19.3.1 第1课时 矩形的性质 公开课一等奖教案

合集下载

矩形性质一等奖说课稿

矩形性质一等奖说课稿

矩形性质一等奖说课稿《矩形性质一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、矩形性质一等奖说课稿一、教材分析1、教材的地位和作用本课时学习的内容:矩形的概念及性质,是在学生已经学过四边形、平行四边形的概念、性质及判定的基础上进行的,是这一章的重点内容之一。

矩形是特殊的平行四边形,而后面要学的正方形又是特殊的矩形,所以它既是前面所学知识的延伸,又为后面学习其它特殊平行四边形提供了研究方法和学习策略,为今后学习其他有关知识奠定了基础,起着承上起下的重要作用。

本节课的内容渗透着转化、对比的数学思想,重在训练学生的逻辑思维能力和分析归纳能力,因此,在知识和能力培养上也都有着重要的作用。

2、教学目标⑴ 知识与技能:掌握矩形的概念、性质及识别方法,并会初步运用矩形的概念和性质解决有关实际问题。

⑵ 过程与方法:在探索矩形性质和识别条件的过程中,渗透从一般到特殊、转化归纳、类比迁移的数学思想,进一步提高学生的分析问题与解决问题的能力。

⑶ 情感态度与价值观:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,增强学习信心,体验探索与创造的快乐,感受数学的美感。

3、教学重难点⑴ 重点:掌握矩形的性质定理。

⑵ 难点:运用矩形的性质进行证明与计算。

二、学情分析学生已经学习了三角形、四边形、平行四边形、积累了一定的几何图形方面的知识,在此基础上继续学习矩形的特性,就显得比较容易。

但从定义推导出性质的方法是学生感到陌生和新奇的地方。

八年级学生正处在青春发育期,思维比较活跃,理解模仿能力较强,对新的知识充满着好奇、有着强烈的求知欲望。

而在矩形的性质和识别条件中,又有许多颇有思考价值的问题,有利于学生自主探究,合作交流,使学生既能学到科学的探究方法,又能体验到探究的乐趣,享受到成功的喜悦。

三、教法选择本课时根据学生现有的知识水平,主要采用小组学习、讨论交流、自主探究的教学方式,即“创设情境——自主探究——归纳应用”的模式,力求充分调动学生的积极性和主动性,激发学生学习兴趣,发展学生积极思维,培养学生分析问题和解决问题的能力。

