2016年北京高考(理科)数学分类汇编-第3讲:导数汇总-共8页

合集下载

2016年北京高考数学理科答案与解析

2016年北京高考数学理科答案与解析

2016年北京高考数学(理科)答案与解析1. C【解析】集合{|22}A x x =-<<,集合{|1,0,1,2,3}B x =-,所以{1,0,1}A B =-I .2. C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=.1,2()2x +y =02x-y=0x =0x +y =33. B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =.4. D【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b -r r r r不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r不一定成立,从而不是必要条件.5. C【解析】 A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y -<所以A 错; B .考查的是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12xy ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错.6.A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==.7.A【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以的最小值为π6.8.B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加个; ②黑+黑,则丙盒中黑球数加个;③红+黑(红球放入甲盒中),则乙盒中黑球数加个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机. ③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样. 综上,选B .9.1-【解析】()()()11i i 1i ++=-++a a a∵其对应点在实轴上 ∴10+=a ,1=-a10.60【解析】由二项式定理得含2x 的项为()2226C 260-=x x11.2【解析】将极坐标转化为直角坐标进行运算cos =x ρθ,sin =y ρθ直线的直角坐标方程为10--=x∵2cos =ρθ,()222sin cos 2cos +=ρθθρθ∴222+=x y x圆的直角坐标方程为()2211-+=x y圆心()1,0在直线上,因此AB 为圆的直径,2=AB12.6【解析】∵3542+=a a a ∴40=a∵16=a ,413=+a a d ∴2=-d ∴()61661662⨯-=+=S a d13. 2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=aOCBAyx14.2,1a <-.【解析】由()323330x x x '-=-=,得1x =±,如下图,是()f x 的两个函数在没有限制条件时的图象.⑴ ()()max 12f x f =-=;⑵ 当1a -≥时,()f x 有最大值()12f -=;当1a <-时,2x -在x a >时无最大值,且()3max23a x x ->-.所以,1a <-.15.【解析】⑴ ∵222a c b+=+∴222a c b +-=∴222cos 2a c b B ac +-===∴π4B ∠=⑵∵πA B C ++=∴3π4AC +=cos A C +()A A A =++ A A =+πsin()4A =+∵3π4A C +=∴3(0,π)4A ∈∴ππ(,π)44A +∈∴πsin()4A +最大值为1上式最大值为116. 【解析】⑴81004020⨯=,C 班学生40人 ⑵在A 班中取到每个人的概率相同均为15设A 班中取到第个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38= ⑶10μμ<三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值17.【解析】⑴∵面PAD I 面ABCD AD =面PAD ⊥面ABCD∵AB ⊥AD ,AB ⊂面ABCD ∴AB ⊥面PAD ∵PD ⊂面PAD ∴AB ⊥PD 又PD ⊥PA ∴PD ⊥面PAB⑵取AD 中点为O ,连结CO ,PO∵CD AC ==∴CO ⊥AD∵PA PD = ∴PO ⊥AD以O 为原点,如图建系 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =-u u u v ,,,(011)PD =--u u u v ,,,(201)PC =-u u u v,,,(210)CD =--u u u v,,设n v为面PDC 的法向量,令00(,1)n x y =v , 011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩v u u u v v v u u u v ,,则PB 与面PCD 夹角θ有sin cos ,n θ=<v u u u⑶假设存在M 点使得BM ∥面PCD设AM APλ=,()0,','M y z由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-u u u r ,()1,1,0B ,()0,'1,'AM y z =-u u u u r有()0,1,AM AP M λλλ=⇒-u u u u r u u u r∴()1,,BM λλ=--u u u u rOx yz PABCD∵BM ∥面PCD ,n u u r为PCD 的法向量 ∴0BM n ⋅=u u u u r r即102λλ-++=∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求.18.【解析】 (I )()e a x f x x bx -=+Q∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ② 由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴g 的最小值是(2)(12)e 1g =-=-∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.19.【解析】⑴由已知,112c ab a ==,又222a b c =+,解得2,1,a b c ===∴椭圆的方程为2214x y +=. ⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos My θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.20.【解析】⑴ (){}25G A =,⑵ 因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. ⑶ 设A 数列的所有“G 时刻”为12k i i i <<<L ,对于第一个“G 时刻”,有11i i a a a >≥,1231i i =-L ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =-L ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=-L ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a +L ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾.从而,11k i N k a a a a --≥≥,证毕.。

