b=log5m,又1a+1b=2,即1log2m+1log5m=2,∴1lg m=2,即m=10.答案:104.已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则n +m=________.解析:根据已知函数f(x)=|log2x|的图象知,0<m<1<n,所以0<m2<m<1,根据函数图象易知,当x=m2时取得最大值,所以f(m2)=|log2m2|=2,又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:525.设f(x)=|lg x|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2f⎝⎛⎭⎫a+b2,求证:a·b=1,a+b2>1.解:(1)由f(x)=1,得lg x=±1,所以x=10或110.(2)证明:结合函数图象,由f(a)=f(b)可判断a∈(0,1),b∈(1,+∞),从而-lg a=lg b,从而ab=1.又a+b2=1b+b2,令φ(b)=1b+b(b∈(1,+∞)),任取1<b1<b2,∵φ(b1)-φ(b2)=(b1-b2)·⎝⎛⎭⎫1-1b1b2<0,∴φ(b1)<φ(b2),∴φ(b)在(1,+∞)上为增函数.∴φ(b)>φ(1)=2.∴a+b2>1.6.已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.解:(1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0,得-1<x <3,即函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减. 又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),递减区间是(1,3).(2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.。

2021版高考数学一轮讲义:第2章 函数、导数及其应用+2.6 对数与对数函数

2021版高考数学一轮讲义:第2章 函数、导数及其应用+2.6 对数与对数函数

2.6 对数与对数函数[知识梳理]1.对数2.对数函数的概念、图象与性质3.反函数概念:当一个函数的自变量和函数值成一一对应时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.4.对数函数与指数函数的关系指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.(1)对数函数的自变量x恰好是指数函数的函数值y,而对数函数的函数值y恰好是指数函数的自变量x,即二者的定义域和值域互换.(2)由两函数的图象关于直线y=x对称,易知两函数的单调性、奇偶性一致.特别提示:底数a对函数y=log a x(a>0且a≠1)的图象的影响(1)底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.(3)作直线y=1与所给图象相交,交点的横坐标为该对数函数的底数,由此可判断多个对数函数底数的大小关系.[诊断自测]1.概念思辨(1)若log a M2=log a N2,则M=N;若M=N,则log a M2=log a N2.()(2)当x>1时,若log a x>log b x,则a<b.()(3)函数f (x )=lg x -2x +2与g (x )=lg (x -2)-lg (x +2)是同一个函数.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a ,-1.( )。

高考数学一轮复习 2-7对数与对数函数课件 新人教A版


1,则函数f(x)=ax与函数g(x)=logbx的图象可能是(
(2)函数y=ln(1-x)的图象大致为(
)
解析
(1)由指数函数、对数函数的图象知排除选项A、C.
因为ab=1,a≠1,b≠1, 所以a>1,0<b<1或0<a<1,b>1, 函数f(x)、g(x)增减性相反.故选D. (2)由1-x>0,知x<1,排除选项A、B;设t=1-x(x<1),因 为t=1-x为减函数,而y=lnt为增函数,所以y=ln(1-x)为减函 数,可排除D选C.
1 使x∈3,2都有|f(x)|≤1成立,则有
1 loga ≥-1, 3 解得a≥3. loga2≤1, ∴此时a的取值范围是a≥3;
1 当0<a<1时,f(x)=logax在3,2上单调递减,
1 要使x∈3,2都有|f(x)|≤1成立,则有
4 2 方法二:原式=lg 7 -lg4+lg(7 5) 4 2×7 5 1 =lg =lg 10= . 2 7×4
【规律方法】
对数源于指数,对数与指数互为逆运算,对
数的运算可根据对数的定义、对数的运算性质、对数恒等式和对 数的换底公式进行.在解决对数的运算和对数的相关问题时要注 意化简过程中的等价性和对数式与指数式的互化.
基 础 自 评 1.2log510+log50.25=( A.0 C.2
解析
)
B.1 D.4
原式=log5100+log50.25=log525=2.
答案 C
2.已知a=log0.70.8,b=log1.10.9,c=1.10.9,则a,b,c的大 小关系是( )
A.a<b<c B.a<c<b C.b<a<c D.c<a<b

