5推理与证明 简单难度 讲义 2

合集下载

2020高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合情推理讲义 2-2

2020高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合情推理讲义 2-2

2.1。

1 合情推理1.归纳推理(1)概念:由某类事物的□01部分对象具有某些特征,推出该类错误!全部对象都具有这些特征的推理,或由错误!个别事实概括出错误!一般结论的推理,称为归纳推理(简称归纳).(2)特征:归纳推理是由错误!部分到错误!整体、由错误!个别到错误!一般的推理.(3)一般步骤:第一步,通过观察个别情况发现某些错误!相同性质;第二步,从已知的错误!相同性质中推出一个明确表述的一般性命题(猜想).2.类比推理(1)概念:由两类对象具有某些□,11类似特征和其中一类对象的某些错误!已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特征:类比推理是由错误!特殊到错误!特殊的推理.(3)一般步骤:第一步,找出两类事物之间的错误!相似性或错误!一致性;第二步,用一类事物的错误!性质去推测另一类事物的错误!性质,得出一个明确的命题(猜想).3.合情推理(1)含义归纳推理和类比推理都是根据已有事实,经过错误!观察、错误!分析、错误!比较、错误!联想,再进行错误!归纳、错误!类比,然后提出错误!猜想的推理,我们把它们统称为合情推理.(2)合情推理的过程错误!→错误!→错误!→错误!归纳推理与类比推理的区别与联系区别:归纳推理是由特殊到一般的推理;类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真或可假.1.判一判(正确的打“√",错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于类比推理.( )(2)类比推理得到的结论可以作为定理应用. ()(3)归纳推理是由个别到一般的推理.( )答案(1)×(2)×(3)√2.做一做(1)已知数列{a n}中,a1=1,a n+1=错误!(n∈N*),则可归纳猜想{a n}的通项公式为__________________.(2)数列5,9,17,33,x,…中的x等于________.(3)等差数列{a n}中有2a n=a n-1+a n+1(n≥2且n∈N*),类比以上结论,在等比数列{b n}中类似的结论是__________.答案(1)a n=错误!(n∈N*) (2)65 (3)b错误!=b n-1·b n+1(n≥2且n∈N*)探究1 数列中的归纳推理例1 已知数列{a n}的首项a1=1,且a n+1=错误!(n=1,2,3,…),试归纳出这个数列的通项公式.[解]当n=1时,a1=1,当n=2时,a2=错误!=错误!,当n=3时,a3=错误!=错误!,当n=4时,a4=错误!=错误!,…通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出数列{a n}的通项公式是a n=错误!。