2016年高考数学理真题分类汇编:导数及其应用

2016年高考数学理真题分类汇编:导数及其应用

2016年高考数学理试题分类汇编导数及其应用一、选择题1、(2016年四川高考)设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A2、(2016年全国I 高考)函数y =2x 2–e |x |在[–2,2]的图像大致为【答案】D二、填空题1、(2016年全国II 高考)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .【答案】1ln 2-2、(2016年全国III 高考)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程 是_______________。

【答案】21y x =--三、解答题1、(2016年北京高考) 设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值; (2)求()f x 的单调区间.【解析】 (I )()e a x f x x bx -=+∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ②由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴g 的最小值是(2)(12)e 1g =-=-∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.2、(2016年山东高考)已知()221()ln ,R x f x a x x a x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【解析】(Ⅰ) 求导数322)11(=)(′x x x a x f --- 322)(1(=x ax x )--当0≤a 时,(0,1)∈x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;当0>a 时,3322+(2)(1(=2)(1(=)(′x ax a x x a x ax x x f ))--)--(1) 当<2<a 0时,1>2a, (0,1)∈x 或),(∈+∞2a x ,0>)(′x f ,)(x f 单调递增, )(1,∈ax 2,0<)(′x f ,)(x f 单调递减; (2) 当2=a 时,1=2a, )(0,∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2<0a, )(0,∈ax 2或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(∈ax 2,0<)(′x f ,)(x f 单调递减; (Ⅱ) 当1=a 时,212+ln =)(x x x x x f --,32322+11=2)(1(=)(′xx x x x x x f 2--)--于是)2+1112+ln =)(′)(322xx x x x x x x f x f 2---(---,-1-1-322+3+ln =xx x x x ,]2,1[∈x令x x x ln =)g(- ,322+3+=)h(xx x x -1-1,]2,1[∈x , 于是)(+(g =)(′)(x h x x f x f )-, 0≥1=1=)(g ′xx x x -1-,)g(x 的最小值为1=g(1);又42432+=+=)(h ′x x x x x x x 6-2-362-3-设6+23=)(θ2x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且0<<1x x 时,0>)(θx ,)(x h 单调递增; 2<<0x x 时,0<)(θx ,)(x h 单调递减;又1=)1(h ,21=)2(h ,所以)(x h 的最小值为21=)2(h . 所以23=21+1=)2(+1(g >)(+(g =)(′)(h x h x x f x f ))-. 即23)()(+'>x f x f 对于任意的]2,1[∈x 成立.3、(2016年四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得f (x ) >-e 1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

