定积分练习题精品文档10页

合集下载

定积分练习题

定积分练习题

定积分练习题定积分练习题在微积分学习中,定积分是一个重要的概念和工具。

它不仅可以用来计算曲线下的面积,还可以解决各种实际问题。

为了更好地理解和应用定积分,下面将给出一些练习题,通过解题的过程来加深对定积分的理解。

1. 计算定积分∫[0, 2] x^2 dx。

解析:根据定积分的定义,我们可以将曲线y = x^2与x轴所围成的面积表示为∫[0, 2] x^2 dx。

为了计算这个积分,我们可以使用定积分的基本性质,即将曲线下的面积分成若干个小矩形,然后将这些矩形的面积相加。

将区间[0, 2]均匀分成n个小区间,每个小区间的长度为Δx = (2-0)/n = 2/n。

在每个小区间中,选择一个任意点xi,然后计算该点处的函数值f(xi) = (xi)^2。

然后将每个小矩形的面积f(xi)Δx相加,即可得到曲线下的面积。

当n趋向于无穷大时,这个和式就可以表示为定积分∫[0, 2] x^2 dx。

通过计算这个和式,我们可以得到∫[0, 2] x^2 dx = 8/3。

2. 计算定积分∫[1, 3] (2x+1) dx。

解析:这个定积分的计算与上一个例子类似。

我们可以将曲线y = 2x+1与x轴所围成的面积表示为∫[1, 3] (2x+1) dx。

同样地,我们可以将区间[1, 3]均匀分成n个小区间,每个小区间的长度为Δx = (3-1)/n = 2/n。

在每个小区间中,选择一个任意点xi,然后计算该点处的函数值f(xi) = 2xi+1。

然后将每个小矩形的面积f(xi)Δx相加,即可得到曲线下的面积。

当n趋向于无穷大时,这个和式就可以表示为定积分∫[1, 3] (2x+1) dx。

通过计算这个和式,我们可以得到∫[1, 3] (2x+1) dx = 12。

3. 计算定积分∫[0, π/2] sin(x) dx。

解析:这个定积分的计算稍微复杂一些,因为它涉及到三角函数。

我们可以将曲线y = sin(x)与x轴所围成的面积表示为∫[0, π/2] sin(x) dx。

定积分练习题(打印版)

定积分练习题(打印版)