高中数学 第5章 推理与证明 5.2 直接证明与间接证明 5.2.1 直接证明:分析法与综合法讲义(

高中数学 第5章 推理与证明 5.2 直接证明与间接证明 5.2.1 直接证明:分析法与综合法讲义(

5.2.1 直接证明:分析法与综合法[读教材·填要点]综合法和分析法综合法分析法定义 从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求的问题,称为综合法从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件,称为分析法特点从“已知”看“可知”,由因导果,寻找必要条件从“未知”看“需知”,执果索因,寻找充分条件[小问题·大思维]1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.综合法的应用已知a ,b 是正数,且a +b =1,求证:1a +1b≥4.[自主解答] 法一:∵a ,b ∈R +且a +b =1, ∴a +b ≥2ab . ∴ab ≤12.∴1a +1b =a +b ab =1ab≥4.当且仅当a =b =12时,取“=”号.法二:∵a ,b ∈R +, ∴a +b ≥2ab >0,1a +1b ≥21ab>0.∴(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.又因为a +b =1, ∴1a +1b≥4.当且仅当a =b =12时,取“=”号.法三:∵a ,b ∈R +,且a +b =1, ∴1a +1b =a +b a +a +b b=1+b a +ab +1≥2+2a b ·ba=4. 当且仅当a =b =12时,取“=”号.保持例题条件不变,求证:4a +1b≥9.证明:法一:∵a >0,b >0,且a +b =1. ∴4a +1b=4a +b a +a +b b =4+4b a +ab+1 ≥5+24b a ·ab=5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.法二:∵a >0,b >0,且a +b =1. ∴4a +1b=(a +b )·⎝ ⎛⎭⎪⎫4a +1b =4+4b a +a b+1≥5+24b a ·ab=5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a 2=b (b +c ),求证:A =2B . 证明:∵a 2=b (b +c ),∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+bc 2bc =c -b 2b,cos 2B =2cos 2B -1=2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2-1=2⎝ ⎛⎭⎪⎫b +c 2a 2-1=b +c 2-2b b +c 2b b +c =c -b 2b , ∴cos A =cos 2B .又A ,B 是三角形的内角,∴A =2B .分析法的应用当a +b >0时,求证:a 2+b 2≥22(a +b ). [自主解答] 要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22a +b 2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立, 所以a 2+b 2≥22(a +b )成立.综上所述,不等式得证.分析法的证明过程及书写形式(1)证明过程:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可.(2)书写形式:要证…,只需证…,即证…,然后得到一个明显成立的条件,所以结论成立.2.已知a>6,求证:a-3-a-4<a-5-a-6.证明:法一:要证a-3-a-4<a-5-a-6,只需证a-3+a-6<a-5+a-4⇐(a-3+a-6)2<(a-5+a-4)2⇐2a-9+2a-3a-6<2a-9+2a-5a-4⇐a-3a-6<a-5a-4⇐(a-3)(a-6)<(a-5)(a-4)⇐18<20,因为18<20显然成立,所以原不等式a-3-a-4<a-5-a-6成立.法二:要证a-3-a-4<a-5-a-6,只需证1a-3+a-4<1a-5+a-6,只需证a-3+a-4>a-5+a-6.∵a>6,∴a-3>0,a-4>0,a-5>0,a-6>0.又∵a-3>a-5,∴a-3>a-5,同理有a-4>a-6,则a-3+a-4>a-5+a-6.∴a-3-a-4<a-5-a-6.综合法与分析法的综合应用已知△ABC的三个内角A,B,C为等差数列,且a,b,c分别为角A,B,C的对边,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.[自主解答] 法一:要证(a+b)-1+(b+c)-1=3(a +b +c )-1, 只需证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +cb +c=3, 化简,得c a +b +ab +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ). 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°,所以cos B =a 2+c 2-b 22ac =12.所以a 2+c 2-b 2=ac ,所以原式成立.法二:因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°.由余弦定理,有b 2=c 2+a 2-2ac cos 60°, 所以c 2+a 2=ac +b 2. 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得ca +b +ab +c=1,所以⎝ ⎛⎭⎪⎫c a +b +1+⎝ ⎛⎭⎪⎫a b +c +1=3. 即1a +b +1b +c =3a +b +c. 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法与分析法的适用X 围 (1)综合法适用的X 围:①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件的等式或不等式问题等; ②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型.(2)分析法适用的X围:已知条件不明确,或已知条件简便而结论式子较复杂的问题.3.(1)设x≥1,y≥1,证明:x+y+1xy ≤1x+1y+xy;(2)设1<a≤b≤c,证明:log a b+log b c+log c a≤log b a+log c b+log a c. 证明:(1)由于x≥1,y≥1,所以x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2.将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).又x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=1xy ,log b a=1x,log c b=1y,log a c=xy.于是,所要证明的不等式即为x+y+1xy≤1x+1y+xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.已知a,b,c∈R且不全相等,求证:a2+b2+c2>ab+bc+ca. [证明] 法一:(分析法)要证a2+b2+c2>ab+bc+ca,只需证2(a2+b2+c2)>2(ab+bc+ca),只需证(a2+b2-2ab)+(b2+c2-2bc)+(c2+a2-2ca)>0,只需证(a -b )2+(b -c )2+(c -a )2>0, 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0. 所以原不等式a 2+b 2+c 2>ab +bc +ca 成立. 法二:(综合法) 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0. 所以2(a 2+b 2+c 2)>2(ab +bc +ca ). 所以a 2+b 2+c 2>ab +bc +ca .1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,此过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:结合推理及分析法和综合法的定义可知,B 正确. 答案:B2.在△ABC 中,若sin B sin C =cos 2A2,则下列等式一定成立的是( )A .A =B B .A =C C .B =CD .A =B =C解析:∵sin B sin C =cos 2A 2=1+cos A 2=1-cos B +C 2, ∴cos(B +C )=1-2sin B sin C ,∴cos B cos C -sin B sin C =1-2sin B sin C , ∴cos B cos C +sin B sin C =1,∴cos(B -C )=1.又0<B <π,0<C <π,∴-π<B -C <π,∴B =C . 答案:C3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:由证明过程可知,该证明方法为综合法. 答案:综合法5.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证______,即证________,由于________显然成立,因此原不等式成立.答案:a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥06.已知x >0,y >0,且x +y =1,试分别用综合法与分析法证明:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.证明:法一:(综合法) 左边=⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =4+2⎝⎛⎭⎪⎫y x +xy+1≥5+4=9. 当且仅当x =y =12时等号成立.法二:(分析法)要证⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9成立,∵x ,y ∈R +且x +y =1,∴y =1-x . 只需证明⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+11-x ≥9成立,即证(1+x )(1-x +1)≥9x (1-x ), 即证2+x -x 2≥9x -9x 2,即证4x 2-4x +1≥0,即证(2x -1)2≥0,此式显然成立, 所以原不等式成立.一、选择题1.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >b C .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:对于A :若c =0,则A 不成立,故A 错; 对于B :若c <0,则B 不成立,B 错; 对于C :若a 3>b 3且ab <0, 则⎩⎪⎨⎪⎧a >0,b <0,所以1a >1b,故C 对;对于D :若⎩⎪⎨⎪⎧a <0,b <0,则D 不成立.答案:C2.设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .8B .4C .1 D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b=3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B3.已知△ABC 中,cos A +cos B >0,则必有( ) A .0<A +B <πB .0<A +B <π2C.π2<A +B <π D.π2≤A +B <π 解析:由cos A +cos B >0,得cos A >-cos B , ∴cos A >cos(π-B ).∵0<A <π,0<B <π,且y =cos x 在x ∈(0,π)上单调递减. ∴A <π-B .∴A +B <π,即0<A +B <π. 答案:A4.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定解析:∵a +b +c =0,∴(a +b +c )2=0. ∴a 2+b 2+c 2+2(ab +bc +ac )=0. ∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc<0.答案:B 二、填空题5.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0, 故只需a ≠b 且a ,b 都不小于零即可.答案:a ≥0,b ≥0且a ≠b6.若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小关系为____________. 解析:利用函数单调性.设f (x )=ln x x ,则f ′(x )=1-ln x x2, ∴0<x <e 时,f ′(x )>0,f (x )单调递增;x >e 时,f ′(x )<0,f (x )单调递减.又a =ln 44,∴b >a >c . 答案:c <a <b7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 与q 的大小关系是________. 解析:p =a -2+1a -2+2≥2a -2·1a -2+2=4,当且仅当a =3时等号成立. -a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p .答案:p >q8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是________. 解析:∵a ≥x x 2+3x +1=1x +1x+3对任意x >0恒成立, 设μ=x +1x+3(x >0). ∴只需a ≥1μ恒成立即可. 又∵μ=x +1x+3≥5,当且仅当x =1时“=”成立. ∴0<1μ≤15.∴a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞ 三、解答题9.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *).(1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=2a n +1+1a n +1=2a n +1a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b2+1-2m =0. (1)求证:1a 2+4b 2≥9a 2+b 2; (2)求证:m ≥72. 证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b2成立, 只需证⎝ ⎛⎭⎪⎫1a 2+4b 2(a 2+b 2)≥9, 即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b2≥4. 根据基本不等式,有b 2a 2+4a 2b2≥2 b 2a 2·4a 2b 2=4成立, 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1, 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72. 因为a 2+b 2=m -2>0,1a 2+4b 2=2m -1>0, 所以m ≥72.。

高中数学知识点:推理与证明重难点总结-精选教学文档

高中数学知识点:推理与证明重难点总结-精选教学文档

高中数学知识点:推理与证明重难点总结
一、合情推理
1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;
2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。

在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理
演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明
直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。

综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。

分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、
公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。

假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法
数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