19.3.1矩形的性质教学设计-沪科版八年级数学下册

19.3.1矩形的性质教学设计-沪科版八年级数学下册

19.3.1 矩形的性质教学设计-沪科版八年级数学下册教学目标•掌握矩形的定义和性质。

•了解矩形的判定方法。

•能够运用矩形的性质解决实际问题。

教学准备•课件及投影设备。

•板书工具。

教学过程导入与引入1.引入矩形的概念,问学生是否了解矩形的定义。

2.引导学生回顾正方形的特点,并与矩形进行比较。

探究矩形的定义1.准备一些矩形的图片,板书矩形的定义:四边都是直线,相对的边相等,相邻的边垂直。

2.分组让学生观察图片,讨论矩形的性质,并找出图片中的矩形。

3.每个小组展示他们找到的矩形,并由他们总结矩形的性质。

4.教师进行总结和概念的明确。

了解矩形的判定方法1.展示一个图形,让学生判断是否是矩形。

2.引导学生思考判断的依据是什么,引导学生发现并总结矩形的判定方法。

3.教师进行总结和概念的明确。

运用矩形的性质解决问题1.准备一些与矩形有关的问题,让学生运用矩形的性质进行解决。

2.引导学生分析问题,提供适量的提示,引导学生运用相关的性质进行推理。

拓展练习1.给学生发放一些拓展练习题,旨在巩固和拓展学生对矩形的理解和应用能力。

教学总结1.小结学生学会了矩形的定义和性质。

2.强调学生将学到的知识应用到解决实际问题中的重要性。

3.鼓励学生积极参与课堂讨论和思考,加深对矩形的理解。

课后作业1.完成课后作业册中与矩形相关的习题。

2.总结本节课所学的矩形的性质,写一篇文章进行分享。

注意:以上教学设计仅供参考,根据实际教学情况和学生的学习情况,可进行相应的调整和改进。

矩形的性质 公开课获奖教案

矩形的性质  公开课获奖教案

18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质1.理解并掌握矩形的性质定理及推论;(重点)2.会用矩形的性质定理及推论进行推导证明;(重点)3.会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算.(难点)一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.二、合作探究探究点一:矩形的性质【类型一】运用矩形的性质求线段或角在矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB长为()A.1cm B.2cm C.2.5cm D.4cm解析:在矩形ABCD中,O是BC的中点,∠AOD=90°.根据矩形的性质得到△ABO≌△OCD,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB.由矩形ABCD的周长为24cm,得2AB +4AB=24cm,解得AB=4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.【类型二】运用矩形的性质解决有关面积问题如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD 的面积的()A.15 B.14 C.13 D.310解析:∵在矩形ABCD中,AB∥CD,OB=OD,∴∠ABO=∠CDO.在△BOE和△DOF中,⎩⎪⎨⎪⎧∠ABO=∠CDO,OB=OD,∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴S 阴影=S △AOB =14S 矩形ABCD .故选B.方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.【类型三】 运用矩形的性质证明线段相等如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF ⊥BE 于F .求证:BF =AE .解析:利用矩形的性质得出AD ∥BC ,∠A =90°,再利用全等三角形的判定得出△BFC ≌△EAB ,进而得出答案.证明:在矩形ABCD 中,AD ∥BC ,∠A =90°,∴∠AEB =∠FBC .∵CF ⊥BE ,∴∠BFC =∠A =90°.由作图可知,BC =BE .在△BFC 和△EAB 中,⎩⎪⎨⎪⎧∠A =∠CFB ,∠AEB =∠FBC ,EB =BC ,∴△BFC ≌△EAB (AAS),∴BF =AE .方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.【类型四】 运用矩形的性质证明角相等如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,EF ⊥ED .求证:AE 平分∠BAD .解析:要证AE 平分∠BAD ,可转化为△ABE 为等腰直角三角形,得AB =BE .又AB =CD ,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠BAD =90°,AB =CD ,∴∠BEF +∠BFE =90°.∵EF ⊥ED ,∴∠BEF +∠CED =90°.∴∠BFE =∠CED ,∴∠BEF =∠EDC .在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE =∠CED ,EF =ED ,∠BEF =∠EDC ,∴△EBF ≌△DCE (ASA).∴BE =CD .∴BE =AB ,∴∠BAE =∠BEA =45°,∴∠EAD =45°,∴∠BAE =∠EAD ,∴AE 平分∠BAD .方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.探究点二:直角三角形斜边上的中线的性质如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)若AB =10,AC =8,求四边形AEDF 的周长;(2)求证:EF 垂直平分AD .解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DE =AE =12AB ,DF =AF =12AC ,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD 是△ABC 的高,E 、F 分别是AB 、AC 的中点,∴DE =AE =12AB =12×10=5,DF =AF =12AC =12×8=4,∴四边形AEDF 的周长=AE +DE +DF +AF =5+5+4+4=18;(2)证明:∵DE =AE ,DF =AF ,∴E 、F 在线段AD 的垂直平分线上,∴EF 垂直平分AD .方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.三、板书设计 1.矩形的性质矩形的四个角都是直角;矩形的对角线相等.2.直角三角形斜边上的中线的性质 直角三角形斜边上的中线等于斜边的一半.通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上.17.1 勾股定理第1课时 勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点) 2.掌握勾股定理,并运用它解决简单的计算题;(重点) 3.了解利用拼图验证勾股定理的方法.(难点) 一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC; (3)CD 的长. 解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2);(3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD=AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 的周长.解析:本题应分△ABC 为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,如图①所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理的证明探索与研究: 方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计 1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。