2016年北京高考(理科)数学分类汇编-第3讲:导数汇总

2016年北京高考(理科)数学分类汇编-第3讲:导数汇总

导数一、选择题1.(5分)(2016•海淀区校级一模•民大附中)已知函数f(x)=e x﹣2ax,函数g(x)=﹣x3﹣ax2.若不存在x1,x2∈R,使得f′(x1)=g′(x2),则实数a的取值范围为()A.(﹣2,3)B.(﹣6,0)C.[﹣2,3] D.[﹣6,0]2.(5分)(2016•海淀区二模)函数f(x)=lnx﹣x+1的零点个数是()A.1 B.2 C.3 D.43.(5分)(2016•海淀区校级模拟•人大附中)直线y=3x与曲线y=x2围成图形的面积为()A.B.9 C.D.二、填空题4.(5分)(2016•丰台区二模)已知x=1,x=3是函数f(x)=sin(ωx+φ)(ω>0)两个相邻的两个极值点,且f(x)在x=处的导数f′()<0,则f()=.5.(5分)(2016•海淀区校级一模•民大附中)边界为y=0,x=e,y=x,及曲线y=上的封闭图形的面积为.6.(2016•海淀区校级模拟•农大附中)如图,圆O:x2+y2=π2内的正弦曲线y=sinx与x轴围成的区域记为M (图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是.7.(5分)(2016•房山区二模)定积分dx的值为.三、解答题8.(13分)(2016•西城区二模)设a∈R,函数f(x)=.(1)若函数f(x)在(0,f(0))处的切线与直线y=3x﹣2平行,求a的值;(2)若对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),求a的取值范围.9.(13分)(2016•西城区一模)已知函数f(x)=xe x﹣ae x﹣1,且f′(1)=e.(1)求a的值及f(x)的单调区间;(2)若关于x的方程f(x)=kx2﹣2(k>2)存在两个不相等的正实数根x1,x2,证明:|x1﹣x2|>ln.10.(13分)(2016•海淀区一模)已知函数f (x)=ln x+﹣1,g(x)=(Ⅰ)求函数f (x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线y=x不是曲线y=g(x)的切线.11.(14分)(2016•海淀区二模)已知函数f(x)=e x(x2+ax+a).(1)当a=1时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤e a在[a,+∞)上有解,求实数a的取值范围;(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.(只需直接写出结果)12.(13分)(2016•朝阳区一模)已知函数f(x)=x+alnx,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x∈[1,2]时,都有f(x)>0成立,求a的取值范围;(Ⅲ)试问过点P(1,3)可作多少条直线与曲线y=f(x)相切?并说明理由.13.(14分)(2016•东城区一模)设函数f(x)=ae x﹣x﹣1,a∈R.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;(Ⅲ)求证:当x∈(0,+∞)时,ln>.14.(13分)(2016•石景山区一模)已知函数f(x)=sinx﹣xcosx.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)若f(x)>kx﹣xcosx对恒成立,求实数k的最大值.15.(13分)(2016•顺义区一模)已知函数f(x)=x2﹣lnx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设g(x)=x2﹣x+t,若函数h(x)=f(x)﹣g(x)在上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.16.(13分)(2016•通州区一模)已知函数f(x)=(x2﹣x﹣)e ax(a≠0).(Ⅰ)当a=时,求函数f(x)的零点;(Ⅱ)求f(x)的单调区间;(Ⅲ)当a>0时,若f(x)+≥0对x∈R恒成立,求a的取值范围.17.(13分)(2016•海淀区校级模拟•人大附中)已知函数f(x)=﹣(1+2a)x+ln(2x+1),a>0.(1)已知函数f(x)在x=2取得极小值,求a的值;(2)讨论函数f(x)的单调区间;(3)当a>时,若存在x0∈(,+∞)使得f(x0)<﹣2a2,求实数a的取值范围.18.(14分)(2016•丰台区一模)已知函数f (x )=xlnx .(Ⅰ)求曲线y=f (x )在点(1,f (1))处的切线方程;(Ⅱ)求证:f (x )≥x ﹣1; (Ⅲ)若在区间(0,+∞)上恒成立,求a 的最小值.19.(2016•东城区二模)(本小题共14分)已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+.(Ⅰ)求()f x 的单调区间;(Ⅱ)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(Ⅲ)若存在01x >-,使得当0(1,)x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.20.(13分)(2016•昌平区二模)已知函数f (x )=e ax ,g (x )=﹣x 2+bx+c (a ,b ,c ∈R ),且曲线y=f (x )与曲线y=g (x )在它们的交点(0,c )处具有公共切线.设h (x )=f (x )﹣g (x ).(Ⅰ)求c 的值,及a ,b 的关系式;(Ⅱ)求函数h (x )的单调区间;(Ⅲ)设a≥0,若对于任意x 1,x 2∈[0,1],都有|h (x 1)﹣h (x 2)|≤e ﹣1,求a 的取值范围.21.(13分)(2016•朝阳区二模)已知函数f(x)=﹣+(a+1)x+(1﹣a)lnx,a∈R.(Ⅰ)当a=3时,求曲线C:y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当x∈[1,2]时,若曲线C:y=f(x)上的点(x,y)都在不等式组所表示的平面区域内,试求a的取值范围.22.(2016•海淀区校级模拟•农大附中)已知函数f(x)=x2+2alnx.(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数在[1,2]上是减函数,求实数a的取值范围.23.(14分)(2016•海淀区校级模拟•清华附中)已知函数f(x)=e(x2﹣3ax+a2))(a>0)(1)求函数f(x)单调区间;(2)函数f(x)在(﹣∞,+∞)上是否存在最小值,若存在,求出该最小值;若不存在,请说明理由.24.(14分)(2016•海淀区校级一模•民大附中)已知函数f(x)=x2+ax﹣lnx,a∈R(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e]时,函数g(x)的最小值是3?若存在,求出a的值,若不存在,说明理由(3)当x∈(0,e]时,求证:e2x2﹣x>(x+1)lnx.25.(13分)(2016•海淀区校级模拟•北方交大附中)已知函数f(x)=lnx+.(Ⅰ)求证:f(x)≥1;(Ⅱ)若x﹣1>alnx对任意x>1恒成立,求实数a的最大值.26.(13分)(2016•房山区二模)已知函数f(x)=(a≠0).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)设g(x)=f(x)﹣﹣lnx,若g(x)在区间(0,2)上有两个极值点,求实数a的取值范围.27.(13分)(2016•房山区一模)已知函数f(x)=lnx+ax2﹣(2a+1)x,其中.(Ⅰ)当a=﹣2时,求函数f(x)的极大值;(Ⅱ)若f(x)在区间(0,e)上仅有一个零点,求a的取值范围.28.(13分)(2016•大兴区一模)已知函数f(x)=lnx+ax2﹣(2a+1)x,其中a≠0.(Ⅰ)当a=2时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)当a>0时,判断函数f(x)零点的个数.(只需写出结论)。

