MOS 晶体管结构和工作原理

合集下载

MOS晶体管结构详细解析

MOS晶体管结构详细解析

MOS晶体管结构详细解析MOS晶体管(Metal-Oxide-Semiconductor Transistor)是一种广泛应用于电子器件中的半导体器件,也就是通常所说的场效应晶体管(Field-Effect Transistor,简称FET)的一种。

相比于双极晶体管,MOS晶体管具有更好的性能和更大的适用范围。

1.P型衬底:MOS晶体管的底部是一块P型衬底,通常为硅单晶衬底。

衬底可以提供基准电位和机械支撑,同时也可以降低晶体管的噪声和电流泄漏。

2.接地加区:在P型衬底中引入N型材料,形成N+接地加区。

该区域被用于连接电源负极,以为晶体管提供一个相对稳定的基准电位。

3. 氧化物层:在P型衬底上会覆盖一层氧化物(例如SiO2),起到电绝缘和保护的作用。

同时,氧化物也是Gate和衬底之间的电容层。

4. 金属栅极(Gate):在氧化物层上面,我们通常放置一层金属栅极,可以通过控制栅极电压来控制晶体管的导电性。

5. N型沟道:当Gate电压较低时,P型衬底上的氧化物层下方形成一个通道,该通道中的材料为N型硅。

在这个沟道中,当Gate电压较低时,杂质离子的电子被吸引到栅极附近,形成一个可导电的通道。

6. P+加区:在N型沟道的两侧,通过掺杂硼(Boron)形成P+加区,即Source(源区)和Drain(漏区)。

这两个区域是用来连接电源正极和负极的。

7. S/D金属接触:Source和Drain区域都覆盖了一层金属接触,用于连接传输线以及外部电路。

当Gate电压较低时,MOS晶体管工作在截止区,即不导电状态。

当Gate电压较高时,形成的N型沟道内的电子可以在Source和Drain之间导电,即MOS晶体管处于导通状态。

MOS晶体管的工作原理大致如下:当Gate电压高于其中一阈值电平时,电子可以从Source注入沟道,然后流到Drain,形成漏电流。

增加Gate电压可以增加通道中的电子数目,从而增加漏电流。

而Gate电压低于阈值电平时,沟道中的电子数量非常少,导致漏电流非常小,即处于截止状态。

MOS管工作原理详细讲解

MOS管工作原理详细讲解

MOS管工作原理详细讲解MOS管,即金属-氧化物-半导体场效应晶体管,是一种重要的电子器件,广泛应用于各种电路中。

其工作原理是利用金属-氧化物-半导体的结构来实现电流的控制和放大。

MOS管的结构包括:金属基片、氧化层和半导体层。

金属基片作为整个晶体管的主要载流子通道,氧化层用于隔离金属基片和半导体层,同时承受着场效应电路中的控制电压,半导体层作为控制电压的接收器。

MOS管的工作原理可以分为三个阶段:截止区、增强区和饱和区。

在截止区,当MOS管的栅电压低于阈值电压时,没有足够的电子进入沟道区域,电子通路被截断,无法形成导电通路,MOS管的电阻十分高,相当于一个断路,电流几乎为零。

当栅电压高于阈值电压时,MOS管进入增强区。

在这个区域,随着栅电压的增加,沟道中的自由电子越来越多,电子通路逐渐形成,电阻也开始降低。

当达到一定的栅电压时,电阻达到最小值,此时沟道已经完全形成,MOS管可导通大量电流。

随着栅电压的继续增加,MOS管进入饱和区。

在这个区域,增加栅电压不再能够显著改变沟道中自由电子的浓度,电流基本保持不变,此时MOS管的电阻达到最小值。

可以将饱和区看作是增强区的延伸,两者没有明显的分界线。

通过调节栅电压,可以实现对MOS管的控制。

当栅电压低于阈值电压时,MOS管截止,没有电流通过;当栅电压高于阈值电压时,沟道中的电子浓度与栅电压成正比,电流通过MOS管;当栅电压进一步增大,MOS管进入饱和区,电流几乎不再增加。

MOS管具有许多优点,如高输入电阻、低功耗、噪声小、电压增益高等,因此得到了广泛的应用。

在数字电路中,MOS管被用作开关,可以实现逻辑门的功能;在模拟电路中,MOS管可以作为电流放大器使用;同时,MOS管还可以用于制作存储器、微处理器、操作放大器等各种集成电路。