矩形的性质公开课教案+说课稿

矩形的性质公开课教案+说课稿

矩形的性质》教学设计对角线:对角线互相平分对称性:中心对称图形2. 但矩形是特殊的平行四边形,它还具有一些特殊性质。

下面我们来进一步研究矩形的其他性质。

活动:(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;(2)根据测量的结果,猜想结论。

当矩形的大小不断变化时,发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等.活动:请同学们拿出准备好的矩形纸片,折一折,观察并思考。

①矩形是不是中心对称图形? 如果是,那么对称中心是什么?②矩形是不是轴对称图形?如果是,那么对称轴有几条? 结论:矩形是轴对称图形,它有两条对称轴。

3. 请你总结一下矩形有哪些性质?归纳概括矩形的性质:从边来说,矩形的对边平行且相等;从角来说,矩形的四个角都是直角;从对角线来说,矩形的对角线相等且互相平分;从对称性来说,矩形既是轴对称图形,又是中心对称图形。

4. 问题:矩形具有而一般平行四边形不具有的性质是( C )A. 对角相等B. 对边相等C. 对角线相等D.对角线互相平分第三环节:层层递进,推理论证提问:怎样证明你的猜想?形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量,动脑思考, 动口讨论, 自主发现矩形的性质。

学生完全可以通过自己的操作、观察、猜想,最终得到矩形的对称特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。

教师写出定理1、2 的已知、求证,请同学分析思路,写出证明过程后互相订正交流。

该环节重在训练学生规范写出推理过程。

(2) AC=BD答案参考课本例题) 第四环节:建构新知,发展问题2)在 Rt △ABC 中,点 O 是 AC 的中点,线第六环节:反思交流,反馈提高1. 本节课你学到了什么?矩形的性质矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条 对角线把矩形分成两对全等的等腰三角形。

《矩形的性质教案 (公开课获奖)2022华师大版(一) 》教案

《矩形的性质教案 (公开课获奖)2022华师大版(一) 》教案

19.1 矩形的性质教学目标1.探索并掌握矩形的概念及其特殊的性质。

2.学会识别矩形。

3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

教学准备矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。

教学过程一、提问。

1.平行四边形的特征:对边(),对角(),对角线()。

2.如图,在平等四边形ABCD中,AE垂直于BC,E是垂足。

如果AB=55°,那么∠AD与∠DAE 分别等于多少度?为什么?(让学生回忆平行四边形的特征与识别。

)二、引导观察。

如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状。

问题:我们若改变平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形?(教师移动D点,使∠A=90°,让学生观察。

)从而导人课题:矩形。

三、探索特征。

1.探索。

请你作矩形纸板的对角线,探索矩形有哪些特征,并填空。

(从边、角、对角线入手。

)(1)边:对边相等;(2)角:四个角都相等;(3)对角线:相等。

(学生通过自己的操作、观察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。

)2.请你折一折,观察并填空。

(1)矩形是不是中心对称图形? 对称中心是()。

(2)是不是轴对称图形?对称轴有几条?()。

3、推理论证:矩形的对角线相等四、应用举例。

1.例1 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86厘米,对角线长是13厘米,那么矩形的周长是多少?(矩形的简单的计算问题必须要求学生掌握。

此题教师板演,让学生说出理论依据。

)2.请你思考。

识别一个四边形是不是矩形的方法。

(学生的回答不一定很完整,可以多让几个学生相互补充,逐步完善,最后教师适当的给以点拔。

人教版初中数学八年级下册 矩形的性质-公开课比赛一等奖

人教版初中数学八年级下册 矩形的性质-公开课比赛一等奖

《矩形》教学设计(第一课时)
问题(一级)
画一个矩形,观察矩形还有哪些一般平行四边形没有的特殊性质呢?
猜想:
你能证明这些结论吗?
问题串(二级):
矩形是轴对称图形吗?如果是,指出它的对称轴.
一张矩形纸片,沿着其中C
B
A D
如图,矩形ABCD 的两条对角线相交于点O ,且∠AOB=60°,AB=4 cm .求矩形对角线的长.
还可以得到那些结论?
A
B
C D O
动手操作
形成性质并证明
猜想 课题导入
展示图片
活动探究
提出问题 引导探究 针对过程总结
出示例题
出示练习
矩形的概念
总结
结束
开始。