2016年高考数学(理)北京卷参考答案

2016年高考数学(理)北京卷参考答案

数学(理)(北京卷)参考答案第1页(共8页)绝密★考试结束前2016年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)C (3)B (4)D (5)C(6)A(7)A(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10)60 (11)2(12)6 (13)2(14)2(,1)-∞-三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设得所以222cos 2a c b B ac +-===又因为0πB <∠<, 所以π4B ∠=. (Ⅱ)由(Ⅰ)知3π4A C +=.cos A C+3πcos()4A A =+-()A A A =++A A =+ πsin()4A =+因为3(0,π)4A ∈,所以当π4A ∠=cos A C +取得最大值1.数学(理)(北京卷)参考答案第2页(共8页)(16)(共13分)解:(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人估计为81004020⨯=人. (Ⅱ)在A 班中取到每个人的概率相同均为15设A 班中取到第i 个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38=(Ⅲ)10μμ<.三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值.数学(理)(北京卷)参考答案第3页(共8页)(17)(共14分)解:(Ⅰ)因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD . 所以AB ⊥PD .又因为PA ⊥PD , 所以PD ⊥平面PAB .(Ⅱ)取AD 中点为O ,连结CO ,PO .因为PA PD =, 所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为CD AC ==所以CO ⊥AD .以O 为原点,如图建立空间直角坐标系O xyz -.由题意得 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =- ,,,(011)PD =-- ,,,(201)PC =- ,,,(210)CD =--,, 设n为平面PDC 的法向量,令00(,1)n x y = ,011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨ ⎪⎝⎭⋅=⎪⎩,,则PB 与平面PCD 夹角θ有数学(理)(北京卷)参考答案第4页(共8页)sin cos ,n PBn PB n PBθ⋅=<>===(Ⅲ)设存在M 点使得BM ∥平面PCD设AMAPλ=,()0,','M y z 由(Ⅱ)知()0,1,0A ,()0,0,1P ,()0,1,1AP =- ,()1,1,0B ,()0,'1,'AM y z =-有()0,1,AM AP M λλλ=⇒-所以()1,,BM λλ=--因为BM ∥平面PCD ,n为PCD 的法向量 所以0BM n ⋅=即102λλ-++=所以1=4λ所以综上,存在M 点,即当14AM AP =时,M 点即为所求.数学(理)(北京卷)参考答案第5页(共8页)(18)(共13分)解:(Ⅰ)()e a x f x x bx -=+所以()e e (1)e a x a x a x f x x b x b ---'=-+=-+因为曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ 所以(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=-②由①②解得:2a =,e b =(Ⅱ)由(Ⅰ)可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,所以222()e (1)e (2)e x x x g x x x ---'=---=-所以()g x 的最小值是22(2)(12)e 1g -=-=- 所以()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立所以()f x 在(),-∞+∞上单调递增,无减区间.数学(理)(北京卷)参考答案第6页(共8页)(19)(共14分)解:(Ⅰ)由已知,112c ab a ==, 又222a b c =+,解得2,1,a b c ==所以椭圆的方程为2214x y +=. (Ⅱ)方法一:设椭圆上一点()00,P x y ,则220014x y +=. 直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. 所以00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. 所以0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅数学(理)(北京卷)参考答案第7页(共8页)故AN BM ⋅为定值.方法二:设椭圆上一点()2cos ,sin P θθ, 直线PA :()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. 所以sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-.所以2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.数学(理)(北京卷)参考答案第8页(共8页)(20)(共13分)解:(Ⅰ)(){}25G A =,. (Ⅱ)因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. (Ⅲ)设A 数列的所有“G 时刻”为12k i i i <<< ,对于第一个“G 时刻”1i ,有11i i a a a >≥,1231i i =- ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =- ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=- ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a + ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾. 从而,11k i N k a a a a --≥≥,证毕.。

2016年北京高考数学真题及答案(理科)

2016年北京高考数学真题及答案(理科)