推理与证明讲义

推理与证明讲义

1.1 归纳推理【学习要求】1.了解归纳推理的含义,能利用归纳推理进行简单的推理.2.了解归纳推理在数学发展中的作用.【学法指导】一,基础知识回顾:归纳是推理常用的思维方法,其结论不一定正确,但具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养1.归纳推理定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为归纳推理.2.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.3.归纳推理具有如下的特点:(1)归纳推理是由部分到整体,由个别到一般 的推理;(2)由归纳推理得到的结论不一定 正确;(3)归纳推理是一种具有创造性的推理.二,问题探究探究点一:归纳推理的定义例1:在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?答:根据一个或几个已知的命题得出另一个新的命题的思维过程就叫作推理.变式迁移1:观察下面两个推理,回答后面的两个问题:(1)哥德巴赫猜想:6=3+3 8=3+5 10=5+5 12=5+7 14=7+7 16=5+11…… 1 000=29+971 1 002=139+863……猜想:任何一个不小于6的偶数都等于两个奇质数之和.(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.回答 ①以上两个推理在思维方式上有什么共同特点?②其结论一定正确吗?答:①共同特点:部分推出整体,个别推出一般.(这种推理称为归纳推理) ②其结论不一定正确.小结 归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). 探究点二:归纳推理在数列中的应用例2:在数列{a n }中,a 1=1,a n +1=2a n 2+a n,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.解:在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,所以1a n =1+(n -1)×12=12n +12,所以通项公式a n =2n +1变式迁移2:已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…)(1)求a 2,a 3,a 4,a 5;(2)归纳猜想通项公式a n .解:(1)当n =1时,知a 1=1,由a n +1=2a n +1得a 2=3,a 3=7,a 4=15,a 5=31. (2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1,可归纳猜想出a n =2n -1(n ∈N *).探究点三:归纳推理在图形变化中的应用例3:在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,则f(3)=10_;f(n)=n n +1n +26(答案用含n 的代数式表示). 解析:观察图形可知:f(1)=1,f(2)=4,f(3)=10,f(4)=20,…,故下一堆的个数是上一堆个数加上下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n n +12.将以上(n -1)个式子相加可得f(n)=f(1)+3+6+10+…+n n +12=12[(12+22+…+n 2)+(1+2+3+…+n)]=12[16n(n +1)(2n +1)+n n +12]=n n +1n +26. 变式迁移:3:在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…由此猜想凸n(n≥4且n∈N *)边形有几条对角线?解:凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条,凸六边形有9条对角线,比凸五边形多4条,于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线. 于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.因此凸n 边形的对角线条数为2+3+4+5+…+(n -2)=12n(n -3)(n ≥4且n ∈N *) 探究点四:归纳推理在算式问题中的应用例4:观察下列等式,并从中归纳出一般法则.(1)1=12, 1+3=22,1+3+5=32, 1+3+5+7=42,1+3+5+7+9=52,……(2)1=12, 2+3+4=32, 3+4+5+6+7=52 4+5+6+7+8+9+10=72,5+6+7+8+9+10+11+12+13=92, ……解:(1)对于(1),等号左端是整数,且是从1开始的n 项的和,等号的右端是项数的平方; 对于(2),等号的左端是连续自然数的和,且项数为2n -1,等号的右端是项数的平方.∴(1)猜想结论:1+3+5+…+(2n -1)=n 2(n ∈N *).:(2)猜想结论:n +(n +1)+…+[n+(3n -2)]=(2n -1)2(n ∈N *).变式迁移4:在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立.猜想在n 边形A 1A 2…A n 中成立的不等式为1A 1+1A 2+…+1A n ≥n 2n -2π(n ≥3且n ∈N *).. 三,练一练1.已知2+23=223,3+38=338,4+415=4415,…, 若6+a b =6a b(a 、b 均为实数).请推测a =6,b =35 解析:本题考查归纳推理能力,由前面三个等式,发现被开方数的整数与分数的关系:整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测6+a b中,a =6,b =62-1=35. 2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为n 2-n +62解析:前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 3.已知正项数列{a n }满足S n =12(a n +1a n),求出a 1,a 2,a 3,a 4,并推测a n . 解:a 1=S 1=12(a 1+1a 1),又因为a 1>0,所以a 1=1. 当n ≥2时,S n =12(a n +1a n ),S n -1=12(a n -1+1a n -1),两式相减得:a n =12(a n +1a n )-12(a n -1+1a n -1),即a n -1a n =-(a n -1+1a n -1).所以a 2-1a 2=-2,又因为a 2>0,所以a 2=2-1. a 3-1a 3=-22,又因为a 3>0,所以a 3=3- 2. a 4-1a 4=-23,又因为a 4>0,所以a 4=2- 3.将上面4个式子写成统一的形式:a 1=1-0,a 2=2-1,a 3=3-2,a 4=4-3,由此可以归纳推测:a n =n -n -1. 四,课时小结归纳推理的一般步骤(1)对有限的资料进行观察、分析、归纳、整理,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般命题,提出带有规律性的结论,即猜想.注意:一般性的命题往往要用字母表示,这时需注明字母的取值范围.五,作业设计:1. 数列5,9,17,33,x ,…中的x 等于 (B)A .47B .65C .63D .1282. 观察(x 2)′=2x ,(x 4)′=4x 3,(cos x)′=-sin x ,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于(D)A .f(x)B .-f(x)C .g(x)D .-g(x) 3. f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,推测当n ≥2时,有f(2n )>n +224. 已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32. 通过观察上述两等式的规律,请你写出一个一般性的命题sin 2(α-60°)+sin 2α+sin 2(α+60°)=325. 已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=36. 设x ∈R ,且x ≠0,若x +x -1=3,猜想x2n +x -2n (n ∈N *)的个位数字是77. 如图,观察图形规律,在其右下的的空格处画上合适的图形,应为①8. 如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为a n =3n -1(n ∈N *) 9. 如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题:(1)按照要求填表:(2)S 10=55 (3)S n =n (n +1)210画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第5 030项;(2)b 2k -1=5k (5k -1)2.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.解:当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n ∈N *).12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分.(1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 解:(1)3条直线最多将平面分成7个部分.(2)f(n +1)=f(n)+n +1.(3)f(n)=[f(n)-f(n -1)]+[f(n -1)-f(n -2)]+…+[f(2)-f(1)]+f(1)=n +(n -1)+(n -2)+…+2+2=n 2+n +22. 13.在一容器内装有浓度为r%的溶液a 升,注入浓度为p%的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.解:b 1=a 〃r 100+a 4〃p 100a +a 4=1100(45r +15p);b 2=ab 1+a 4〃p 100a +a 4=1100[(45)2r +15p +452p];b 3=ab 2+a 4〃p 100a +a 4=1100[(45)3r +15p +452p +453p].归纳得b n =1100[(45)n r +15p +452p +…+4n -15n p] 1.2 类比推理【学习要求】1.通过具体实例理解类比推理的意义;2.会用类比推理对具体问题作出判断.【学法指导】类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.归纳和类比是合情推理常用的思维方法,其结论不一定正确.