定积分练习题(打印版)一、基础计算题1. 计算定积分 \(\int_{0}^{1} x^2 dx\)。

2. 计算定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。

3. 计算定积分 \(\int_{0}^{2} (3x - 2) dx\)。

二、换元积分题1. 计算定积分 \(\int e^{2x} dx\),其中上下限为 \(0\) 到 \(\ln 2\)。

2. 计算定积分 \(\int \frac{1}{\sqrt{1 + x^2}} dx\),其中上下限为 \(0\) 到 \(1\)。

三、分部积分题1. 计算定积分 \(\int x e^x dx\),上下限为 \(0\) 到 \(1\)。

2. 计算定积分 \(\int \sin x \cos x dx\),上下限为 \(0\) 到\(\pi\)。

四、几何应用题1. 利用定积分计算圆 \(x^2 + y^2 = 1\) 在第一象限内围成的面积。

2. 利用定积分计算抛物线 \(y = x^2\) 与直线 \(y = 4\) 所围成的面积。

五、物理应用题1. 假设一物体的加速度 \(a(t) = 2t\),计算从 \(0\) 到 \(1\) 秒内物体的位移。

2. 假设一物体的力 \(F(x) = 3x + 1\),计算从 \(0\) 到 \(2\) 米内物体所做的功。

六、综合题1. 利用定积分计算函数 \(y = \sqrt{x}\) 与 \(x\) 轴,以及直线\(x = 1\) 所围成的面积。

2. 利用定积分计算函数 \(y = \ln x\) 与 \(x\) 轴,以及直线 \(x = e\) 所围成的面积。

七、挑战题1. 计算定积分 \(\int_{0}^{\pi/2} \sin^3 x \cos x dx\)。

2. 计算定积分 \(\int_{0}^{1} \frac{\ln x}{x} dx\)。

答案提示:- 对于基础计算题,可以直接应用定积分的基本公式进行计算。

专升本高数定积分练习题

专升本高数定积分练习题

专升本高数定积分练习题### 专升本高数定积分练习题#### 一、基础题1. 计算定积分 \(\int_{0}^{1} x^2 dx\)。

2. 计算定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。

3. 计算定积分 \(\int_{-2}^{2} x dx\)。

4. 计算定积分 \(\int_{0}^{\pi/2} \sin x dx\)。

#### 二、提高题5. 计算定积分 \(\int_{0}^{1} e^x dx\)。

6. 计算定积分 \(\int_{-1}^{1} \cos x dx\)。

7. 计算定积分 \(\int_{0}^{1} \ln x dx\)。

8. 计算定积分 \(\int_{0}^{\pi} \tan x dx\)。

#### 三、应用题9. 计算定积分 \(\int_{0}^{a} \frac{1}{\sqrt{a^2 - x^2}} dx\),其中 \(a > 0\)。

10. 计算定积分 \(\int_{0}^{\pi/2} \sin^2 x dx\)。

#### 四、挑战题11. 计算定积分 \(\int_{0}^{1} x^3 \ln x dx\)。

12. 计算定积分 \(\int_{0}^{1} \frac{\sin x}{x} dx\)。

#### 答案解析1. \(\int_{0}^{1} x^2 dx = \left[\frac{1}{3}x^3\right]_{0}^{1} = \frac{1}{3}\)2. \(\int_{1}^{2} \frac{1}{x} dx = [\ln x]_{1}^{2} = \ln 2 -\ln 1 = \ln 2\)3. \(\int_{-2}^{2} x dx = \left[\frac{1}{2}x^2\right]_{-2}^{2} = 2 - (-2) = 4\)4. \(\int_{0}^{\pi/2} \sin x dx = [-\cos x]_{0}^{\pi/2} = -\cos(\pi/2) + \cos(0) = 1\)5. \(\int_{0}^{1} e^x dx = [e^x]_{0}^{1} = e - 1\)6. \(\int_{-1}^{1} \cos x dx = [\sin x]_{-1}^{1} = \sin(1) -\sin(-1) = 2\sin(1)\)7. \(\int_{0}^{1} \ln x dx = \left[x\ln x - x\right]_{0}^{1}= (1\ln 1 - 1) - (0\ln 0 - 0) = -1\)8. \(\int_{0}^{\pi} \tan x dx\) 此积分发散,因为 \(\tan x\)在 \(x = \frac{\pi}{2}\) 处无界。

(完整版)定积分练习题

(完整版)定积分练习题

一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。

定积分典型例题及习题答案

定积分典型例题及习题答案

04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。

定积分典型例题

定积分典型例题

定积分典型例题11198(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--定积分典型例题例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解 232122212010011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记10()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]xt t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =.因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连xu例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e ⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解 3412e e ⎰=34e 3412e e⎰=⎰=3412e e =6π. 例24 计算40sin 1sin xdx xπ+⎰. 解 40sin 1sin x dx xπ+⎰=420sin (1sin )1sin x x dx x π--⎰=244200sin tan cos xdx xdx x ππ-⎰⎰ =244200cos (sec 1)cos d xx dx xππ---⎰⎰ =44001[][tan ]cos x x x ππ--=24π-例26 计算0a ⎰,其中0a >. 解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t tπ++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰ []201ln |sin cos |2t t t π=++=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰.分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u 2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 22201284du du u =-=+⎰⎰4π-. 例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解 30sin x xdx π⎰30(cos )xd x π=-⎰3300[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例30 计算12ln(1)(3)x dx x +-⎰. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰ 11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰2200[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰220sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. (2) 将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-.,例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.例36 计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰ 例38计算42⎰分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]aa x +→-=2π.43⎰=34lim bb -→⎰34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点.解t =,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得 5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cos d πθθ⎰=220(1sin )cos d πθθθ-⎰ =220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221114222222111()1112()d x x x dx dx x x x x x ---+-==+++-⎰⎰⎰,可令1t x x=-,则当2x =-时,2t =-;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有210142202211()()1112()2()d x d x x x dx x x x x x----=+++-+-⎰⎰⎰0222()22d t dt t t +∞--∞=+++⎰⎰ 21(arctan )2π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有1S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.2x y =1y =3y x=o 1-3-321211-2-xy2y =图5-1342-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π.例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln62ln 2c c-++-+. 由于dA dc =2164c c-+=24(4)c c --, 令0dA dc =,解得驻点4c =.当4c <时0dAdc<,而当4c >时0dA dc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b a x =+-,下半圆周的方程为221y b a x =--.则体积元素为dV=2221()y y dx ππ-=224b a x dx π-.于是所求旋转体的体积为 3πθ=3cos ρθ=3211-xoy121-1xo y23121-45673ln y x=2x =6x =(,ln )c c (0,)b o222()(0)x y b a b a +-=>>xy1cos ρθ=+11V=4a b π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;图5-6计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. 例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x轴的平面,与立体相截的截面为等边三角形,其底边长为()A x 2=. 于是所求体积为 V =20()A x dx ⎰=20⎰=。