数学(理)(北京卷) 第 1 页(共 11 页)绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =(A ){0,1} (B ){0,1,2} (C ){1,0,1}-(D ){1,0,1,2}-(2)若,x y 满足20,3,0,x y x y x -⎧⎪+⎨⎪⎩≤≤≥ 则2x y +的最大值为(A )0 (B )3 (C )4(D )5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1 (B )2 (C )3 (D )4数学(理)(北京卷) 第 2 页(共 11 页)(4)设,a b 是向量.则“||||=a b ”是“||||+=-a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)已知,R x y ∈,且0x y >>,则(A )110x y-> (B )sin sin 0x y ->(C )11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(D )ln ln 0x y +>(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )16(B )13(C )12(D )1(7)将函数πsin(2)3y x =-图象上的点π(,)4P t 向左平移s (0)s >个单位长度得到点P '.若P '位于函数sin 2y x =的图象上,则 (A )12t =,s 的最小值为π6 (B)t =,s 的最小值为π6 (C )12t =,s 的最小值为π3(D)t =,s 的最小值为π3(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则 (A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中红球不多于丙盒中红球(D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)正(主)视图数学(理)(北京卷) 第 3 页(共 11 页)二、填空题共6小题,每小题5分,共30分。

2016年全国各地高考数学试题及解答分类大全(导数及其应用)

2016年全国各地高考数学试题及解答分类大全(导数及其应用)

(II)当 a b 4 时, f x x3 4x2 4x c , 所以 f x 3x2 8x 4 .
第 6页 (共 33页)
令 f x 0 ,得 3x2 8x 4 0 ,解得 x 2 或 x 2 .
3
f x 与 f x 在区间 , 上的情况如下:
x
f x
(I)求曲线 y f x.在点 0, f 0 处的切线方程;
(II)设 a b 4 ,若函数 f x 有三个不同零点,求 c 的取值范围;
(III)求证: a2 3b>0 是 f x.有三个不同零点的必要而不充分条件.
【答案】(Ⅰ)
y
bx
c
;(Ⅱ)
c
0,
32 27
;(III)见解析.
ln x, 0 x 1,
4.(2016 四川文、理)设直线 l1,l2 分别是函数 f(x)= ln x, x 1,
图象上点 P1,P2 处的切线,
l1 与 l2 垂直相交于点 P,且 l1,l2 分别与 y 轴相交于点 A,B,则△PAB 的面积的取值范围是( )
(A)(0,1) (B)(0,2) (C)(0,+∞) (D)(1,& BPD 30 .
过 P 作直线 BD 的垂线,垂足为 O .设 PO d

SPBD
1 2
BD d
1 2
PD
PB sin
BPD ,
即 1 x2 2 3x 4 d 1 x 2sin 30 ,解得 d
x
.
2
2
x2 2 3x 4
而 BCD 的面积 S 1 CD BC sin BCD 1 (2 3 x) 2 sin 30 1 (2 3 x) .
第 1页 (共 33页)

2016年北京市高考数学理科试题(Word版,含答案)

2016年北京市高考数学理科试题(Word版,含答案)

2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。

(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A ,B 两点,则 =____________________.(12)已知为等差数列,为其前n 项和,若,,则.(13)双曲线 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B为该双曲线的焦点。

