高等代数欧氏空间

合集下载

高等代数-9第九章 欧几里得空间

高等代数-9第九章   欧几里得空间
3) ( , ) , ( , )
(线性性)
4) ( , ) 0, 当且仅当 o 时 ( , ) 0. (非负性)
则称 ( , )为 和 的内积,称这种定义了内积的 实数域 R上的线性空间V为欧几里得空间.
§1 定义与基本性质
b
§1 定义与基本性质
线性性 ( k f lg , h) a k f ( x ) lg ( x ) h( x )dx
b
k f ( x )h( x )dx l g ( x )h( x )dx
a a
b
b
k ( f , h ) l ( g , h)
非负性 ( f , f ) f ( x ) f ( x ) dx f 2 ( x ) dx 0 a a 且 ( f , f ) 0 f ( x ) 0. 故( f , g) 为一内积, C (a , b) 构成欧氏空间.
注1 欧几里得空间 V是特殊的线性空间. (1)V为实数域 R上的线性空间; (2)V既有向量的线性运算,还有内积运算; (3) , V ,( , ) R. 注2 欧几里得空间,Euclidean Space, 简称欧氏空间. 欧几里得(Euclid,约公元前330 年—前275年),古希腊数学家,是几 何学的奠基人,被称为“几何之 父”. 他最著名的著作是《几何原本》.
b b
§1 定义与基本性质
2. 内积的运算性质 设V为欧氏空间, , , , i V , k , l , ki R
1) ( , k ) k ( , ) 2) ( , ) ( , ) ( , ) 3) ( , k l ) k ( , ) l ( , ) 4) ( k l , ) k ( , ) l ( , )

第八讲 欧氏空间

第八讲 欧氏空间
高等代数选讲
高等代数选讲
第八讲 欧氏空间
线性空间中,向量之间的基本运算只有加 法与数量乘法。作为几何空间的推广,可以发 现几何向量的度量性质,如长度、夹角等,在 线性空间的理论中没有得到反映。但是向量的 度量性质在许多问题(包括几何问题)有特殊 的地位。因此有必要在线性空间中引入度量的 概念,使其更接近于几何空间,并有更丰富的 内容与方法。
高等代数选讲 8、构造内积的方法 在实线性空间V 中构造内积使之构成欧氏空间,通 常采用如下两种方法: (1)直接构造:对任意 , V ,直接构造二元实 函数 , ,并验证其满足内积的四条公理。 (2)由正定矩阵确定内积:若V 为 n 维实线性空间, 任取V 的基 1 , 2 ,, n ,以及 n 阶正定矩阵A,定义: b1 b , a1 , a2 ,, an A 2 bn 其中 a11 a2 2 an n , b11 b2 2 bn n
高等代数选讲 欧氏空间证与内积有关的正交变换与对称变换在 现实生活中有着广泛而重要的应用,这两种变换在标 准正交基下分别对应着正交矩阵及实对称矩阵这两种 具有特殊性质的矩阵。要求掌握正交变换与对称变换 的概念及性质,能够运用它们与对应特殊矩阵之间的 关系解题对实对称矩阵A,要求能熟练地找到正交矩阵 T Q,使 Q AQ为对角阵,以及以另一种形式出现的同一 个问题,即用正交变换化实二次型为标准形。 将线性空间关于某个子空间进行直和分解是不唯 一的,但是欧氏空间关于某个子空间及其正交补空间 的直和分解是唯一的。欧氏空间的这种分解是很重要 的,要求掌握子空间的正交补的概念及基本性质,会 求某些子空间的正交补。
1 1 2 2 n n
高等代数选讲 (2) R mn --对于实矩阵 A aij mn , B bij mn 内积为