总之,MOS管的工作原理是通过控制栅电压来改变沟道中自由电子的浓度,从而实现电流的控制和放大。

通过调节栅电压,可以使MOS管处于截止、增强或饱和区,实现不同的电路功能。

mos晶体管的工作原理

mos晶体管的工作原理

mos晶体管的工作原理
MOS(金属-氧化物-半导体)晶体管是一种常用的半导体器件,其工作原理如下:
1. 构造:MOS晶体管由一块p型或n型的半导体基片,上面
涂覆一层绝缘层(通常是二氧化硅),再加上一层金属栅极组成。

2. 构成型式:根据栅极与基片之间的电势关系,可以分为两种型态:N型MOS(nMOS)和P型MOS(pMOS)。

3. 漂移区:半导体基片上的一部分被称为漂移区,其掺杂类型与栅极类型相反。

4. 在一定的偏置情况下,MOS晶体管可以表现出三种工作状态:截止状态、线性放大状态和饱和状态。

5. 工作原理:在截止状态下,栅极与基片之间的电荷屏蔽了基片与漂移区之间的电流流动,此时MOS晶体管处于关断状态;在线性放大状态下,栅极上的电压决定了漂移区中的电荷密度,进而控制了漂移区与基片之间的电流流动;在饱和状态下,栅极上的电压已经无法进一步改变漂移区中的电荷密度,此时MOS晶体管以最大电流饱和流动。

6. 管控效应:MOS晶体管的工作原理依赖于栅极电场控制漂
移区的输运特性。

当栅极电场改变时,可改变漂移区的电荷密度,从而改变MOS晶体管的导通特性。

总之,MOS晶体管通过改变栅极电场控制漂移区的载流子浓度,实现了对电流的控制,从而实现电压放大和开关控制的功能。

mos管或电路

mos管或电路

mos管或电路MOS管,即金属氧化物半导体场效应晶体管,是一种常用的半导体器件,常用于集成电路中。

MOS管的工作原理是通过调节栅极电压来控制导通沟道的电阻,从而实现信号的放大、开关和放大等功能。

下面将详细介绍MOS管的结构、工作原理和应用。

MOS管的结构包括源极、漏极和栅极三个部分。

源极和漏极之间通过氧化物绝缘层隔开,栅极则通过栅极氧化层与沟道相隔开。

当在栅极上加上正电压时,栅极下方的沟道会形成导通通道,从而使源极和漏极之间产生导通。

当栅极上的电压变化时,沟道的导电性也会相应变化,实现对电流的调节。

MOS管的工作原理是基于场效应的调控。

栅极上的电压改变了栅极下方的场强,从而改变了沟道的导电性。

当栅极电压为正时,沟道导通,电流从源极流向漏极,此时MOS管处于导通状态。

而当栅极电压为零或负时,沟道的导电性减弱或消失,电流无法通过,MOS管处于截止状态。

通过调节栅极电压,可以实现对电流的精确控制,从而实现放大、开关和放大等功能。

MOS管在集成电路中有着广泛的应用。

作为场效应晶体管的一种,MOS管可以用于数字电路、模拟电路和混合电路中。

在数字电路中,MOS管可用作开关,实现逻辑门的功能;在模拟电路中,MOS管可用作放大器,实现信号的放大和处理;在混合电路中,MOS管既可以用于数字信号处理,又可以用于模拟信号处理,实现电路的多功能集成。