2016年北京高考数学理科卷解析

2016年北京高考数学理科卷解析

绝密★启用前2016年普通高等学校招生全国统一考试(北京卷)理科数学解析戴又发本试卷共5页。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合}2{<=x x A ,}3,2,1,0,1{-=B ,则=B A (A )}1,0{ (B )}2,1,0{(C )}1,0,1{- (D )}2,1,0,1{- 【解析】由)2,2(}2{-=<=x x A ,}3,2,1,0,1{-=B ,得 =B A }1,0,1{-,故选(C )(2)若y x ,满足⎪⎩⎪⎨⎧≥≤+≤-0302x y x y x ,则y x +2的最大值为(A )0 (B )3 (C )4 (D )5【解析】画出可行域,可知可行域为三角形区域,其三顶点坐标为: (1,2),(0,0),(0,3),分别代入目标函数y x +2,得 最优解为(1,2),y x +2的最大值为4,故选(C )(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1 (B )2 (C )3 (D )4 【解析】进入循环体前1,1,0===b a k ,kk =ka=b输入a k =0,b=a第一次进入循环体后1,21=-=b a ;由于b a ≠,使得1=k 后,第二次进入循环体2-=a ; 由于b a ≠,使得2=k 后,第三次进入循环体1=a ; 此时b a =,退出循环,所以2=k .故选(B ).(4)设b a ,是向量,则“b a =”是“b a b a -=+”的 (A ) 充分而不必要条件 (B )必要而不充分条件 (C ) 充分必要条件 (D )既不充分也不必要条件 【解析】由于b a b a -=+的充分必要条件为22)()(b a b a -=+,22)()(b a b a -=+的充分必要条件为0=⋅b a .所以“b a =”既不是“b a b a -=+”的充分条件,也不是“b a b a -=+”的必要条件.故选(D ).(5)已知R y x ∈,,且0>>y x ,则(A )011>-yx (B )0sin sin >-y x (C )0)21()21(<-yx(D )0ln ln >+y x【解析】且0>>y x ,得011<-yx ,(A )不成立; 又因为x sin 不是单调函数,(B )不成立; 而x)21(是单调递减函数,所以(C )成立. 故选(C ).(6)某三棱锥的三视图如图所示, 则该三棱锥的体积为111 侧(左)视图正(主)视图 俯视图(A )61 (B )31 (C )21(D )1 【解析】该三棱锥的高为1,底面为一个直角 边长为1的等腰直角三角形,所以体积为 6112131=⨯⨯=V ,故选(A ).(7)将函数)32sin(π-=x y 图象上的点),4(t P π向左平移)0(>s s 个单位长度得到点P '.若P '位于函数x y 2sin =的图像上,则(A )21=t ,s 的最小值为6π (B )23=t ,s 的最小值为6π(C )21=t ,s 的最小值为3π (D )23=t ,s 的最小值为3π【解析】由点),4(t P π在函数)32sin(π-=x y 图象上,得21=t ; 将点)21,4(πP 向左平移s 个单位长度后,得到点)21,4(s P +'π. 将点)21,4(s P +'π的坐标代入x y 2sin =,得21)22sin(=+s π,又0>s . 所以s 的最小值为6π.故选(A ).(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则 (A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多【解析】当取到两个球都是红球时,乙盒将得到一个红球, 当取到两个球都是黑球时,丙盒将得到一个黑球,红球、黑球各占一半.所以乙盒得到红球与丙盒得到黑球的个数相等; 当从袋中任意取出两个球不同色时,乙盒中不可能得到红球,丙盒中不可能得到黑; 所以,乙盒中红球与丙盒中黑球一样多,故选(B )第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设R a ∈,若复数))(1(i a i ++在复平面内对应的点位于实轴上,则=a ________. 【解析】复数))(1(i a i ++在复平面内对应的点位于实轴上,可知))(1(i a i ++是实数.其虚部01=+a ,所以1-=a ,应填1-.(10)在6)21(x -的展开式中,2x 的系数为__________________.(用数字作答)【解析】6)21(x -的展开式中,含有2x 的项为2242660)2(1x x C =-⨯⨯,所以2x 的系数为60,应填60.(11)在极坐标系中,直线01sin 3cos =--θρθρ与圆θρcos 2=交于A ,B 两点, 则=AB _______________.【解析】圆θρcos 2=的直径为2,圆心为)0,1(,由于直线01sin 3cos =--θρθρ过圆心,所以=AB 2,应填2.(12)已知{}n a 为等差数列,n S 为其前n 项和,若61=a ,053=+a a ,则=6S _____. 【解析】由053=+a a 知04=a ,又61=a ,所以2-=d ,46-=a ,所以662616=⨯+=a a S ,应填6.