一,基础知识回顾:1.类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征 ,我们把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.2.合情推理:合情推理是根据实验 和实践的结果、个人的经验和直觉、已有的事实 和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.二,问题探究探究点一:平面图形与立体图形间的类比例1:如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2S k,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于多少? 解:对平面凸四边形:S =12a 1h 1+12a 2h 2+12a 3h 3+12a 4h 4=12(kh 1+2kh 2+3kh 3+4kh 4) =k 2(h 1+2h 2+3h 3+4h 4),所以h 1+2h 2+3h 3+4h 4=2S k ;类比在三棱锥中,V =13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4 =13(KH 1+2KH 2+3KH 3+4KH 4) =K 3(H 1+2H 2+3H 3+4H 4).故H 1+2H 2+3H 3+4H 4=3V K. 变式迁移1:在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是____________.解析:类比条件:两边AB 、AC 互相垂直侧面ABC 、ACD 、ADB互相垂直.结论:AB 2+AC 2=BC 2 S 2△A B C +S 2△A C D +S 2△A D B =S 2△B C D .答案:设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD探究点二:内似两事物之间的内比例2:根据等式的性质猜想不等式的性质.等式的性质: 猜想不等式的性质:(1)a =b ⇒a +c =b +c; (1)a>b ⇒a +c>b +c ;(2)a =b ⇒ac =bc; (2)a>b ⇒ac>bc ;(3)a =b ⇒a 2=b 2等等. (3)a>b ⇒a 2>b 2等等.例3:在等差数列{a n }中,若a 10=0,证明:等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n<19,n∈N *)成立,并类比上述性质相应的在等比数列{b n }中,若b 9=1,则有等式_______成立.解析:在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0,∴a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19,a 2=-a 18,…,a 19-n=-a n +1,∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .相应地,类比此性质在等比数列{b n }中,可得b 1b 2…b n =b 1b 2…b 17-n ,(n<17,n ∈N *).变式迁移3:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4:,T 12T 8,T 16T 12成等比数列. 三,练一练1.下列说法正确的是 (B )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误解析:根据合情推理可知,合情推理必须有前提有结论.2.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8解析:∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.3.若数列{c n }是等差数列,则当d n =c 1+c 2+…+c n n时,数列{d n }也是等差数列,类比上述性质,若数列{a n }是各项均为正数的等比数列,则当b n =n a 1a 2…a n时,数列{b n }也是等比数列.4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的中心.四,课时小结1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为: 从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想 五,作业设计:1. 下列推理正确的是 (D)A .把a(b +c)与log a (x +y)类比,则有log a (x +y)=log a x +log a yB .把a(b +c)与sin (x +y)类比,则有sin (x +y)=sin x +sin yC .把a(b +c)与a x +y 类比,则有a x +y =a x +a y D .把a(b +c)与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c2. 下面几种推理是合情推理的是 (C) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④3. 把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是(B) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行4. 在等差数列{a n }中,若a n >0,公差d>0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q>1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是(A)A.b 4+b 8>b 5+b 7B.b 5+b 7>b 4+b 8C.b 4+b 7>b 5+b 8D.b 4+b 5>b 7+b 8.5. 已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇=12lr 6. 类比平面直角坐标系中△ABC 的重点G(x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x 33y =y 1+y 2+y 33(其中A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),猜想以A(x 1,y 1,z 1)、B(x 2,y 2,z 2)、C(x 3,y 3,z 3)、D(x 4,y 4,z 4)为顶点的四面体A —BCD 的重点G(x ,y ,z )的公式为⎩⎪⎨⎪⎧ x =x 1+x 2+x 3+x 44y =y 1+y 2+y 3+y 44z =z 1+z 2+z 3+z 447. 公差为d(d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q(q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 1008. 类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.你认为比较恰当的是.①②③.(填序号)9. 已知抛物线y 2=2px(p>0),过定点(p,0)作两条互相垂直的直线l 1、l 2,若l 1与抛物线交于P 、Q 两点,l 2与抛物线交于M 、N 两点,l 1的斜率为k ,某同学已正确求得弦PQ 的中点坐标为(p k 2+p ,p k),请你写出弦MN 的中点坐标:(pk 2+p ,-pk) 10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a 3811.如图(1),在平面内有面积关系S △PA ′B ′S △PAB=PA ′·PB ′PA·PB写出图(2)中类似的体积关系,并证明你的结论.解:类比S △PA ′B ′S △PAB =PA ′〃PB ′PA 〃PB ,有V P —A ′B ′C ′V P —ABC =PA ′〃PB ′PA 〃PB 〃PC ′PC证明:如图:设C ′,C 到平面PAB 的距离分别为h ′,h.则h ′h=PC ′PC ,故V P —A ′B ′C ′V P —ABC=13〃S △PA ′B ′〃h ′13S PAB 〃h =PA ′〃PB ′〃h ′PA 〃PB 〃h =PA ′〃PB ′〃PC ′PA 〃PB 〃PC. 12. 如图所示,在△ABC 中,射影定理可表示为a =b·cos C +c·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1〃cos α+S 2〃cos β+S 3〃cos γ.13.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确及并给出理由.解:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD.则1AE 2=1AB 2+1AC 2+1AD 2.猜想正确.如图所示,连接BE ,并延长交CD 于F ,连接AF.∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD.而AF ⊂平面ACD ,∴AB ⊥AF.在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2.在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD 2,故猜想正确. 1.3综合法与分析法(一)【学习要求】1.了解直接证明的两种基本方法——综合法和分析法.2. 理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.【学法指导】综合法和分析法是直接证明中最基本的两种证明方法,要结合实例了解两种证法的思考过程、特点.一,基础知识回顾:1.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式.2.一般地,利用已知条件和某些数学定义、公理、定理等,经过演绎推理论证,最后推导出所要证明的结论成立,这种证明方法叫作综合法3.分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二,问题探究探究点一:综合法例1:在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形.证明:由A ,B ,C 成等差数列,有2B =A +C ①,由A ,B ,C 为△ABC 的三个内角,所以A +B +C =π②,由①②,得B =π3③,由a ,b ,c 成等比数列,有b 2=ac ④,由余弦定理及③,可得b 2=a 2+c 2-2accos B =a 2+c 2-ac ,再由④,得a 2+c 2-ac =ac ,即(a -c)2=0, 从而a =c ,所以A =C ⑤。