19.3.1 第1课时 矩形的性质 公开课一等奖教案

19.3.1 第1课时 矩形的性质 公开课一等奖教案

第1课时 矩形的性质1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;(重点) 2.会运用矩形的概念和性质来解决有关问题.(难点)一、情境导入1.展示生活中一些平行四边形的实际应用图片(推拉门、活动衣架、篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四边形吗?为什么(动画演示拉动过程如图)?3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义.矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都是矩形. 有一个角是直角的平行四边形是矩形.矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质. 二、合作探究 探究点一:矩形的性质 【类型一】 矩形的四个角都是直角如图,矩形ABCD 中,点E 在BC 上,且AE 平分∠BAC .若BE =4,AC =15,则△AEC 的面积为( )A .15B .30C .45D .60解析:如图,过E 作EF ⊥AC ,垂足为F . ∵AE 平分∠BAC ,EF ⊥AC ,BE ⊥AB ,∴EF =BE =4, ∴S △AEC =12AC ·EF =12×15×4=30.故选B. 方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.【类型二】 矩形的对角线相等如图所示,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AC 的长是( )A .2B .4C .2 3D .4 3 解析:根据矩形的对角线互相平分且相等可得OC =OD =OA =12AC ,由∠AOD =60°得△AOD 为等边三角形,即可求出AC 的长.故选B.方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,图中有等边三角形,可以利用等边三角形的性质解题. 探究点二:直角三角形斜边上的中线等于斜边的一半如图,已知BD ,CE 是△ABC 不同边上的高,点G ,F 分别是BC ,DE 的中点,试说明GF ⊥DE .解析:本题的已知条件中已经有直角三角形,有斜边上的中点,由此可联想到应用“直角三角形斜边上的中线等于斜边的一半”这一定理.解:连接EG ,DG .∵BD ,CE 是△ABC 的高, ∴∠BDC =∠BEC =90°. ∵点G 是BC 的中点, ∴EG =12BC ,DG =12BC ,∴EG =DG .又∵点F 是DE 的中点, ∴GF ⊥DE .方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.探究点三:矩形的性质的运用【类型一】 利用矩形的性质求有关线段的长度如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解析:先判定△AEF ≌△DCE ,得CD =AE ,再根据矩形的周长为32cm 列方程求出AE 的长.解:∵四边形ABCD 是矩形,∴∠A =∠D =90°, ∴∠CED +∠ECD =90°. 又∵EF ⊥EC ,∴∠AEF +∠CED =90°, ∴∠AEF =∠ECD . 而EF =EC ,∴△AEF ≌△DCE , ∴AE =CD . 设AE =x cm ,∴CD =x cm ,AD =(x +4)cm , 则有2(x +4+x )=32,解得x =6.即AE 的长为6cm.方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.【类型二】 利用矩形的性质求有关角度的大小如图,在矩形ABCD 中,AE ⊥BD于E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解析:由∠BAE 与∠DAE 之和为90°及这两个角之比可求得这两个角的度数,从而得∠ABO 的度数,再根据矩形的性质易得∠EAO 的度数.解:∵四边形ABCD 是矩形,∴∠DAB =90°,AO =12AC ,BO =12BD ,AC =BD ,∴∠BAE +∠DAE =90°,AO =BO . 又∵∠DAE :∠BAE =3:1,∴∠BAE =22.5°,∠DAE =67.5°. ∵AE ⊥BD ,∴∠ABE =90°-∠BAE =90°-22.5°=67.5°,∴∠OAB =∠ABE =67.5°,∴∠EAO =67.5°-22.5°=45°. 方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依据.【类型三】 利用矩形的性质求图形的面积如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15 B.14 C.13 D.310解析:由四边形ABCD 为矩形,易证得△BEO ≌△DFO ,则阴影部分的面积等于△AOB 的面积,而△AOB 的面积为矩形ABCD 面积的14,故阴影部分的面积为矩形面积的14.故选B.方法总结:求阴影部分的面积时,当阴影部分不规则或比较分散时,通常运用割补法将阴影部分转化为较规则的图形,再求其面积.【类型四】 矩形中的折叠问题如图,将矩形ABCD 沿着直线BD折叠,使点C 落在C ′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解析:这是一道折叠问题,折后的图形与原图形全等,从而得△BCD ≌△BC ′D ,则易得BE =DE .在Rt △ABE 中,利用勾股定理列方程求出BE 的长,即可求得△BED 的面积.解:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠A =90°, ∴∠2=∠3.又由折叠知△BC ′D ≌△BCD , ∴∠1=∠2,∴∠1=∠3,∴BE =DE .设BE =DE =x ,则AE =8-x .∵在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x )2=x 2,解得x =5. 即DE =5.∴S △BED =12DE ·AB =12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED 是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.。