总的来说,MOS管作为一种常用的半导体器件,具有结构简单、工作稳定和应用广泛的特点。

通过对栅极电压的调节,可以实现对电流的精确控制,从而实现各种电路功能的实现。

在未来的发展中,MOS管将继续发挥重要作用,推动集成电路的不断进步。

MOS管工作原理讲解

MOS管工作原理讲解

MOS管工作原理讲解MOS管,即金属-氧化物-半导体场效应管,是一种常见的场效应晶体管(FET)。

它由金属源极、漏极和栅极三个主要部分组成。

MOS管的工作原理是通过改变栅极电压来控制漏极电流。

MOS管的核心部分是氧化层,它位于金属栅极和半导体基底之间。

氧化层是一种绝缘体材料,通常使用二氧化硅(SiO2)。

当栅极施加电压时,该电压通过氧化层作用于半导体基底,形成一个电场。

当栅极电压较低时,栅极电场不足以影响基底中的电子状态。

此时,基底中的电子自由地从源极向漏极漂移,形成漏极电流。

这种情况下,MOS管处于开启状态,漏极电流的大小由源极-漏极之间的电压及基底材料的特性决定。

当栅极电压较高时,栅极电场能够将氧化层下面的基底区域形成一个以栅极为中心的高电子浓度区域,称为沟道区。

这个区域的电子会形成一个导电通道,使得源极和漏极之间形成导电路径。

此时,MOS管处于导通状态,漏极电流较大。

因此,MOS管的导通状态是由栅极电压决定的。

较高的栅极电压会形成更强的电场,进一步增强沟道区的导电能力,从而导致更大的漏极电流。

反之,较低的栅极电压会减小沟道区的导电能力,导致漏极电流减小或完全阻断。

MOS管的工作原理还与栅极与基底之间的接触结构和栅极材料的性质相关。

栅极与基底之间的接触结构对栅极电场的传递、氧化层的质量和沟道区的形成都起着重要的作用。

另外,栅极材料的选择也会影响MOS管的性能。

金属栅极常用的材料有铝、铬等,而高性能MOS管常使用聚硅藻酸酯或多晶硅等材料作为栅极。

需要注意的是,MOS管具有极高的输入电阻,即栅极与基底之间的氧化层能够有效隔离电流,从而减小输入电流。

这使得MOS管在集成电路中具有广泛应用。

由于MOS管工作原理的特性,它可以用于模拟和数字电路,包括放大器、开关电路、时钟驱动器等。

综上所述,MOS管通过改变栅极电压来控制漏极电流。

栅极电场能够在氧化层下形成一个导电通道,使得源极和漏极之间形成导电路径,从而实现MOS管的导通。

nmosfet的工作原理

nmosfet的工作原理

nmosfet的工作原理NMOSFET(N沟道MOS场效应晶体管)是一种常见的MOS(金属-氧化物-半导体)场效应晶体管。

它是一种三端器件,由源极(S)、漏极(D)和栅极(G)组成。

NMOSFET的工作原理涉及栅极电压控制漏极到源极的导通和截止状态。

在本文中,我们将详细讨论NMOSFET的工作原理,并逐步解释每个步骤。

1. 引言:首先,我们需要了解MOS结构的基本原理。

MOS结构由硅衬底和两个氧化物层构成。

硅衬底是一个P型或N型半导体,两个氧化物层分别是厚氧化物层(TOX)和薄氧化物层(TOX)。

在NMOSFET中,硅衬底是P 型半导体,薄氧化物层将N型沟道从硅衬底隔离开来。

2. 开关和导通状态:NMOSFET可以工作在两种状态,即截止和导通。

当栅极电压低于阈值电压(VT)时,NMOSFET处于截止状态,没有导通路径,漏极和源极是隔离的。

当栅极电压高于阈值电压时,NMOSFET处于导通状态,漏极和源极之间形成导通的通路。

3. 截止状态:在截止状态下,NMOSFET的栅极电压低于阈值电压,没有形成电子通道,漏极和源极之间没有导通路径。

在这种情况下,NMOSFET被视为一个开断状态的开关。

这是因为栅极-漏极电压(VGS)无法产生足够的电场,以便将沟道形成的电子从源极输送到漏极。

4. 导通状态:在导通状态下,NMOSFET的栅极电压高于阈值电压,形成了一个电子通道,允许电子从源极流向漏极。

在这种情况下,NMOSFET被视为一个闭合状态的开关。

当栅极电压高于阈值电压时,栅极-源极电压(VGS)会产生足够的电场,以便将N型沟道上的自由电子吸引到源极。

5. 灌注和阈值电压:为了使NMOSFET从截止状态进入导通状态,我们需要确保栅极电压高于阈值电压。

阈值电压是指栅极电压需要多高才能形成电子通道。

阈值电压取决于硅衬底的掺杂类型和浓度,以及设备的尺寸。

在实际应用中,阈值电压通过掺杂硅衬底来调整,这一过程被称为灌注。

MOS管工作原理详细讲解

MOS管工作原理详细讲解

MOS管工作原理详细讲解MOS管(Metal–Oxide–Semiconductor Field-Effect Transistor,金属-氧化物-半导体场效应晶体管)是一种重要的电子器件,广泛应用于电子领域中。