2020高中数学 第二章 推理与证明 2. 数学归纳法讲义 2-2

2020高中数学 第二章 推理与证明 2. 数学归纳法讲义 2-2

2.3 数学归纳法1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想-证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高度)(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n=1时,结论成立;(2)假设当n=k时结论成立,证明n=k+1时结论也必定成立.错误!错误!错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×")(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.( )答案(1)×(2)×(3)√2.做一做(1)已知f(n)=错误!+错误!+错误!+…+错误!,则f(n)共有________项,f(2)=________。

08高二数学复习讲义《推理与证明》

08高二数学复习讲义《推理与证明》

高二数学复习讲义(5)——《推理与证明》<知识点>一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

二.证明⒈直接证明⑴综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。

综合法又叫顺推法或由因导果法。

⑵分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。

分析法又叫逆推证法或执果索因法。

2.间接证明------反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

<练习题>一.选择题1.数列0,1,1,2,4,7,13,x …中的x 等于( )A.22 B.23 C.24 D.252.已知13a =,26a =,且21n n n a a a ++=-,则33a =( )A.3 B.3- C.6 D.6-3<,只需证( )A.22< B.22<C.22< D.22(<4.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A.13n n a -=B.3n n a = C.33n n a n =- D.1323n n a n -=+-5.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解 B.有两个解 C.至少有三个解 D.至少有两个解6.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理( )A.小前提错 B.结论错 C.正确 D.大前提错7.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >,类比上述性质,在等比数列{}n b 中若0n b >,1q >,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+C.4758b b b b +>+ D.4578b b b b +>+8.若ABC △能剖分为两个与自身相似的三角形,那么这个三角形的形状为( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定9.下列推理正确的是( )A.如果不买彩票,那么就不能中奖;因为你买了彩票,所以你一定中奖B.因为a b a c >>,,所以a b a c ->-C.若a b +∈R ,,则lg lg a b +≥D.若a +∈R ,0ab <,则2a b a b b a b a --⎛⎫+=-+-=- ⎪⎝⎭≤ 10.正整数按右表的规律排列,则上起第2005行,左起第2006列的数应为( )A.22005B.22006C.2005+2006D.2005×200611.已知()()()f x y f x f y +=+且(1)2f =,则(1)(2)()f f f n +++…不能等于( )A.(1)2(1)(1)f f nf +++… B.(1)2n n f +⎡⎤⎢⎥⎣⎦C.(1)n n + D.(1)(1)n n f +12.已知1c >,a =b =- ) A.a b >B.a b < C.a b = D.a ,b 大小不定二.填空题13.用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 .14.写出命题“三角形中最多只有一个内角是直角”的否定 .15.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如16.观察2sin105sin100sin10sin 20sin 30sin 200sin10++++=…;2sin102sin 96sin12sin 24sin 36sin192sin12++++=…,写出与以上两个等式规律相同的通式为 .三.解答题17.在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为nb (每次注入的溶液浓度都是p%),计算123b b b ,,,并归纳出n b 的计算公式.18.已知a 与b 均为有理数,(用反证法证)19.用分析法证明:若0a >12a a+-.20.已知命题:“若数列{}n a 是等比数列,且0n a >,则数列{}n b 也是等比数列,其中N )n b n *=∈”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.21.自然状态下的鱼类是一种可再生的资源.为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用n x 表示某鱼群在第()n n *∈N 年年初的总量,且10x >.不考虑其他因素,设在第n 年内鱼群的繁殖量及被捕捞量都与n x 成正比,死亡量与2n x 成正比,这些比例系数依次为正常数a ,b ,c .(1)求1n x +与n x 的关系式;(2)猜想:当且仅当1x ,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)。

推理与证明.知识框架 普通高中数学复习讲义Word版

推理与证明.知识框架 普通高中数学复习讲义Word版

一、合情推理与演绎推理1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一知识内容高考要求模块框架推理与证明部分是由已知推出的判断,叫结论.2、合情推理:根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情推理。

合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。

简言之,归纳推理是由部分到整体、由个别到一般的推理(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。

3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。

三段论是演绎推理的一般模式,它包括:(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断。

4.演绎法:如果一般的命题是已经证明了的,或者是未经证明而作为真理用的,那么以这个一般命题推出的每一个特殊命题也就是正确的.象这样由一般到特殊的推理方法,通常称为演绎推理或者演绎法5.归纳法:先考察一些特殊的事例,然后分析它们共同具有的特征,作出一般的结论.象这样由特殊到一般的推理方法通常称为归纳推理,或者归纳法.归纳法又分为完全归纳法和不完全归纳法两种.(1)由一些特殊事例推出一般结论的推理方法特点:特殊→一般.(2)不完全归纳法:从一个或几个(但不是全部)特殊情况作出一般性结论的归纳推理.不完全归纳法又叫做普通归纳法.这种归纳法是以一定数量的事实作基础,进行分析研究,找出规律.但是,由于不完全归纳法是以有限数量的事实作为基础而得出的一般性结论.这样作出的结论有时可能不正确.例如,在数列241n a n n =++中,当项数为1,2,3,……,38,39时,数列的项分别为43,47,53,…,1601,这些数都是质数,如果由此得出“数列{n a }(其中241n a n n =++)的所有项都是质数”的结论,那么就不对了.因为当n =40时,则2240404141n a =++=,可以看出,40a 的值不是质数了,而是合数.虽然不完全归纳法的结论有时可能不正确,但它仍是一种重要的推理方法.(3)完全归纳法:作为结论依据的观察,如果包含了规律所涉及的一切现象,这种归纳法叫做完全归纳法.由完全归纳所得出的结论是可靠的.完全归纳法是把出现的特殊情况完全无遗的一一加以研究,从而得出一般性的结论的推理方法.完全归纳法又叫做枚举归纳法.应用完全归纳法,在考虑各种情况时,应做到不重不漏. <教师备案>完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的通常在事物包括的特殊 情况数不多时,采用完全归纳法二、直接证明与间接证明三种证明方法的定义与步骤:1. 综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。