高等代数 第8章线性变换 8.6 欧式空间的正交变换和对称变换

高等代数 第8章线性变换 8.6 欧式空间的正交变换和对称变换
存在一个角ψ使
b = cosψ,d = sinψ
将a, b, c, d代入(4)的第三个等式得 Cosφcosψ + sinφsinψ = 0 或 cos(φ+ψ) = 0
最后等式表明,φ -ψ是π/ 2的一个奇数倍. 由此 得
cos sin , sin cos
所以
cos sin U sin cos
2 ( x1, x2 , x3 ) ( x1 x3 , x2 2 x3 , x1 2 x2 x3 );
3 ( x1, x2 , x3 ) ( x2 , x1, x3 )
对称变换和对称矩阵之间的关系
定理8.4.2 设σ是n维欧氏空间V的一个对称变换, 如果σ关于一个标准正交基的矩阵是对称矩阵,那 么σ是一个对称变换. 证
1 , 2 ,, n
正交变换的定义
定义1 欧氏空间V的一个线性变换σ叫做一个 正交变换,如果对于任意 V 都有 | ( ) || |
例1 在 V2 里,把每一向量旋转一个角的 线性变换是 V2 的一个正交变换. 例2 令H是空间 V3 里过原点的一个平面.对于 每一向量 V3 ,令对于H的镜面反射 与它对应. : 是 V3 的一个正交变换.
1 0 0 0 1 0 0 0 1
以上两个矩阵都是正交矩阵.
V2 .V3 的正交变换的类型
设σ是 V2的一个正交变换,σ关于 V的一个规范正 2 交基 1 , 的矩阵是 2 a b U c d 那么U 是一个正交矩阵. 于是
y, , , 的矩 1 设σ关于V的一个规范正交基 2 n
( ),
xi ( i ),

高等代数课件 第八章

高等代数课件 第八章
由此得 | | , x12 x22 xn2 (5)
( ,) (x1 y1)2 (xn yn )2 (6)
2.标准正交基的性质
设 {1,2} 是 V2 的一个基,但不一定是
正交基。从这个基出发,只要能得出 V2 的一个
正交基 {1, 2}, 问题就解决了,因为将 1和2
再分别除以它们的长度,就得到一个规范正交
注意:(7)和(8)在欧氏空间的不等式(6) 里被统一起来. 因此通常把(6)式称为柯西-施瓦兹不 等式.
三、向量的正交
定义4 欧氏空间的两个向量ξ与η说是正交的,
如果 , 0
定理8.1.2 在一个欧氏空间里,如果向量ξ
与1,2,,r 中每一个正交,那么ξ与 1,2,,r
的任意一个线性组合也正交.
2 a1 2 a1 0,
因而 2 0,
这就得到 V2 的一个正交基 {1, 2}.
3.标准正交基的存在性
定理8.2.2(正交化方法) 设 {1,2 ,,n}
是欧氏空间V的一组线性无关的向量, 那么可以求
出V 的一个正交组 {1, 2,, n}, 使得 k 可以由 1,2,,k 线性表示,k = 1,2,…,m.
由于1,2,,k 线性无关,得 k 0,
又因为假定了 1, 2 ,, k1 两两正交,所以
k ,i
k ,i
k ,i i , i
i , i 0, i 1,2,, k 1
这样,1, 2,, k 也满足定理的要求。
定理8.2.3 任意n(n >0)维欧氏空间一定有正交
基,因而有标准正交基.
例4 在欧氏空间 R3中对基
4) 当 0 时, , 0 这里 ,, 是V的任意向量,a是任意实数,那么
, 叫做向量ξ与η的内积,而V叫做对于 这个内积来说的一个欧氏空间(简称欧氏空间).

高等代数教案第 章欧氏空间

高等代数教案第 章欧氏空间
(线性双射),其次,它保持向量的内积不变. 因而欧氏空间的同构映射保持向量的长度不变,保持
第 4 页 共 21 页
《高等代数》教案-8-第 8 章 欧氏空间
向量的夹角不变,故它保持几何形状不变. 容易证明,同构作为欧氏空间之间的关系具有反身性、对称性和传递性,因而它是欧氏空间的等.
价关系. 两个有限维欧氏空间同构的充分必要条件是它们有相同的维数. 所以,任意一个 n 维欧氏空 间都与 Rn 同构.
α
cosθ
为向量α
在向量 β
上的投影,称向量 (α , β )
β2
β
是向量α
在向量 β
上的投影向量.
注意,α
在向量 β 上的投影可表示为
α
cosθ
=
(α, β
β
)
=
α
,
β β