它采用了金属-氧化物-半导体结构,具有高度的集成度、低功耗和快速开关速度等优点。

下面将详细讲解MOS管的工作原理。

MOS管的结构一般由P型或N型半导体基底、N型或P型沟道、金属栅极和绝缘层构成。

基底扮演着支撑的作用,而绝缘层则用于隔离栅极和沟道之间,通常是用氧化硅(SiO2)材料制备。

当栅极施加正电压时,栅极和沟道之间会形成一个电场。

根据栅极电压的不同,MOS管可以工作在三种模式下:截止区、线性区和饱和区。

1.截止区:在截止区,栅极电压低于沟道引起的阈值电压。

此时,沟道中的电子和空穴不能形成导电通道。

整个沟道的电阻非常大,电流基本上是不流动的。

MOS管处于截止状态,不导电。

2.线性区:当栅极电压高于阈值电压时,沟道中的电子和空穴被弯曲,形成了一个导电通道。

这个导电通道具有可变电阻,称为沟道电阻。

当在沟道两端施加一个电压时,电流会通过沟道流过。

此时,MOS管处于线性状态,电流与电压成正比。

3.饱和区:当栅极电压继续增加,逐渐超过了一定的阈值电压,并且沟道已经完全形成。

这时,栅极电场已经无法影响到沟道中的电子和空穴。

电流的增长不再与栅极电压相关。

MOS管处于饱和状态,电流基本上保持不变,称为饱和电流。

MOS管的控制是通过栅极电压来实现的。

当栅极电压变化时,会引起沟道的电压和电流的变化。

MOS管的沟道电流与栅极电压的平方成正比。

因此,可以通过改变栅极电压来控制电流的大小。

MOS管的开关速度非常快,因为它的结构中不包含PN接头和载流子的注入。

当栅极电压施加或者移除时,沟道不会存在大量的载流子重新注入或排出的时间延迟。

这种快速的开关速度使得MOS管在高频率应用中表现出色。

另外,MOS管还具有低功率消耗的特点。

mos晶体管的工作原理

mos晶体管的工作原理

mos晶体管的工作原理MOS晶体管的工作原理。

MOS晶体管,全称金属-氧化物-半导体场效应晶体管,是一种常见的电子器件,广泛应用于集成电路和数字电路中。

它的工作原理是基于场效应,通过控制栅极电压来调节源极和漏极之间的电流,从而实现信号放大和开关控制等功能。

MOS晶体管由金属栅极、氧化物绝缘层和半导体衬底组成。

当栅极上施加一个电压时,栅极和半导体之间会形成一个电场,这个电场会影响半导体中的载流子浓度分布,从而改变源极和漏极之间的电流。

栅极电压的变化可以在源极和漏极之间产生电场效应,进而控制电流的变化,实现对信号的放大和调节。

MOS晶体管有两种工作方式,分别是增强型和耗尽型。

增强型MOS晶体管在没有栅极电压的情况下,源极和漏极之间不会有电流通过,需要通过施加正向电压到栅极才能开启。

而耗尽型MOS晶体管在没有栅极电压时,源极和漏极之间会有一定的电流通过,需要通过施加负向电压到栅极才能关闭。

MOS晶体管在数字电路中应用广泛,可以实现逻辑门、存储器等功能。

在集成电路中,MOS晶体管的尺寸越小,功耗越低,速度越快,因此在芯片制造技术不断进步的今天,MOS晶体管已成为集成电路的主要组成部分。

除了在数字电路中的应用,MOS晶体管还可以应用于模拟电路中,实现信号放大、滤波等功能。

通过调节栅极电压,可以实现对信号的放大和调节,因此MOS晶体管在模拟电路中也有着重要的应用价值。

总的来说,MOS晶体管通过栅极电压的调节来控制源极和漏极之间的电流,实现对信号的放大和开关控制。

它在数字电路和模拟电路中都有着广泛的应用,是现代电子技术中不可或缺的重要组成部分。

随着集成电路技术的不断进步,MOS晶体管的性能和应用领域也将不断扩展和深化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于反型电荷Qi强烈地依赖与栅压,因此可以利用栅压控制沟道电 流。