推理与证明ppt课件2.1.2

推理与证明ppt课件2.1.2

__所__研__究__的__特__殊__情__况__
根据一般原理,对特殊情况做出 结论
的判断
常用格式 M是P S是M
S是P
数学 选修2-2
第二章 推理与证明
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
对演绎推理及三段论的理解 (1)①演绎的前提是一般性的原理,演绎所得的结论是蕴涵 于前提之中的个别、特殊事实,结论完全蕴涵于前提之中; ②演绎推理是一种收敛性的思考方法,少创造性,但具有 条理清晰,令人信服的论证作用,有助于科学的理论化和系统 化. (2)对于“三段论”应注意: 应用三段论解决问题时,应当首先明确什么是大前提和小 前提,但为了叙述的简洁,如果前提是显然的,则可以省略.
an-an-1=3n+2-[3(n-1)+2]=3(常数).
(小前提)
通项公式为an=3n+2(n≥2)的数列{an}为等差数列.
(结论)
数学 选修2-2
第二章 推理与证明
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
运用三段论时的注意事项 用三段论写演绎推理的过程,关键是明确大前提、小前 提,大前提提供了一个一般性的原理,在演绎推理的过程中往 往省略,而小前提指出了大前提下的一个特殊情况,只有将二 者结合起来才能得到完整的三段论.一般地,在寻找大前提 时,可找一个使结论成立的充分条件作为大前提.
数学 选修2-2
第二章 推理与证明
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: A、D为归纳推理,C为类比推理,B为演绎推 理.
答案: B
数学 选修2-2
第二章 推理与证明
自主学习 新知突破
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推理与证明知识讲解一、推理推理:根据一个或几个已知事实(或假设)得出一个判断.这种思维方式就是推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提;一部分是由已知推出的判断,叫做结论.推理一般分为合情推理与演绎推理.1.合情推理:前提为真,结论可能为真的推理.归纳推理和类比推理是数学中常用的合情推理.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳).归纳是从特殊到一般的过程.教师内容:由归纳推理得到的结论是通过猜测得到的,结论是否真实,还需要经过逻辑证明和实践检验,因此,它不能作为数学证明的工具.归纳推理的一般步骤:第1步通过观察个别情况发现某些相同的性质;第2步从已知的相同性质中推出一个明确表述的一般性命题(猜想).类比推理:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比).类比推理的一般步骤:第1步找出两类事物之间的相似性或一致性;第2步用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).教师内容:在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越有关,类比得出的命题就越可靠.2.演绎推理:根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理.演绎推理的特征是:当前提为真时,结论必然为真.教师内容:因而演绎推理是数学中严格的证明工具.几种数学中常用的演绎推理规则:⑴假言推理:通过验证结论的充分条件为真,判断结论为真.符号语言:若,真,q?pp则真;qa?c.⑵三段论推理:如果,则ba?c?b,“三段论”是演绎推理的一般模式;包括:①大前提——已知的一般原理;(通常是已知的定义、定理、公式等)②小前提——所研究的特殊情况;(通常是已知条件或前面推理的结论)③结论——据一般原理,对特殊情况做出的判断.aRc,其中表示具有传递性的关系.,则⑶传递性关系推理:如果aRbbRc,R⑷完全归纳推理:把所有情况都考虑在内的演绎推理规则.教师内容:在数学中,证明命题的正确性都是使用演绎推理,而合情推理不能用作证明,一道证明题,往往要综合应用这些演绎推理规则,如果违背了这些规则,那么证明就是错误的.①归纳是由特殊到一般的推理;②类比是由特殊到特殊的推理;③演绎推理是由一般到特殊的推理.从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确.不等式证明中的放缩法就属于传递性关系推理;数学归纳法属于完全归纳推理,文科现在不再学习数学归纳法,.复式三段论一个复杂问题的证明或推理,往往不是一次三段论就可以解决的,在证或推的过程中要多次使用三段论,从一个熟悉的大前提出发,产生一个结论;而这个结论又是下一步的大前提,依次递推下去,最终产生结论,这就是所谓的复式三段论.可以看出我们现在遇到的证明或推理的过程,基本上都是复式三段论.二、证明证明:分成直接证明与间接证明.1.直接证明:从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性.常用的直接证明方法有综合法与分析法.①综合法:从已知条件出发,经过逐步的推理,最后达到待证结论.是从原因推导到结果的思维方法;②分析法:从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.是一种从结果追溯到产生结果的原因的思维方法.2.间接证明:常用的有反证法.反证法:先否定结论,在否定结论的基础上,运用演绎推理,导出矛盾,从而肯定结论的真实性.常见矛盾:与假设矛盾;与数学公理、定理、公式、定义或已被证明了的结论矛盾;与公认的简单事实矛盾;与原命题中的已知结论矛盾等.典例精讲一.选择题(共12小题)332222)y”﹣﹣yxy)((x﹣y)(xx+y)=(x+若.1(2018春?天门期末)命题“x >y,则的证明过程:332222),xy+)(x(xy+y)=(x﹣﹣yx“要证明(﹣y)3322).+(xy﹣xy(x﹣y)(x+y﹣即证(xy)(x)+y)=因为x>y,3322)y,﹣xy+=(x+y)(即证x+yx33322223,xyy+x+即证x+yy=x﹣﹣xy+xy3333,y+y+=x即证x因为上式成立,故原等式成立应用了()A.分析法B.综合法C.综合法与分析法结合使用D.演绎法【分析】分析法是果索因,基本步骤:要证…只需证…,只需证…,分析法是从求证的不等式出发,找到使不等式成立的充分条件,把证明不等式的问题转化为判定这些充分条件是否具有的问题.【解答】解:分析法是果索因,基本步骤:要证…只需证…,只需证…结合证明过程,证明过程应用了分析法.故选:A.2.(2018?北京模拟)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()年以来,每年参观总人次逐年递增2013A.