2.2.2对数函数及其性质(2)
人教版高中数学课件-对数函数及其性质(二)

∴由複合函數的單調性得到函數 f x=log1 (-x2+2x) 在(0,1)上是減函數,
2
在(1,2)上是增函數.
解析答案
類型二 對數型複合函數的奇偶性 2-x
例 2 判断函数 f(x)=ln 2+x的奇偶性.
反思與感悟
解析答案
跟踪训练 2 判断函数 f(x)=lg( 1+x2-x)的奇偶性.
第二章 2.2 對數函數
2.2.2 對數函數及其性質(二)
學習目標
1.掌握對數型複合函數單調區間的求法及單調性的判定方法; 2.掌握對數型複合函數奇偶性的判定方法; 3.會解簡單的對數不等式; 4.瞭解反函數的概念及它們的圖象特點.
問題導學
題型探究
達標檢測
問題導學
新知探究 點點落實
知識點一 y=logaf (x)型函數的單調區間
∴11- -aaxx> <01, -a. 即aaxx< >1a, . ∴0<x<1. ∴不等式的解集為(0,1).
反思與感悟
解析答案
log2x,x>0,
跟踪训练 3
已知函数
f(x)=log
1 2
-x,x<0,
若 f(a)>f(-a),则实数
a 的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
解析答案
類型三 對數不等式 例3 已知函數f(x)=loga(1-ax)(a>0,且a≠1).解關於x的不等式: loga(1-ax)>f(1). 解 ∵f(x)=loga(1-ax),∴f(1)=loga(1-a). ∴1-a>0.∴0<a<1. ∴不等式可化為loga(1-ax)>loga(1-a).
答案
一般地,對於底數a>1的對數函數,在(1,+∞)區間內,底數越大越 靠近x軸;對於底數0<a<1的對數函數,在(1,+∞)區間內,底數越小 越靠近x軸.
高一数学对数函数及其性质2(2019年11月整理)

D.b>c>a
【解析】
a = log3π>1 , b = log2
3
=
1 2
log23∈21,1, c=log3 2=12log32∈0,12,
故有 a>b>c.故选 A.
【答案】 A
(1)已知 loga13>1,求 a 的取值范围; (2)已知 log132a<log13(a-1),求 a 的ห้องสมุดไป่ตู้值范围.
∴log4125>log481,即3log45>2log23. (4)由对数函数性质知,
Log1/30.3>0,log20.8<0, ∴log1/30.3>log20.8.
1.(2009 年全国卷)设 a=log3π,b=log2 3,
c=log3 2,则( ) A.a>b>c
B.a>c>b
C.b>a>c
已知y=loga(2-ax)在[0,1]上是关于x的减函数,则a的取值范围是( )
A.(0,1)
B.(1,2)
C.(0,2) D.(2,+∞)
【思路点拨】 由题目可以获取以下主要信息:
①函数y=loga(2-ax)在[0,1]有意义, ②函数在[0,1]上是减函数.
解决本类问题应注意复合函数单调性的判定方法.
保山市高空车出租:/ ; 昭通市高空车租赁:/ ; 普洱市云梯车出租:/ ; 临沧市云梯车租赁:/ ; 楚雄州登高车出租:/ ; 红河州登高车租赁:/ ; 文山州升降车出租:/ ; 普洱市升降车租赁:/ ; 版纳州路灯车出租:/ ; 大理州路灯车租赁:/ ; 德宏州桥检车出租:/ ; 丽江市桥检车租赁:/ ; 怒江州升降平台出租:/ ; 迪庆州升降平台租赁:/ ; 临沧市桥梁检测车出租:/ ; 呈贡区桥梁检测车租赁:/ ; 盘龙区路桥检测车出租:/ ; 五华区路桥检测车租赁:/ ; 官渡区路灯维修车出租:/ ; 西山区吊人车出租:/ ; 东川区吊人车租赁:/ ; 安宁市举高车出租:/ ; 晋宁县举高车租赁:/ ; 富民县高空作业车出租:/ ; 宜良县高空作业车租赁:/ ; 嵩明县路灯维修车租赁:/ ; 石林彝族自治县监控维修车出租:/ ; 禄劝彝族苗族自治县监控维修车租赁:/ ; 寻甸回族彝族自治县隧道检测车出租:/ ; 麒麟区隧道检测车租赁:/ ; 宣威区直臂车出租:/ ; 马龙县直臂车租赁:/ ;
2.2.2对数函数及其性质(二)