最新定积分及其应用练习-带详细答案

最新定积分及其应用练习-带详细答案

求由抛物线 y2 8x( y 0) 与直线 x y 6 及 y 0 所围成图形的面积.
答案: 40 . 3
详解:
作出 y2 8x( y 0) 及 x y 6 的图形如右:
解方程组
y2
8x
x y 6 0

x y
2 4
解方程组
x
y
y 0
6
0

x y
6 0
所求图形的面积 s
(2)取特殊情况,在(1)的条件下,导函数 f′(x)=3cos3x+6π,求得 Aπ9,0, B51π8,-3,C49π,0,故△ABC 的面积为 S△ABC=12×39π×3=π2,曲线段与 x 轴所 围成的区域的面积 S=- fx 49π9π=-sin43π+π6+sin39π+π6=2,所以该点在△
精品文档
A.1/2 答案:D. 详解:
B.1
由题意图象与 x 轴所围成图形的面积为
1
0
(x 1)dx 0
cos xdx
2
C.2
(
1 2
x2
x)
|10
sin
x
|0 2
1 1 2
3. 2
故选 D.
D.3/2
题四 题面:
(导数与积分结合,二星)设函数 f (x) xm ax 的导函数为 f (x) 2x 1 ,则
(1)若 φ=π6,点 P 的坐标为0,3 2 3,则 ω=________;
(2)若在曲线段 ABC 与 x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为
________.
精品文档
精品文档
[解析] (1)函数 f(x)=sin(ωx+φ)求导得,f′(x)=ωcos(ωx+φ),把 φ=π6和点0,32 3代 入得 ωcos0+π6=3 2 3解得 ω=3.

定积分练习题

定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。

2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。

3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。

4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。

5. 计算 $\int_{0}^{\pi} \sin x \, dx$。

二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。

7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。

8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。

9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。

三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。

11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。

12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。

13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。

14. 计算 $\int_{0}^{2} |x 1| \, dx$。

四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 定 积 分练 习 题 §1定积分概念习 题1.按定积分定义证明:⎰-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: (1)⎰∑=+=112233)1(41:;ni n n i dx x 提示 (2)⎰10;dx e x(3)⎰bax dx e ; (4)2(0).(:bi adxa b xξ<<=⎰提示取 §2 牛顿一菜布尼茨公式1.计算下列定积分:(1)⎰+10)32(dx x ; (2)⎰+-102211dx x x ; (3)⎰2ln e e x x dx ;(4)⎰--102dx e e x x ; (5)⎰302tan πxdx (6)⎰+94;)1(dx xx (7)⎰+40;1x dx(8)⎰eedx x x 12)(ln 1 2.利用定积分求极限:(1));21(1334lim n nn +++∞→Λ (2);)(1)2(1)1(1222lim ⎥⎦⎤⎢⎣⎡++++++∞→n n n n n n Λ (3));21)2(111(222lim nn n n n +++++∞→Λ(4))1sin 2sin (sin 1lim n n n n nn -+++∞→Λππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-⎰§3 可积条件1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑∆≤∆'.''T Ti i i iχωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ⊂.3.设f ﹑g 均为定义在[a,b]上的有界函数。