沪科版八年级下19.3.1《矩形的性质》教学设计

沪科版八年级下19.3.1《矩形的性质》教学设计

19.3.1 矩形的性质合肥市第六十八中学张曙翔☞教材分析本课要研究的是矩形的概念及性质。

是在学生已经掌握三角形有关知识,平行四边形的概念及性质和判定基础上进行的,是这一章的重点内容。

因为矩形是特殊的平行四边形,而后继课要学的正方形又是特殊的矩形,所以它既是前面所学知识的应用,又是后面学习正方形的基础,具有承上启下的作用。

为以后进一步研究其他图形奠定基础。

另外本节课的内容还渗透着转化、类比的数学思想,重在训练学生的逻辑思维能力和分析、总结、说理的能力,因此,这节课无论在知识上,还是在对学生能力培养上都起着非常重要的作用。

☞教学设想1.创设情境,导入新知。

通过演示,让学生认识矩形与平行四边形的关系。

2.类比平行四边形的性质,理解矩形与平行四边形的共性,探究矩形特有的性质及推论。

3.设置典型例题和练习题,培养学生分析问题和解决问题的能力,渗透转化思想。

☞教学目标知识目标掌握矩形的概念及有关性质,并会利用其进行简单的推理计算能力目标在了解矩形与平行四边形的关系及探究运用矩形性质的过程中,渗透数形结合,类比思想,转化思想,进一步提高学生分析问题和解决问题的能力。

情感目标在良好的师生关系下,创设轻松的学习氛围,使学生在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