(13)双曲线)0,0(12222>>=b a by -a x 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则=a ____________. 【解析】由题意及双曲线的性质得b a =,8222=+=b a c ,所以=a 2.应填2.(14)设函数⎩⎨⎧>-≤-=ax x ax x x x f ,2,3)(3①若0=a ,则)(x f 的最大值为_______________;② 若)(x f 无最大值,则实数a 的取值范围为_____________. 【解析】作出函数的图象,数形结合.①由0=a ,只需求)0(3)(3≤-=x x x x g 的最大值即可.因为33)(2-='x x g ,所以在0≤x 时,)(x g 的最大值为2)1(=-g ,所以应填2.②求x x x g 3)(3-=与x x h 2)(-=的交点,得1,0,1-=x ,当1-<a 时,)(x f 无最大值, 所以实数a 的取值范围是)1,(--∞,应填)1,(--∞.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) (15)(本小题13分)在∆ABC 中,333a cb +=+ (I )求B ∠ 的大小(II cos cos A C + 的最大值.【解析】(Ⅰ)由余弦定理及题设得22222cos 222==-+=ac ac ac b c a B .又因为π<∠<B 0,所以4π=∠B .(Ⅱ)由(Ⅰ)知43π=∠+∠C A .)43cos(cos 2cos cos 2A A C A -+=+π)4cos(sin 22cos 22sin 22cos 22cos 2π-=+=+-=A A A A A A , 因为430π<∠<A ,所以当4π=∠A 时,C A cos cos 2+取得最大值1.(16)(本小题13分)A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通(I ) 试估计C 班的学生人数;(II ) 从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(III )再从A 、B 、C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小,(结论不要求证明)【解析】(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为40208100=⨯. (Ⅱ)设事件i A 为“甲是现有样本中A 班的第i 个人”,5,,2,1⋅⋅⋅=i , 事件j C 为“乙是现有样本中C 班的第j 个人”,8,,2,1⋅⋅⋅=j , 由题意可知,51)(=i A P ,5,,2,1⋅⋅⋅=i ;81)(=j C P ,8,,2,1⋅⋅⋅=j . 4018151)()()(=⨯=j i j i C P A P C A P ,5,,2,1⋅⋅⋅=i ,8,,2,1⋅⋅⋅=j .设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,ABCDP3323133222122111C A C A C A C A C A C A C A C A E = 45352515342414C A C A C A C A C A C A C A因此)()()()()()()()()(3323133222122111C A P C A P C A P C A P C A P C A P C A P C A P E P +++++++=8340115)()()()()()()(45352515342414=⨯=+++++++C A P C A P C A P C A P C A P C A P C A P (Ⅲ)01μμ<.(17)(本小题14分)如图,在四棱锥P -ABCD 中,平面PAD ⊥ 平面ABCD , PA ⊥PD ,PA =PD,AB ⊥AD,AB =1,AD =2,AC =CD 5 , (I )求证:PD ⊥平面PAB;(II )求直线PB 与平面PCD 所成角的正弦值;(III )在棱PA 上是否存在点M ,使得BM//平面PCD ?若存在,求AMAP的值;若不存在,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数
一、选择题
1.(5分)(2019•海淀区校级一模•民大附中)已知函数f(x)=e x﹣2ax,函数g(x)=﹣x3﹣ax2.若不存在x1,x2∈R,使得f′(x1)=g′(x2),则实数a的取值范围为()
A.(﹣2,3)B.(﹣6,0)C.[﹣2,3] D.[﹣6,0]
2.(5分)(2019•海淀区二模)函数f(x)=lnx﹣x+1的零点个数是()
A.1 B.2 C.3 D.4
3.(5分)(2019•海淀区校级模拟•人大附中)直线y=3x与曲线y=x2围成图形的面积为()
A.B.9 C.D.
二、填空题
4.(5分)(2019•丰台区二模)已知x=1,x=3是函数f(x)=sin(ωx+φ)(ω>0)两个相邻的两个极值点,
且f(x)在x=处的导数f′()<0,则f()=.
5.(5分)(2019•海淀区校级一模•民大附中)边界为y=0,x=e,y=x,及曲线y=上的封闭图形的面积为