万年增加的参观人次不超过201350B.2014年比年参观总人次最多年这六年间,2017.2012年到2017C万年这六年间,平均每年参观总人次超过1602012年到2017.D年年到20172017年每年参观人数的折线图,得2012【分析】由从2012年到年参观总人次最多.2017这六年间,年每年参观人数的折线图,得:2017解:由从2012年到【解答】错误;A2014年参观人次少,故2013A中,年以来,2015年参观总人次比在错误;万,故B502014年比2013年增加的参观人次超过在B中,正确;年参观总人次最多,故C2017年这六年间,20172012在C中,年到D万,故2017年这六年间,平均每年参观总人次不超过160在D中,2012年到错误..C故选:邢台期末)小方,小明,小马,小红四人参加完某项比赛,当问到?.(2017秋3;”小明:我得第一名”;“小红没得第一名“回答如下:四人谁得第一时,小方:.已知他们四人中只有一人说“”“小马:小明没得第一名;小红:我的第一名”真话,且只有一人得第一.根据以上信息可以判断出得第一名的人是()A.小明B.小马C.小红D.小方【分析】分别假设第一名是小方、小明、小马、小红,依次判断四个人的话的真假,由此能求出结果.【解答】解:假设第一名是小方,则小方、小明、小马说的都是真话,小红说的是假话,不合题意;假设第一名是小明,则只有小明说的是真话,别外三人说的都是假话,符合题意;假设第一名是小马,则小方、小马、小红说的都是假话,小明说的是真真话,不合题意;假设第一名是小红,则小方、小明说的是假话,小马和小红说的是真话,不合题意.故选:A.4.(2017秋?新余期末)下列说法中正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是由特殊到一般的推理C.归纳推理是由个别到一般的推理D.合情推理的一般模式是“三段论”形式【分析】本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对4个命题逐一判断即可得到答案.【解答】解:归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,一般模式是“三段论”形式类比推理是由特殊到特殊的推理.故C是正确的故选:C.5.(2017秋?襄阳期末)下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.π是无限不循环小数,无限不循环小数是无理数,所以π是无理数是无理数,所以无限不循环小数是无理数是无限不循环小数,πB.π是无限不循环小数π是无理数,所以.无限不循环小数是无理数,CπD.无限不循环小数是无理数,π是无限不循环小数,所以π是无理数【分析】根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.【解答】解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,大小前提及结论颠倒,不符合演绎推理三段论形式对于C,小前提和结论颠倒,不符合演绎推理三段论形式;对于D,符合演绎推理三段论形式且推理正确;故选:D.6.(2018春?东城区期末)下面几个推理过程是演绎推理的是(),,计算出a,,根据a=1中,A.在数列{a}21na,a的值,然后猜想{a}的通项公式n34B.某校高二共8个班,一班51人,二班52人,三班52人,由此推测各班人数都超过50人C.因为无限不循环小数是无理数,而π是无限不循环小数,所以π是无理数D.由平面三角形的性质,推测空间四面体的性质【分析】推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),合情推理包括类比推理与归纳推理.根据合情推理与演绎推理的概念即可作出判断.【解答】解:∵A与B都是从特殊→一般的推理,均属于归纳推理,是合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D:由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;故选:C.7.(2018春?天门期末)下列类比推理正确的是()xyxyxy++a类比,则有a=aaA.把(b+c)与a+2+=aa?ba+b)a)与a?(+b)类比,则有a?(baB.把(a+nnnnnn zy++y+z)类比,则有(x++z)=xyxabcC.把()与(+D.把(ab)c与(a?b)?c类比,则有(a?b)?c=c?(a?b)【分析】直接利用举例或特值法排除选项,从而求出结果.xy+类比,a(b+c)与【解答】解:对于选项A:把axyxy+,a+=a则有a当x=y=1时,不成立.2222.++yy+z)z≠x+对于选项C:当n=2时(x对于选项D:向量是不成立的.故选:B.8.(2018春?抚顺期末)中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就)是,则用算筹可表示为(.CA.B..D,利用算筹能求出结果.由【分析】=8771,=8771【解答】解:.用算筹可表示为∴.故选:C南阳期末)观察图形规律,在图中右下角的空格内应填入的图形为.9(?2018春)(.D.C.A.B观察图形发现每行有两个阴影图形,三个图形有长方形、圆、三角形.【分析】解:观察图形得到规律是每行有方块、三角形、圆各一个,【解答】且有两块是有阴影部分,照此规律,第三行第三格应该填方块,由于前两格只有一格有阴影部分,故第三格应该是阴影部分的方块..故选:B2=xy“因为偶函数的图象关于轴对称,而函数f(x).10(2018春?济宁期末)2在上述演绎推理中,x的图象关于y轴对称”=x﹣x是偶函数,所以f(x).﹣)所以结论错误的原因是(.大前提错误A.小前提错误B.推理形式错误C.大前提与推理形式都错误D小前提和结论主要观察所给的大前提,【分析】要分析一个演绎推理是否正确,及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.2是非奇非偶函数,故小前题错误,(解:函数fx)=xx﹣【解答】.故选:B是异面直线,CDAB,“201811.(春?东城区期末)用反证法证明命题:若直线),首先应该(,则直线ACBD也是异面直线”是共面直线,ACBD.假设直线A是相交直线B.假设直线BDAC,C.假设直线AC,BD是平行直线D.假设直线AC,BD互相垂直【分析】用反证法证明命题时,应假设命题的否定成立.【解答】解:用反证法证明命题:“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”应假设直线AC、BD是共面直线,故选:A.12.(2018春?天元区校级期末)中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期战国初年,算筹记数的方法是:个位、百位、万位……的数按纵式的数码摆出:十位、千位、9.1﹣的数按横式的数码摆出.如7738可用算筹表示十万位……果个数字的纵式与横式的表示数码如图所示,则算筹表示的结这9)和下列相同的是(264D.C81A.3B.2.,计算选项得结果.对应数据729【分析】根据题意得解:由题意,;均【解答】64B为;C为81×81814729为,A为;不是所求,.D故选:小题)二.填空题(共6类”属于”归纳推理(在“归纳和“天鹅都是白色的镇江期末)秋(13.2017?