新高考数学通用版总复习一轮课件第二章第7讲对数式与对数函数


B.同学乙发现:对于任意的 x∈(-1,1),都有 fx22+x 1=2f(x) C.同学丙发现:对于任意的 a,b∈(-1,1),都有 f(a)+f(b)
=f1a++abb
D.同学丁发现:对于函数定义域内任意两个不同的实数 x1,
x2,总满足fxx11--xf2x2>0
解析:对 A,f(x)=lg 11-+xx定义域为11- +xx>0⇒(1-x)(1+x)>0, 解得 x∈(-1,1).
A
B
C
D
解析:方法一,f(x)=|log2x|=l-oglo2xg,2xx,≥01<,x<1. 故选 A.
方法二,也可用筛选法求解,f(x)的定义域为{x|x>0},排除 B,D,f(x)≥0,排除 C.故选 A.
答案:A
2.已知函数 y=loga(x+1)+3+x(a>0 且 a≠1)的图象恒过定 点 A,若点 A 也在函数 f(x)=2x+b 的图象上,则 b=( )
解析:令 x+1=1,则 x=0,y=3,∴A(0,3).∴3=20+b, ∴b=2.
答案:C
考点 3 对数函数的性质及其应用 多维探究
[例 2](1)(2020 年新高考Ⅱ)已知函数 f(x)=lg(x2-4x-5)在
(a,+∞)上单调递增,则 a 的取值范围是( )
A.(2,+∞)
B.[2,+∞)
又 f(-x)=lg 11+ -xx=-lg 11- +xx=-f(x),故 f(x)=lg 11- +xx为 奇函数.故 A 错误.
对 B,fx22+x 1=lg 11- +xx2222+ +xx 11=lg xx22- +22xx+ +11=lg xx-+1122= 2lg 11-+xx=2f(x),

高三数学第一轮复习 对数与对数函数教案 文 教案

对数与对数函数一、知识梳理:(阅读教材必修1第62页—第76页)1、对数与对数的运算性质(1)、一般地,如果 (a>0,且) 那么数x叫做以a为底的对数,记做x= ,其中a叫做对数的底,叫做对数的真数。

(2)、以10为底的对数叫做常用对数,并把记为lgN, 以e为底的对数称为自然对数,并把记为lnN. (3)、根据对数的定义,可以得到对数与指数和关系:(4)、零和负数没有对数; =1; =0;=N(5)、对数的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对数恒等式:=N2、对数函数与对数函数的性质(1)、一般地,我们把函数f(x)=)叫做对函数,其中x是自变量,函数的定义域是(0,+。

(2)、对数函数的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。

3、反函数:对数函数f(x)=)与指数函数f(x)=)互为反函数。

原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

互为反函数的图象在同一坐标系关于直线y=x对称。

【关于反函数注意大纲的要求】二、题型探究探究一:对数的运算例1:(15年安徽文科)=-+-1)21(2lg225lg。

【答案】-1【解析】试题分析:原式=12122lg5lg2lg22lg5lg-=-=-+=-+-考点:对数运算.例2:【2014辽宁高考】已知132a-=,21211log,log33b c==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>例3:【2015高考浙江】若4log3a=,则22a a-+=.【答案】334.【考点定位】对数的计算探究二:对数函数及其性质例4:【2014江西高考】函数)ln()(2xxxf-=的定义域为()A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞例5:下列关系 中,成立的是(A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对数函数的单调性解方程、不等式问题 例7:【15年天津文科】已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b(log 5),c(2)f f m ,则,,a b c ,的大小关系为( )(A) b c a(B) b c a (C) b a c (D) b c a【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.例8:【2014陕西高考】已知,lg ,24a x a==则x =________.三、方法提升:1、 处理对数函数问题时要特别注意函数的定义域问题,尤其在大题中【最后的导数题】,一定要首先考虑函数的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误;2、 在2015年高考小题中,考察主要是针对对数的大小比较、指数与对数的关系,中档难度。

2021年高考数学一轮复习 第二章 第7讲 对数与对数函数资料(艺术班)