6.(2019•海淀区校级模拟•农大附中)如图,圆O:x2+y2=π2内的正弦曲线y=sinx与x轴围成的区域记为M (图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是.
7.(5分)(2019•房山区二模)定积分dx的值为.
三、解答题
8.(13分)(2019•西城区二模)设a∈R,函数f(x)=.
(1)若函数f(x)在(0,f(0))处的切线与直线y=3x﹣2平行,求a的值;
(2)若对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),求a的取值范围.
9.(13分)(2019•西城区一模)已知函数f(x)=xe x﹣ae x﹣1,且f′(1)=e.
(1)求a的值及f(x)的单调区间;
(2)若关于x的方程f(x)=kx2﹣2(k>2)存在两个不相等的正实数根x1,x2,证明:|x1﹣x2|>ln.
10.(13分)(2019•海淀区一模)已知函数f (x)=ln x+﹣1,g(x)=
(Ⅰ)求函数f (x)的最小值;
(Ⅱ)求函数g(x)的单调区间;
(Ⅲ)求证:直线y=x不是曲线y=g(x)的切线.
11.(14分)(2019•海淀区二模)已知函数f(x)=e x(x2+ax+a).
(1)当a=1时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤e a在[a,+∞)上有解,求实数a的取值范围;
(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.(只需直接写出结果)
12.(13分)(2019•朝阳区一模)已知函数f(x)=x+alnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x∈[1,2]时,都有f(x)>0成立,求a的取值范围;
(Ⅲ)试问过点P(1,3)可作多少条直线与曲线y=f(x)相切?并说明理由.
13.(14分)(2019•东城区一模)设函数f(x)=ae x﹣x﹣1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln>.
14.(13分)(2019•石景山区一模)已知函数f(x)=sinx﹣xcosx.
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)求证:当时,;
(Ⅲ)若f(x)>kx﹣xcosx对恒成立,求实数k的最大值.
15.(13分)(2019•顺义区一模)已知函数f(x)=x2﹣lnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设g(x)=x2﹣x+t,若函数h(x)=f(x)﹣g(x)在上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.
16.(13分)(2019•通州区一模)已知函数f(x)=(x2﹣x﹣)e ax(a≠0).
(Ⅰ)当a=时,求函数f(x)的零点;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a>0时,若f(x)+≥0对x∈R恒成立,求a的取值范围.
17.(13分)(2019•海淀区校级模拟•人大附中)已知函数f(x)=﹣(1+2a)x+ln(2x+1),a>0.(1)已知函数f(x)在x=2取得极小值,求a的值;
(2)讨论函数f(x)的单调区间;
(3)当a>时,若存在x0∈(,+∞)使得f(x0)<﹣2a2,求实数a的取值范围.
18.(14分)(2019•丰台区一模)已知函数f (x )=xlnx .
(Ⅰ)求曲线y=f (x )在点(1,f (1))处的切线方程;
(Ⅱ)求证:f (x )≥x ﹣1; (Ⅲ)若
在区间(0,+∞)上恒成立,求a 的最小值.
19.(2019•东城区二模)(本小题共14分)
已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+. (Ⅰ)求()f x 的单调区间;
(Ⅱ)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;
(Ⅲ)若存在01x >-,使得当0(1,)x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.
20.(13分)(2019•昌平区二模)已知函数f (x )=e ax ,g (x )=﹣x 2+bx+c (a ,b ,c ∈R ),且曲线y=f (x )与曲线y=g (x )在它们的交点(0,c )处具有公共切线.设h (x )=f (x )﹣g (x ).
(Ⅰ)求c 的值,及a ,b 的关系式;
(Ⅱ)求函数h (x )的单调区间;
(Ⅲ)设a≥0,若对于任意x 1,x 2∈[0,1],都有|h (x 1)﹣h (x 2)|≤e ﹣1,求a 的取值范围.
21.(13分)(2019•朝阳区二模)已知函数f(x)=﹣+(a+1)x+(1﹣a)lnx,a∈R.
(Ⅰ)当a=3时,求曲线C:y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当x∈[1,2]时,若曲线C:y=f(x)上的点(x,y)都在不等式组所表示的平面区域内,试求a的取值范围.
22.(2019•海淀区校级模拟•农大附中)已知函数f(x)=x2+2alnx.
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数在[1,2]上是减函数,求实数a的取值范围.
23.(14分)(2019•海淀区校级模拟•清华附中)已知函数f(x)=e(x2﹣3ax+a2))(a>0)
(1)求函数f(x)单调区间;
(2)函数f(x)在(﹣∞,+∞)上是否存在最小值,若存在,求出该最小值;若不存在,请说明理由.
24.(14分)(2019•海淀区校级一模•民大附中)已知函数f(x)=x2+ax﹣lnx,a∈R
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围
(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e]时,函数g(x)的最小值是3?若存在,求出a的值,若不存在,说明理由
(3)当x∈(0,e]时,求证:e2x2﹣x>(x+1)lnx.
25.(13分)(2019•海淀区校级模拟•北方交大附中)已知函数f(x)=lnx+.
(Ⅰ)求证:f(x)≥1;
(Ⅱ)若x﹣1>alnx对任意x>1恒成立,求实数a的最大值.
26.(13分)(2019•房山区二模)已知函数f(x)=(a≠0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=f(x)﹣﹣lnx,若g(x)在区间(0,2)上有两个极值点,求实数a的取值范围.
27.(13分)(2019•房山区一模)已知函数f(x)=lnx+ax2﹣(2a+1)x,其中.(Ⅰ)当a=﹣2时,求函数f(x)的极大值;
(Ⅱ)若f(x)在区间(0,e)上仅有一个零点,求a的取值范围.
28.(13分)(2019•大兴区一模)已知函数f(x)=lnx+ax2﹣(2a+1)x,其中a≠0.(Ⅰ)当a=2时,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a>0时,判断函数f(x)零点的个数.(只需写出结论)。

相关文档
最新文档