证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ⎰⎰=3.设f 在[a,b]上有界,{}[],,b a a n ⊂.lim c ann =∞→证明:在[a,b]上只有()Λ,2,1=n a n 为其间断点,则f 在[a,b]上可积。

4.证明:若f 在区间∆上有界,则()()()()"','".sup sup inf f f f f χχχχχχχχ∈∆∈∆∈∆-=-。

§4 定积分的性质1.证明:若f 与g 都在[a,b]上可积,则∑⎰=→=∆ni bai i i T dx x g x f x g f 10,)()()()(lim ηξ其中i i ηξ,是T 所属小区间△i 中的任意两点,i=1,2…,n.2.不求出定积分的值,比较下列各对定积分的大小:(1)⎰⎰1010;2dx x xdx 与(2)⎰⎰2020.sin ππxdx xdx 与3.证明下列不等式:(1)2;22πππ<<⎰(2)1201x e dx e <<⎰;(3)20sin 12;xdx dx x ππ<<⎰(4)4 6.e e <<⎰4.设f 在[a,b]上连续,且f(x)不恒等于零,证明()()20.ba f x dx >⎰ 5.设f 与g 都在[a,b]上可积,证明[]{}[]{})(),()(,)(),()(min max ,,x g x f x m x g x f x M b a x b a x ∈∈==在[a,b]上也都可积.6.试求心形线πθθ20),cos 1(≤≤+=a r 上各点极径的平均值.7.设f 在[a,b]上可积,且在[a,b]上满足.0)(φm x f ≥证明f1在[a,b]上也可积.8.进一步证明积分第一中值定理(包括定理9.7和定理9.8)中的中值点ξ∈(a,b).9.证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M 、m 分别为 f(x)在[a,b]上的上、下确界,则必存在某实数μ(m ≤μ≤M),使得⎰⎰=ba ba dx x g dx x g x f .)()()(μ 10.证明:若f 在[a,b]上连续,且⎰⎰==baba dx x xf dx x f ,0)()(则在(a,b)内至少存在两点x 1,x 2,使f(x 1)= f(x 2)=0.又若⎰=ba dx x f x ,0)(2这时f 在(a,b)内是否至少有三个零点?11.设f 在[a,b]上二阶可导,且"f (x)>0.证明:(1)⎰-≤⎪⎭⎫ ⎝⎛+b adx x f ab b a f ;)(12 (2)又若[],,,0)(b a x x f ∈≤则又有[].,,)(2)(b a x dx x f a b x f ba∈-≥⎰12.证明:(1)11ln(1)11ln ;2n n n+<+++<+L (2).1ln 1211lim=+++∞→nn n Λ §5 微积分学基本定理·定积分计算(续)习 题1. 设f 为连续函数,u 、v 均为可导函数,且可实行复合f °u 与f °v 证明:⎰-=)()().('))(()('))(()(x v x u x u x u f x v x v f dt t f dxd 2.设f 在[a,b]上连续,⎰-=xa dt t x t f x F .))(()(证明F ”b].[a,),()(∈=x x f x 3.求下列极限:(1)⎰→xx dt t x020;cos 1lim (2).)(02222limdtedt e x t xt x ⎰⎰∞→4.计算下列定积分:(1)⎰205;2sin cos πxdx x (2)⎰-102;4dx x (3)⎰-aa dx x a x 0222);0(φ(4)⎰+-12/32;)1(x x dx (5)⎰-+10;x x ee dx(6)⎰+202;sin 1cos πdx xx(7)⎰10;arcsin xdx (8)⎰20;sin πxdx e x (9);ln 1dx x ee⎰(10)⎰10;dx e x(11)⎰+-aa dx xa xa x 02);0(φ (12)⎰+20.cos sin cos πθθνθd5.设f 在[-a,a]上可积。