向量α 在向量 β 上的投影向量亦可以表示为
第 2 页 共 21 页
《高等代数》教案-8-第 8 章 欧氏空间
(α, β
(1)σ (α + β ) = σ (α ) + σ (β ) , (2)σ (kα ) = kσ (α ) ,
(3)(σ (α ),σ (β )) = (α, β ) ,
这里α, β ∈V , k ∈ R ,则称欧氏空间V 与V ′ 同构,称σ 是V 到V ′ 的一个同构映射. 注 两个欧氏空间V 到V ′ 的“同构映射”是指:首先,把V 和V ′ 看成线性空间时它是同构映射
Ⅲ.重点与难点 重点: 内积、欧氏空间的概念,向量的正交性,正交阵的性质及运用,实对称阵的正交对角化; 难点: 正交阵的性质及运用,实对称阵的正交对角化.
Ⅳ.教学内容
§8.1 欧氏空间的概念

高等代数课件(北大版)第九章 欧式空间§9.4

高等代数课件(北大版)第九章 欧式空间§9.4
1 , 2 , , n 下的矩阵 为第一类的(旋转); 2)如果 A 1 , 则称 为第二类的.
§9.4 正交变换
数学与计算科学学院
例、在欧氏空间中任取一组标准正交基 1 , 2 , , n ,
数学与计算科学学院
所以,A是正交矩阵.
" " 设 1 , 2 , , n 为V的标准正交基,且
1 , 2 , , n 1 , 2 , , n A
即, 1 , 2 , , n 1 , 2 , , n A 由于当A是正交矩阵时, 1 , 2 , , n 也是V的 标准正交基, 再由 1 即得 为正交变换.
定义线性变换 为:
1 1
i i ,
i 2, 3, n .
则 为第二类的正交变换,也称之为镜面反射.
§9.4 正交变换
数学与计算科学学院
§9.4 正交变换
数学与计算科学学院
一、一般欧氏空间中的正交变换
1.定义
欧氏空间V的线性变换 如果保持向量的内积不变, 即 , ( ), ( ) ( , ), , V 则称 为正交变换.
注:欧氏空间中的正交变换是几何空间中保持长度
不变的正交变换的推广.
1 , 2 , , n A
当 是正交变换时,由1知, 1 , 2 , , n 也是V
的标准正交基, 而由标准正交基 1 , 2 , , n 到标准
正交基 1 , 2 , , n 的过渡矩阵是正交矩阵.
§9.4 正交变换
第九章 欧氏空间
§1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间

高等代数【北大版】9


| 1 | 2,
|
3
|
3
4 10
,
| 2 |
2, 6
|
4
|
5
4 14
.
§9.2 标准正交基
于是得 R[ x]4的标准正交基
1
|
1
1
| 1
2 ,
2
2
|
1
2
|
2
6 x
2
3
|
1
3
| 3
10 4
14 (5x3 3x) 4
§9.2 标准正交基
4.标准正交基间的基变换
设 1, 2 , , n与 1,2 , ,n 是 n 维欧氏空间V中的
1. 定义
设 A (aij ) Rnn , 若A满足 则称A为正交矩阵.
AA E
2. 简单性质
1)A为正交矩阵 A 1. 2)由标准正交基到标准正交基的过渡矩阵是正交
矩阵.
§9.2 标准正交基
3)设 1, 2 , , n 是标准正交基,A为正交矩阵,若 (1,2 , ,n ) (1, 2 , , n ) A
(6)
§9.2 标准正交基
由公式(3), 有
(i , j ) a1i1 j a2i 2 j
aninj
1 0
i i
j j
, (7)
把A按列分块为 A A1, A2, , An
由(7)有
A1
AA
A2
A1
,
A2
,
An
, An En
(8)
§9.2 标准正交基
三、正交矩阵
注:
① 由正交基的每个向量单位化, 可得到一组标准 正交基.