• MOS 晶体管特性
MOS IV CURVE
漏电流
线性区
(a) 饱和区
(b)
击穿区
截止区
漏电压
•MOS 晶体管特性
MOS IV CURVE
线性区 对于固定的Vgs(>Vth),当漏压很小时,漏电流Ids随漏压的增加
而线性增加。但随着漏压的增加,漏电流的增加速度不断减小直到Ids达 到某一恒定的饱和值。
当Vds进一步增大时:Vds>Vgs-Vt,漏端的沟道消 失,即漏端的沟道被夹断,这个夹断区成了漏源之间电流通路 上电阻最大的区域。在夹断后Vds的继续增大都集中降落在夹 断区,因此尽管Vds增大了,沟道两端的电压降仍是Vgs-Vt不 变。这使得经过沟道漂移进入夹断区的电子流也基本上不随 Vds的增加而改变,Ids也就不变了,所以曲线几乎变为直线。
• MOS 晶体管特性
MOS晶体管特性
在Vgs=Vth时,表面的少数载流子浓度(电子)等于体内的多数载 流子(空穴)的浓度。
栅压越高,表面少数载流子的电荷密度Qi 越高。(可动电荷Qi也 可称为反型电荷)此时,如果漏源之间存在电势差,由于载流子 (NMOS中为电子)的扩散,会形成电流Ids。这时PN结的泄漏电流仍 然存在,但它与沟道电流相比非常小,一般可以忽略。
MOS IV CURVE
饱和区 在漏源之间接上电压Vds,则沟道区的电位 从靠近源端的
零电位逐渐升高到靠近漏断的Vds。而栅极的电位是恒定的, 所以在沟道从源极到漏极不同位置上,栅极与沟道之间的电位 差是不等的,因而沟道不同位置上的表面电场也是不等的。那 么沟道中积累的可动载流子也随着电位差从源到漏由多到少, 沟道也由厚到薄,沟道的导电能力随之下降,漏源输出电流随 Vds上升的速度降下来,故Ids曲线逐渐趋向平缓。
MOS晶体管特性
假定漏端电压Vds为正,当栅上施加一个小于开启电压的正栅压时,栅 氧下面的P型表面区的空穴被耗尽,在硅表面形成一层负电荷,这些电荷被称 为耗尽层电荷Qb。这时的漏源电流为泄漏电流。
如果Vgs>Vth,在P型硅表面形成可移动的负电荷Qi层,即导电沟道。 由于表面为N型的导电沟道与P型衬底的导电类型相反,因此该表面导电沟道 被称为反型层。
MOS晶体管结构和工作 原理
Liyy 2003-10-27
MOS 晶体管结构和工作原理
MOS 晶体管结构
结构图 平面图 MOS晶体管种类 MOS晶体管符号
MOS晶体管工作原理
MOSFET 特性 MOS IV CURVE MOS 衬底偏置效应 MOS热载流子效应
• MOS 晶体管结构
在这个工作区,MOS表现出类似于电阻的特性,并且随着栅压的变 化而变化,即沟道电阻随着栅压的增加而减小。
这个区域也叫可调电阻区。
•MOS 晶体管特性
MOS IV CURVE
饱和区
VgsБайду номын сангаасVds<Vgs-Vth
G
S
D
P
Vgs Vds=Vgs-Vth
G
S
D
P
Vgs
Vds>Vgs-Vth
G
S
D
P
•MOS 晶体管特性
• MOS 晶体管结构
MOS晶体管符号
NMOS:
D
PG MOS:
S
B G
D
B
G
G
S
D
D
D
B
G
G
S
S
D
D
D
B
G
G
S
S
• MOS 晶体管特性
MOS晶体管特性
N沟MOS 截面图
L
Vs
Vd
Qg
Vg
N+
Xsd
Qi 耗尽区边界 Qb
P Substrate (Nb)
N+
Xdd
Vb
• MOS 晶体管特性
•MOS 晶体管特性
MOS热载流子效应
当沟道长度减小,同时保持电源电压不变,沟道区 靠近漏端附近的最大电场增加。随着载流子从源向漏移动, 它们在漏端高电场区将得到足够的动能,引起碰撞电离, 一些载流子甚至能克服Si-SiO2界面势垒进入氧化层,这 些高能载流子不再保持它们在晶格中的热平衡状态,并且 具有高于热能的能量,因此称它们为热载流子。对于正常 工作中的MOSFET,沟道中的热载流子引起的效应称为热 载流子效应。