证明: (1)若f 为奇函数,则⎰-=aa dx x f ;0)( (2)若f 为偶函数,则⎰⎰-=aa adx x f dx x f 0.)(2)(6.设f 为(-∞,+∞)上以p 为周期的连续周期函数。

证明对任何实数a ,恒有⎰⎰+=p a padx x f dx x f a .)()(7.设f 为连续函数。

证明:(1)⎰⎰=2020;)(cos )(sin ππdx x f dx x f (2)⎰⎰=πππ.)(sin 2)(sin dx x f dx x xf8.设J (m,n )⎰=20,(cos sin πn m xdx x n m 为正整数)。

证明:),,2(1)2,(1),(n m J nm m n m J n m n n m J -+-=-+-= 并求J(2m,2n).9.证明:若在(0,∞)上f 为连续函数,且对任何a >0有 ⎰==axx dt t f x g 常数)()(, ),,0(+∞∈x 则c x xcx f ),,0(,)(+∞∈=为常数。

10.设f 为连续可微函数,试求⎰-xa dt t f t x dx d ,)(')( 并用此结果求⎰-xtdt t x dx d 0.sin )(11.设)(x f y =为[a,b]上严格增的连续曲线(图9-12)。

试证存在ξ∈(a,b ),使图中两阴影部分面积 相等。

12.设f 为[0,2π]上的单调递减函数。

证明:对任何正整数n 恒有⎰≥π20.0sin )(nxdx x f13.证明:当x >时有不等式 ).0(1sin 2φπc xdt t c x x⎰+ 14.证明:若f 在[a,b]上可积,[],)(,)(,,b a ==βϕαϕβαϕ上单调且连续可微在则有⎰⎰'=b a dt t t f dx x f βαϕϕ.)())(()(※15.证明:若在[a,b]上f 为连续可微的单调函数,则存在[],,b a ∈ξ使得⎰⎰⎰+=baabdx x f b g dx x f a g dx x g x f ξξ.)()()()()()((提示:与定理9.11及其推论相比较,这里的条件要强得多, 因此可望有一个比较简单的,不同于9.11的证明.)※§6 可积性理论补叙1. 证明性质2中关于下和的不等式(3).2. 证明性质6中关于下和的极限式S T s t =→)(lim 0.3. 设 ⎩⎨⎧=.,0.,)(为无理数为有理数x x x x f试求f 在[0,1]上的上积分和下积分;并由此判断f 在[0,1]上是否可积.4. 设f 在[a,b]上可积,且[]],[.,,0)(b a f b a x x f 在试问=上是否可积?为什么?5. 证明:定理9.14中的可积第二充要条件等价于“任给T T 的对于一切满足存在δδε<>>,0,0都有εω''<-=∆∑)()(T s t s x i Ti .6.据理回答:(1) 何种函数具有“任意下和等于任意上和”的性质?(2) 何种连续函数具有“所有下和(或上和)都相等”的性质? (3) 对于可积函数,若“所有下和(或上和)都相等”,是否仍有(2)的结论?7.本题的最终目的是要证明:若f 在[a,b]上可积,则f 在[a,b]内必定有无限多个处处稠密的连续点,这可用区间套方法按以下顺序逐一证明:(1)若T 是[a,b]的一个分割,使得S (T )s(T)<b —a ,则在T 中存存在某个小区间.1,<∆f i i ω使(2)存在区间),,(],[111b a b a I ⊂=使得.1)(inf )(sup )(111<-=∈∈x f x f I I x I x f ω(3)存在区间),,(],[11222b a b a I ⊂=使得.21)(inf )(sup )(222<-=∈∈x f x f I I x I x f ω(4)继续以上方法,求出一区间序列),,(],[11--⊂=n n n n n b a b a I .1)(inf )(sup )(nx f x f I nnI x I x n f <-=∈∈ω说明{}n I 为一区间套,从而存在;,2,1,0Λ=∈n I x n 而且f 在点x 0连续。

相关文档
最新文档