2021年高考数学一轮复习 第二章 第7讲 对数与对数函数资料(艺术班)一、必记4个知识点1.对数的定义如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算及换底公式(1)对数的性质(a >0且a ≠1): ①log a 1=0;②log a a =1;③a log a N =N .(2)对数的换底公式: 基本公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0). (3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么①log a (M ·N )=log a M +log a N , ②log a M N=log a M -log a N , ③log a M n=n log a M (n ∈R ). 3.对数函数的图像与性质4.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称.二、必明2个易误区1.在运算性质log a M n=n log a M 中,易忽视M >0.2.解决与对数函数有关的问题时易漏两点: (1)函数的定义域; (2)对数底数的取值范围. 三、必会2个方法1.对数值的大小比较的基本方法(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);(4)化同真数后利用图像比较.2.明确对数函数图像的基本点(1)当a >1时,对数函数的图像“上升”;当0<a <1时,对数函数的图像“下降”.(2)对数函数y =log a x (a >0,且a ≠1)的图像过定点(1,0),且过点(a,1)⎝ ⎛⎭⎪⎫1a,-1,函数图像只在第一、四象限.考点一对数式的化简与求值1.(xx·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c解析:选B 利用对数的换底公式进行验证,log a b ·log c a =log c blog c a·log c a =log c b ,则B 对. 2.计算下列各题: (1)lg 37+lg 70-lg 3-lg 32-lg 9+1; (2)12lg 3249-43lg 8+lg 245解:(1)原式=lg 37×703-lg 32-2lg 3+1=lg 10-lg 3-12=1-|lg 3-1|=lg 3.(2)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7)=52lg 2-lg 7-2lg 2+12lg 5+lg 7=12lg 2+12lg 5=12lg(2×5)=12. 考点二对数函数的图像及应用典例 当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2) [解析] 法一:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图像,可知,f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1. 法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x>1,∴0<a <1,排除选项C ,D ;取a =12 ,x =12,则有4=2,log 12=1,显然4x<log a x 不成立,排除选项A.[答案]B一题多解若本例变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________.解析:设12a a f 1(x )=(x -1)2在(1,2)上的图像在f 2(x )=log a x 图像的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时f 1(x )=(x -1)2的图像在f 2(x )=log a x 的图像下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,又即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2].答案:(1,2] [针对训练](xx·安徽皖南八校三联)若函数f (x )=log a (x +b )的大致图像如图,其中a ,b 为常数,则函数g (x )=a x+b 的大致图像是( )解析:选B 由已知函数f (x )=log a (x +b )的图像可得0<a <1,0<b <1.则g (x )=a x +b 的图像由y =a x的图像沿y 轴向上平移b 个单位而得到,故选B.考点三对数函数的性质及应用[典例] 已知函数f x 4ax 2x (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. [解] (1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减.又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.[类题通法]求复合函数y =f (g (x ))的单调区间的步骤(1)确定定义域;(2)将复合函数分解成基本初等函数y =f (u ),u =g (x ); (3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”.课后作业[试一试]1.(xx·重庆高考)函数y =1log 2x -2的定义域是( ) A .(-∞,2) B .(2,+∞) C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)解析:选C 由题可知⎩⎪⎨⎪⎧x -2>0,x -2≠1,所以x >2且x ≠3,故选C.2.(xx·四川高考)lg 5+lg 20的值是________. 解析:lg 5+lg 20=lg(5×20)=lg 10=1.答案:1 [练一练]1.函数y =log a (3x -2)(a >0,a ≠1)的图像经过定点A ,则A 点坐标是( C )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎭⎪⎫23,0 C .(1,0) D .(0,1)2.(xx·全国卷Ⅱ)设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b解析:选D 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3 x 与y =log 5x 的图像,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式即得log 32>log 52. 做一做1.(xx·深圳调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=( ) A .-1 B .-3 C .1 D .3 解析:选A 由题意得,f (-2)=-f (2)=-log 3(1+2)=-1. 2.(xx·广东高考)函数y =lg x +1x -1的定义域是( ) A .(-1,+∞) B .[-1,+∞) C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧x +1>0,x -1≠0,∴⎩⎪⎨⎪⎧x >-1,x ≠1,故选C.3.函数y =lg1|x +1|的大致图像为( )解析:选D 因为y =lg1|x |是(0,+∞)上的单调递减的偶函数,关于y 轴对称,则y =lg 1|x +1|的图像是由y =lg1|x |的图像向左平移一个单位长度得到的.故选D.4.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D f (x )≤2⇔⎩⎪⎨⎪⎧x ≤1,21-x≤2,或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,⇔0≤x ≤1或x >1.5.(xx·南京模拟)若log 2a 1+a21+a<0,则a 的取值范围是________.解析:当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a ,∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a21+a>1. ∵1+a >0,∴1+a 2>1+a .∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1.6.(xx·北京高考)函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)7.函数y =1-lgx +2的定义域为( )A .(0,8]B .(2,8]C .(-2,8]D .[8,+∞)解析:选C 由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则⎩⎪⎨⎪⎧x +2≤10,x +2>0,解得-2<x ≤8,故函数y =1-lg x +2的定义域为(-2,8].8.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log x D .2x -2解析:选A f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x . 9.(xx·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c解析:选D a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a >b >c ,故选D.10.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:选B 因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 11.计算:(log 29)·(log 34)=________. 解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.答案:4 12.设2a =5b=m ,且1a +1b=2,则m =________.解析:由2a =5b=m ,得a =log 2m ,b =log 5m ,又1a +1b =2,即1log 2m +1log 5m =2,∴1lg m =2,即m =10.13.(xx·长春模拟)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域.(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为 (-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.40705 9F01 鼁 - 32306 7E32 縲27032 6998 榘38026 948A 钊25608 6408 搈23907 5D63 嵣9^h*23460 5BA4 室2122852EC 勬。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节 对数与对数函数[最新考纲] 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.必备知识填充1.对数的概念如果a x=N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质 (1)对数的性质: ①alog aN=N ;②log a a b=b (a >0,且a ≠1).(2)换底公式:log a b =log c blog c a (a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ). 3.对数函数的定义、图像与性质 定义函数y =log a x (a >0且a ≠1)叫做对数函数图像a >10<a <1定义 函数y =log a x (a >0且a ≠1)叫做对数函数性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时,y <0; 当x >1时,y >0 当0<x <1时,y >0; 当x >1时,y <0在(0,+∞)上为增函数在(0,+∞)上为减函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称.[常用结论]1.换底公式的两个重要结论(1)log a b =1log b a ;(2)log a m b n=n m log a b .其中a >0且a ≠1,b >0且b ≠1,m ,n ∈R ,m ≠0. 2.对数函数的图像与底数大小的比较如图,作直线y =1,则该直线与四个函数图像交点的横坐标为相应的底数,故0<c <d <1<a <b .由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.自我检测一、思考辨析(正确的打“√”,错误的打“×”) (1)函数y =log 2(x +1)是对数函数.( ) (2)log 2x 2=2log 2x .( )(3)函数y =ln 1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图像过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图像不在第二、三象限.( )[答案] (1)× (2)× (3)√ (4)√ 二、教材改编1.(log 29)·(log 34)=( ) A .14 B .12 C .2D .4D [(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.故选D.]2.已知a =2,b =log 213,c =log 13,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [因为0<a <1,b <0,c =log 13=log 2 3>1.所以c >a >b .故选D.] 3.函数y =log2x -1的定义域是________.⎝ ⎛⎦⎥⎤12,1 [由log (2x -1)≥0, 得0<2x -1≤1. ∴12<x ≤1. ∴函数y =log2x -1的定义域是⎝ ⎛⎦⎥⎤12,1.] 4.函数y =log a (4-x )+1(a >0,且a ≠1)的图像恒过点________. (3,1) [当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图像恒过点(3,1).]课堂考点探究考点1 对数式的化简与求值对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.设2a =5b=m ,且1a +1b=2,则m 等于( )A .10B .10C .20D .100A [由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 解得m =10.]2.计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100=________.-20 [原式=(lg 2-2-lg 52)×100=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.]3.计算:1-log 632+log 62·log 618log 64=________.1 [原式=1-2log 63+log 632+log 663·log 66×3log 64=1-2log 63+log 632+1-log 632log 64=21-log 632log 62=log 66-log 63log 62=log 62log 62=1.]4.已知log 23=a,3b=7,则log 221的值为________.2+a +ab 2a +ab [由题意3b=7,所以log 3 7=b .所以log221=log84=log 284log 263=log 222×3×7log 232×7=2+log 23+log 23·log 372log 23+log 23·log 37=2+a +ab2a +ab.]对数运算法则是在化为同底的情况下进行的,因此经常会用到换底公式及其推论.在对含有字母的对数式进行化简时,必须保证恒等变形.考点2 对数函数的图像及应用对数函数图像的识别及应用方法(1)在识别函数图像时,要善于利用已知函数的性质、函数图像上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.