“.中选择一个合适的填空)比”根据归纳推理的定义即可判断.【分析】属归纳推理,【解答】解:”“天鹅都是白色的故答案为:归纳14.(2018春?伊通县期末)学校建议孩子们周末去幸福广场看银杏叶,舒缓高三学习压力,返校后甲、乙、丙、丁四位同学被问及情况.甲说:“我没去”;乙说:“丁去了”;丙说:“乙去了”;丁说:“我没去”.班主任了解到这四位同学中只有一位同学去了幸福广场,但只有一位说了假话,则去了幸福广场的这位同学是乙.【分析】分别假设去了幸福广场的这位同学是甲,乙,丙,丁,由此分析四个人的话,能求出结果.【解答】解:假设去了幸福广场的这位同学是甲,则甲、乙、丙三位同学说的是假话,丁说的是真话,不符合题意;假设去了幸福广场的这位同学是乙,则甲、丙、丁说的是真话,乙说的是假话,符合题意;假设去了幸福广场的这位同学是丙,则甲和丁说的是真话,乙和丙说的是假话,不符合题意;假设去了幸福广场的这位同学是丁,则甲和乙说的是真话,丙和丁说的是假话,不合题意.故答案为:乙.15.(2018春?南阳期末)有甲、乙、丙、丁四位学生参加数学竞赛,其中只有一名学生获奖,有其他学生问这四个学生的获奖情况,甲说:“是乙或丙获奖”,乙说:“甲、丙都没有获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位学生的话有且只有两个人的话是对的,则获奖的学生是丙.【分析】分别假设奖的学生是甲、乙、丙、丁,分析四个人的话,能求出结果.【解答】解:假设获奖的学生是甲,则四人说的不对,不符合题意,故获奖学生不是甲;假设获奖的学生是乙,则甲、乙、丁说的都对,不符合题意,故获奖学生不是乙;假设获奖的学生是丙,则甲、丙说的正确,乙和丁说的不对,符合题意,故获奖学生是丙;假设获奖的学生是丁,则甲、丙和丁说得都不对,不符合题意,故获奖学生不是丁.故获奖学生是丙.故答案为:丙.16.(2018春?南京期末)观察下列等式:…222222)(﹣5)1=(﹣6)+(﹣7)(﹣+3)++(﹣2)(﹣2222226+++42+5=1022222213++11++1297=822222220++18++191614=15…22222+)7k++1)2+4))+(7k+5(=((请你归纳出一般性结论7k)7k+(7k+2,k∈Z(7k+6).【分析】根据数字之间的变化规律即可求出.222222)1+(﹣+(﹣)5+(﹣2))=(﹣6【解答】解:(﹣7))+(﹣3 222222652=10++4++22222213129=87++11++222222,20=1514++18++191622222+(7k)+61))+(7k4(7k+)++(7k+5)2=(7k(归纳出一般性结论,7k)++2,k∈Z.222222,k)∈Z+(7k+6=(7k+1)(+7k+2)故答案为:(7k)+(7k+4)+(7k+5)17.(2018春?盐城期末)已知对任意正实数a,a,b,b都有+≥,2211类比可得对任意正实数a,a,a,b,b,b都有 ++≥322113.【分析】根据类比的定义,按照题设规律直接写出即可.【解答】解:∵对任意正实数a,a,b,b都有+≥,2112∴类比可得对任意正实数a,a,a,b,b,b都有:312312++≥.故答案为:++≥.18.(2018春?江阴市校级期中)已知数列{a}的各项分别为,,,,,,n,,,,…,依它的前10项的规律,则a+a9998的值为.【分析】将数列进行重新分组,根据数列项的规律即可得到结论.【解答】解:数列{a}的各项分别为,(,),(,,),(,,,),…,n则a,a分别是第14组的第7个和第8个数,分子和分母之和为15,10099故a=,a=,9999则a+a=+=,9998故答案为:三.解答题(共4小题)22,a+1,c=x,试证明﹣x﹣春?东城区期末)已知x∈R,a=x+,b=2x19.(2018 b,c至少有一个不小于1.【分析】根据题意,首先假设命题错误,即假设a,b,c均小于1,进而可得a+b+c <3,再分析a、b、c三项的和,可得矛盾,即可证原命题成立.【解答】证明:假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3 2+3≥+3=23c=2x而a+b+,﹣2x+两者矛盾;故a,b,c至少有一个不小于1.20.某同学在一次研究性学习中发现以下四个不等式都是正确的:22222;)×41)≥(×2+(1+3)(2+4322222;]×+)×(﹣10×()(﹣[5+7]3+)≥[5371022222;)9.2×6.8)≥(7.5(7.5×+9.23.6)×(3.6++6.822222.请你观察这四)2015×2017)≥(20142014+2015×)(20162016+2017+(个不等式;(1)猜想出一个一般性的结论(用字母表示);(2)证明你的结论.2222)db+)(【分析】(1)依据已知的四个不等式,可以归纳出一般性的结论为(ac+2.)+bd≥(ac(2)利用做差法,a﹣b≥0?a≥b即可2222)d+)(1)由四个不等式,观察可以猜想出如下一般性的结论(ac+b【解答】解:(2.bd)ac≥(+22222)+dbd+b)﹣()(cac(2)利用作差(a+222222222222﹣dd﹣c+a﹣da+bbcc+b=a2acbd222≥0bc),﹣2abcd==b(c+ad﹣22222.(当且仅当ad=bc时等号成立)ac)≥(a++bbd)(c)+d故(21.诺埃尔和莱昂两个人的生日都在7月1日,2006年7月1日星期六,他们庆祝自己的生日,诺埃尔对莱昂说:“如果把我们的年龄的两个数字对调一下,就是你的年龄.”莱昂回答道“这种情况不是第一次发生了,上一次发生这种情况,正好是我和你姐姐结婚的那一天.”诺埃尔说:“是的!确实是这样,我记得很清楚,就像发生在昨天一样.”从这段对话中,你能推断出诺埃尔的姐姐和莱昂是在哪一天结婚的吗?【分析】由题意,诺埃尔和莱昂的年龄分别为10a+b、10b+a,2006:埃尔和莱昂的年龄分别为:10a+b+c、10b+a+c,由此可得方程,即可得出结论.【解答】解:由题意,诺埃尔和莱昂的年龄分别为10a+b、10b+a,2006:埃尔和莱昂的年龄分别为:10a+b+c、10b+a+c,∴(10a+b+c+10b+a+c)÷2=11n,∴c=11,min∴诺埃尔的姐姐和莱昂是在1995年7月1号.22232*成立?若N∈+cn对一切nbn2,使得,,.是否存在实数22abc1++…n=an+存在,求出实数a,b,c,若不存在,请说明理由.c=,式,b=a=在,使得关于n的等【分析】存*223222)…+n1=n成立.证明时先证:+n+n=,n∈12+N+3(+时,成立即+1n=1当时成立.(2)再假设n=k(k≥1)时,成立,递推到n=k可.【解答】解:存在a=,使得关于n的等式,b=,c=*222322成立Nn=nn+∈+n=1+2,+3…++n证明如下:①当n=1时,等式成立.*)时等式成立,∈N②假设n=k(k2222;=1++2…k+3即2222+(k+)=1)(+2+3+…当+k+111n=k+时,2=即n=k+1时,等式成立.222232*N∈,+cnnbn+31nc=b=a=因此存在,,,使得关于的等式+2++…n=an+成立.。

相关文档
最新文档