在说理过程中培养学生严谨科学态度。

☞教学重点、难点重点:矩形的性质及其推论。

难点:矩形的性质定理的综合应用。

☞教学准备三角板,多媒体。

☞教学环节教具演示→创设情境→观察猜想→推理论证→归纳运用☞教学过程一、情境导入观察一个平行四边形,回答下列问题:(1) 为什么平行四边形可以“变形”?(2) 随着变化,平行四边形的边,角,周长, 面积、对角线等发生了什么变化?(3)在平行四边形变化的过程中,一个角变成直角时,它变成了什么图形?演示:二、类比探究你能给矩形下个定义吗?你能说出矩形和平行四边形有什么联系吗?(1)矩形的定义:有一个角是直角的平行四边形叫做矩形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 矩形的性质
1.掌握矩形的概念和性质,理解矩形
与平行四边形的区别与联系;(重点) 2.会运用矩形的概念和性质来解决有关问题.(难点)
一、情境导入
1.展示生活中一些平行四边形的实际应用图片(推拉门、活动衣架、篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四边形吗?为什么(动画演示拉动过程如图)?
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义.
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都是矩形. 有一个角是直角的平行四边形是矩形.矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质. 二、合作探究 探究点一:矩形的性质 【类型一】 矩形的四个角都是直角
如图,矩形ABCD 中,点E 在BC 上,且AE 平分∠BAC .若BE =4,AC =15,则△AEC 的面积为( )
A .15
B .30
C .45
D .60
解析:如图,过E 作EF ⊥AC ,垂足为
F . ∵AE 平分∠BAC ,EF ⊥AC ,BE ⊥AB ,
∴EF =BE =4, ∴S △AEC =12AC ·EF =1
2
×15×4=30.故
选B. 方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.
【类型二】 矩形的对角线相等
如图所示,矩形ABCD 的两条对
角线相交于点O ,∠AOD =60°,AD =2,则AC 的长是( )
A .2
B .4
C .2 3
D .4 3 解析:根据矩形的对角线互相平分且相等可得OC =OD =OA =1
2
AC ,由∠AOD =
60°得△AOD 为等边三角形,即可求出AC 的长.故选B.
方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,
图中有等边三角形,可以利用等边三角形的性质解题. 探究点二:直角三角形斜边上的中线等于斜边的一半
如图,已知BD ,CE 是△ABC 不同边上的高,点G ,F 分别是BC ,DE 的中点,试说明GF ⊥DE .
解析:本题的已知条件中已经有直角三
角形,有斜边上的中点,由此可联想到应用“直角三角形斜边上的中线等于斜边的一
半”这一定理.
解:连接EG ,DG .
∵BD ,CE 是△ABC 的高, ∴∠BDC =∠BEC =90°. ∵点G 是BC 的中点, ∴EG =12BC ,DG =1
2
BC ,
∴EG =DG .
又∵点F 是DE 的中点, ∴GF ⊥DE .
方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
探究点三:矩形的性质的运用
【类型一】 利用矩形的性质求有关线段的长度
如图,已知矩形ABCD 中,E 是
AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.
解析:先判定△AEF ≌△DCE ,得CD =AE ,再根据矩形的周长为32cm 列方程求出AE 的长.
解:∵四边形ABCD 是矩形,
∴∠A =∠D =90°, ∴∠CED +∠ECD =90°. 又∵EF ⊥EC ,
∴∠AEF +∠CED =90°, ∴∠AEF =∠ECD . 而EF =EC ,
∴△AEF ≌△DCE , ∴AE =CD . 设AE =x cm ,
∴CD =x cm ,AD =(x +4)cm , 则有2(x +4+x )=32,解得x =6.
即AE 的长为6cm.
方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.
【类型二】 利用矩形的性质求有关角度的大小
如图,在矩形ABCD 中,AE ⊥BD
于E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.
解析:由∠BAE 与∠DAE 之和为90°及这两个角之比可求得这两个角的度数,从而得∠ABO 的度数,再根据矩形的性质易得∠EAO 的度数.
解:∵四边形ABCD 是矩形,∴∠DAB =90°,
AO =12AC ,BO =1
2BD ,AC =BD ,
∴∠BAE +∠DAE =90°,AO =BO . 又∵∠DAE :∠BAE =3:1,
∴∠BAE =22.5°,∠DAE =67.5°. ∵AE ⊥BD ,
∴∠ABE =90°-∠BAE =90°-22.5°=67.5°,
∴∠OAB =∠ABE =67.5°,
∴∠EAO =67.5°-22.5°=45°. 方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依据.
【类型三】 利用矩形的性质求图形的面积
如图所示,EF 过矩形ABCD 对角
线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 面积的( )
A.
15 B.14 C.13 D.310
解析:由四边形ABCD 为矩形,易证得△BEO ≌△DFO ,则阴影部分的面积等于
△AOB 的面积,而△AOB 的面积为矩形ABCD 面积的1
4,故阴影部分的面积为矩形
面积的1
4
.故选B.
方法总结:求阴影部分的面积时,当阴影部分不规则或比较分散时,通常运用割补法将阴影部分转化为较规则的图形,再求其面积.
【类型四】 矩形中的折叠问题
如图,将矩形ABCD 沿着直线BD
折叠,使点C 落在C ′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.
解析:这是一道折叠问题,折后的图形与原图形全等,从而得△BCD ≌△BC ′D ,则易得BE =DE .在Rt △ABE 中,利用勾股定理列方程求出BE 的长,即可求得△BED 的面积.
解:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠A =90°, ∴∠2=∠3.
又由折叠知△BC ′D ≌△BCD , ∴∠1=∠2,
∴∠1=∠3,∴BE =DE .
设BE =DE =x ,则AE =8-x .
∵在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x )2=x 2,解得x =5. 即DE =5.
∴S △BED =12DE ·AB =1
2×5×4=10.
方法总结:矩形的折叠问题是常见的问
题,本题的易错点是对△BED 是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.
三、板书设计
经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.。

相关文档
最新文档