(1)(2019·浙江高考)在同一直角坐标系中,函数y =1a x ,y =log a ⎝ ⎛⎭⎪⎫x +12(a >0,且a ≠1)的图像可能是( )A B C D(2)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C.(1,2) D.(2,2)(1)D (2)B [(1)对于函数y =log a ⎝ ⎛⎭⎪⎫x +12,当y =0时,有x +12=1,得x =12,即y =log a ⎝ ⎛⎭⎪⎫x +12的图像恒过定点⎝ ⎛⎭⎪⎫12,0,排除选项A 、C ;函数y =1a x 与y =log a ⎝ ⎛⎭⎪⎫x +12在各自定义域上单调性相反,排除选项B ,故选D.(2)构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图像,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22, 所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.] [母题探究]1.(变条件)若本例(2)变为:若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,求实数a 的取值范围.[解] 由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图像在f 2(x )=log a x 图像的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示.要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1. 2.(变条件)若本例(2)变为:当0<x ≤14时,x <log a x ,求实数a 的取值范围.[解] 若x <log a x 在x ∈⎝ ⎛⎦⎥⎤0,14成立,则0<a <1,且y =x 的图像在y =log a x 图像的下方,如图所示,由图像知14<log a 14,所以⎩⎪⎨⎪⎧0<a <1,a 12>14,解得116<a <1. 即实数a 的取值范围是⎝ ⎛⎭⎪⎫116,1.1.(2019·合肥模拟)函数y =ln(2-|x |)的大致图像为( )A BC DA [令f (x )=ln(2-|x |),易知函数f (x )的定义域为{x |-2<x <2},且f (-x )=ln(2-|-x |)=ln(2-|x |)=f (x ),所以函数f (x )为偶函数,排除选项C ,D. 当x =32时,f ⎝ ⎛⎭⎪⎫32=ln 12<0,排除选项B ,故选A.]2.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由对数函数的图像和性质及函数图像的平移变换知0<a <1,0<c <1.] 3.设方程10x=|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1D [作出y =10x 与y =|lg(-x )|的大致图像,如图. 显然x 1<0,x 2<0.不妨令x 1<x 2,则x 1<-1<x 2<0, 所以10x 1=lg(-x 1),10x2=-lg(-x 2), 此时10x 1<10x2,即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0,所以0<x 1x 2<1,故选D.] 考点3 对数函数的性质及应用解与对数函数有关的函数性质问题的3个关注点(1)定义域,所有问题都必须在定义域内讨论. (2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的.比较大小(1)(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b(2)已知a =log 2e ,b =ln 2,c =log 13,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >b >aD .c >a >b(1)A (2)D [(1)因为a =log 52<log 55=12,b =log 0.50.2>log 0.50.5=1,c =0.50.2=⎝ ⎛⎭⎪⎫12>12,0.50.2<1,所以a <c <b ,故选A.(2)因为a =log 2e >1,b =ln 2∈(0,1),c =log 13=log 23>log 2e >1,所以c >a >b ,故选D.]对数值大小比较的主要方法(1)化同底数后利用函数的单调性. (2)化同真数后利用图像比较.(3)借用中间量(0或1等)进行估值比较.解简单对数不等式(1)若log a 34<1(a >0且a ≠1),则实数a 的取值范围是________.(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是________.(1)⎝ ⎛⎭⎪⎫0,34∪(1,+∞) (2)⎝ ⎛⎭⎪⎫12,1 [(1)当0<a <1时,log a 34<log a a =1,∴0<a <34; 当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞). (2)由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.] 对于形如log a f (x )>b 的不等式,一般转化为log a f (x )>log a a b,再根据底数的范围转化为f (x )>a b 或0<f (x )<a b .而对于形如log a f (x )>log b g (x )的不等式,一般要转化为同底的不等式来解.和对数函数有关的复合函数解决与对数函数有关的函数的单调性问题的步骤已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] (1)因为a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立. 所以3-2a >0.所以a <32.又a >0且a ≠1,所以a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,因为a >0, 所以函数t (x )为减函数.因为f (x )在区间[1,2]上为减函数, 所以y =log a t 为增函数,所以a >1,当x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),所以⎩⎪⎨⎪⎧3-2a >0,log a 3-a =1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.利用对数函数的性质,求与对数函数有关的函数值域、最值和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的,另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.1.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)单调递减,则a 的取值范围为( )A .(-∞,4]B .[4,+∞)C .[-4,4]D .(-4,4]D [令g (x )=x 2-ax +3a ,因为f (x )=log 0.5(x 2-ax +3a )在[2,+∞)单调递减,所以函数g (x )在区间[2,+∞)内单调递增,且恒大于0,所以12a ≤2且g (2)>0,所以a ≤4且4+a >0,所以-4<a ≤4.故选D.]2.函数y =log a x (a >0且a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.2或12 [分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a<1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.]3.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log -x ,x <0.若f (a )>f (-a ),则实数a 的取值范围是________.(-1,0)∪(1,+∞) [由题意得⎩⎪⎨⎪⎧a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,log -a >log 2-a ,解得a >1或-1<a <0.]。

相关文档
最新文档