当发生碰撞时,热载流子将通过电离产生次级电子空穴对,其中电子形成了从漏到源的电流,碰撞产生的次 级空穴将漂移到衬底区形成衬底电流Ib。通过测量Ib可以 很好地监控沟道热载流子和漏区电场的情况。
•MOS 晶体管特性
MOS热载流子效应
由于Si-SiO2的界面势垒较高,注入到栅氧化层中 的热载流子与碰撞电离产生的热载流子相比非常少,因此 栅电流比衬底电流要低几个数量级。
结构图
Vg Vd
Vs 栅(G)
FOX
N+ 源(S)
W
FOX N+
L
漏(D)
P 衬底(B) Vb
• MOS 晶体管结构
平面图
TO
POLY
W1
• MOS 晶体管结构
在正常工作条件下,栅电压Vg产生的电场控制着源漏间沟道区内载流 子的运动。由于器件的电流由器件内部的电场控制
----------- MOS 场效应晶体管(MOSFET)
Thanks!
热载流子注入到栅氧层中还会引起其它的一些效应, 主要有(1)热载流子被SiO2中电激活的缺陷俘获,是氧 化层中的固定电荷密度Qot改变;(2)在Si-SiO2界面产 生界面电荷Qit。由于Qot和Qit引起的电荷积累将在沟道 形成阻碍载流子运动的势垒;同时界面电荷也会增强界面 附近电子的库仑散射,使迁移率降低。因此经过一段时间 的积累,以上效应会使器件的性能退化,影响集成电路的 可靠性,所以应设法避免热载流子效应。
•MOS 晶体管特性
MOS衬底偏置效应
当衬底施加偏压时,势垒高度的增加导致耗尽区宽度的增加,因此 对于给定的Vgs和Vds,Vbs的增加会使Ids减小。这是因为Vbs增加,体 电荷Qb增加,而Vgs和Vds不变,由于栅电荷Qg固定,根据电荷守恒定 律Qg=Qi+Qb,所以Qi反型层电荷减少,因此电导减少。
而这时,如果要使MOS晶体管开启即进入强反型区,就是反型层电 荷相应的增加那就要提高栅电压,增加栅电荷。所以当MOS衬底施加偏压 时,MOS晶体管的开启电压会升高。
•MOS 晶体管特性
MOS热载流子效应
Vg
Vd
Vs
SiO2
N+ 源
由于光子产生 的少子电流
正向注入
P- 衬底
N+ 漏
衬底电流
耗尽层
Vb
• MOS 晶体管结构
MOS晶体管种类
按工作模式分
增强型晶体管:若在零栅压下不存在漏源导电沟道,为了形 成导电沟道,需要施加一定的栅压,也就是 说沟道要通过“增强”才能导通
耗尽型晶体管:器件本身在漏源之间就存在导电沟道,即使 在零栅压下器件也是导通的。若要使器件截 止,就必须施加栅压使沟道耗尽
•MOS 晶体管特性
MOS IV CURVE
击穿区
饱和区之后,若Vds进一步增加,晶体管进入击穿区,Ids随 Vds迅速增大,直至引起漏-衬PN结击穿,这是由于漏端高电场引 起的。
截止区
在该区域,Vgs<Vth,因此漏源之间不存在导电沟道,即 Ids=0。但实际上漏源电流并不为0,而是按指数规律随栅压变化, 通常称为弱反型电流或亚域值电流。在弱反型时,P型硅表面变为 N型,但这种反型很弱,表面电子浓度低于体内空穴的浓度。由于 低的电子浓度沿沟道产生的电场较低,因此亚域值电流主要由载 流子扩散引起。
栅极与其它电极之间是绝缘的
----------- 绝缘栅场效应晶体管 (IGFET)
• MOS 晶体管结构
MOS晶体管种类
按沟道区中载流子类型分 N沟MOS晶体管:衬底为P型,源漏为重掺杂的N+,沟道中 载流子为电子 P沟MOS晶体管:衬底为N型,源漏为重掺杂的P+,沟道中 载流子为空穴
在正常情况下,只有一种类型的载流子在工作,因此也称其为单 极晶体管
相关文档
最新文档