高等代数--第九章 欧几里得空间


反过来,如果等号成立,由以上证明
过程可以看出,或者 0 ,或者 ( , ) 0, ( , ) 也就是说 , 线性相关。
结合具体例子来看一下这个不等式是很有意 思的。对于例1的空间Rn ,(5)式是:柯西不等式
| a1b1 a2b2 an bn |
这就是说,不同基的度量矩阵是合同的。
根据条件4),对于非零向量 ,即
0 0 X 0

( , ) X ' AX 0,
因此,度量矩阵是正定的。 欧几里得空间以下简称为欧氏空间。 BACK
标准正交基
定义6 欧氏空间V中一组非零的向量,如果它 们两两正交,就称为一正交向量组。 按定义,由单个非零向量所成的向量组也 是正交向量组。
即对于任意的向量 , 有
| ( , ) || || | . (5)
当且仅当 , 线性相关时,等号才成立。 证明 当 0,(5)式显然成立。以下设 0。 令t是一个实变数,作向量 t . 由4)可知,不论t取何值,一定有 ( , ) ( t , t ) 0. 即 ( , ) 2( , )t ( , )t 2 0. (6)
(m1 ,i ) ( ,i ) ki (i ,i ) (i 1,2,, m).

( , i ) ki (i 1,2,, m). ( i , i )

( i , m1 ) 0 (i 1,2,, m).
m1 0 。因此 1 , 2 ,, m , m1 由 的选择可知, 1 , 2 ,, m , 是一正交向量组,根据归纳法假定, m1 可以扩充成一正交基。于是定理得证。 定理的证明实际上也就给出了一个具体的扩 充正交向量组的方法。

高等代数 第7章欧式空间 7.1 欧氏空间的定义及性质

称为n维向量x与y的夹角 .
x, y
x y
例 求向量 1,2,2,3与 3,1,5,1的夹角.
18 2 解 cos 3 261. 非负性 当 x 0时, x 0;当 x 0时, x 0; 2. 齐次性 x x ; 3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时, 称 x 为单位向量 .
2 当 x 0, y 0时, arccos
(4)[ x , x ] 0, 且当x 0时有[ x , x ] 0.
则称V(R)关于这个数积构成一个欧氏空间。这里 x,y为任意向量,k为任意实数。
数积的性质: (1)(x ,ky)=k(x , y) (2) (x , y+z )=(x , y)+( x , z ) (3) (x , )=0
欧氏空间的定义及性质
定义:设V(R)是实数域R上的线性空间,
在V(R)中定义了一个叫做数积的运算,即 有一定的法则,按照这个法则,对V(R)中 的任意两个向量x,y,都能确定R中唯一一个实 数,称之为x与y的数积,记作(x,y),如果这个 运算具有性质:
(1) ( 2) ( 3)
x, y y, x ; x, y x, y; x y, z x, z y, z ;
n (4) k i i 1
, l
i j 1 i
n
n,m ki l j ( i i 1, j 1
,
i
j
)
向量的长度及性质
定义2 令
x
x, x
2 2 2 x1 x2 xn ,
称 x 为n 维向量 x的长度 或 范数 .

高等代数欧氏空间的定义与基本性质


. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足 右齐次性 (α, kβ) = k(α, β);
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. .. . . ..
欧氏空间的度量
由欧氏空间定义中内积的正定性,有 √
(α,
α)

0.
所以对于任意
的向量 α, (α, α) 是有意义的. 在几何空间中,向量的长度为
√ (α, α).
类似地,我们在一般的欧氏空间中引进:
定义 √
非负实数 (α, α) 称为向量 α 的长度,(或称范数,或称模)记 为 |α|.
. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. . . .... .... .... . . . . .... .... .... . .
显然,向量的长度一般是正数,只有零向量的长度才是零,这样 定义的长度符合熟知的性质:
|kα| = |k||α|,
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
欧氏空间的度量
这里,k ∈ αR, α ∈ V. 事实上,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档