练习
1995年我国人口总数是 亿,如果人口的自然增长率 年我国人口总数是12亿 年我国人口总数是 控制在1.25%,问哪一年我国人口总数将大约等于 亿? 控制在 ,问哪一年我国人口总数将大约等于14亿 解: 年后人口总数超过14亿 设 X年后人口总数超过 亿,依题意得 年后人口总数超过 12.(1+0.0125)X=14 即 1.0125X=14/12,两边取常用对数, ,两边取常用对数, 得:X.lg1.0125=lg14-lg12 即:X= (lg14-lg12)/ lg1.0125≈12.4 年后, 年我国人口总数将大约等于14亿 答:12年后,即2007年我国人口总数将大约等于 亿。 年后 年我国人口总数将大约等于
基本初等函数( 第二章 基本初等函数(Ⅰ)
§2.2.2 对数函数及其性质(二) 对数函数及其性质(
复习: 复习:对数函数 y = log a x 的图象与性质 a>1
3
3 2.5
0<a<1
2.5 2 1.5
2
1.5
图 象 函 数 性 质
1
-1
1
1
1
1
0.5
0.5
0
-0.5
1
2
3
4
5
6
7
8
-1
0
1
-0.5
课堂回顾: 课堂回顾:
1.如何利用对数函数的单调性比较大小? 如何利用对数函数的单调性比较大小? 2.如何构建对数函数模型,解决生活中的实 如何构建对数函数模型, 际问题? 际问题? 3.怎样理解同底的指数函数与对数函数互为 反函数? 反函数?
例5:已知函数 f ( x) = log 2 (3x − 1), 若 f ( x) < 0, 求 x 的 取 值 范围 .
《对数函数及其性质》第二课时参考课件

当a , b 0, a 1时, 有 (1) log a b 0 (a 1)( b 1) 0; ( 2) log a b 0 (a 1)( b 1) 0;
能力测试(比一比)
4.设f ( x) 2
x 2 2 x
( x 1),求反函数f ( x).
1
5.求函数y log1 ( x 2 3 x 2)的单调增区间 .
6.已知函数y loga ( x 2) 3, (a 0, a 1)不论a为 何值都经过一个定点 , 则这个定点坐标为______.
2 2 例2.已知(loga ) 1, 求a的取值范围 3
2 3 (0, ) ( ,) __________ _. 3 __________ 2
2
例3.解不等式logx (2 x x ) 0
1 5 解集为: { x | 1 x }. 2
能力测试(比一比)
1.已知f ( x 6 ) l og2 x , 那么f (8)等于( 4 1 A. B .8 C .18 D. 3 2 2
解: (2) 当 [ H ] 10 时,pH lg10 7. 即纯净水的 pH是7. 国家规定,饮用纯净水 的pH应该在 5.0 ~ 7.0之间 .
7
7
例题分析:
例1. l og( a 1) ( 2 x 1) l og( a 1) ( x 1)则( C ) A. x 0, a 0 B . x 1, a 1 C . x 1, a 2 D. x 1,1 a 2
1 解 : (1)根据对数的运算性质得pH lg[H ] lg[H ] lg , [H ]
1
第二章 2.2.2 第2课时 对数函数及其性质(二)

第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
高考数学第一轮复习:2.2.2 第2课时 对数函数及其性质的应用

学习目标 1.进一步理解对数函数的性质(重点).2.能运用对数 函数的性质解决相关问题(重、难点).
课堂互动
课堂反馈
题型二 与对数函数有关的值域和最值问题
【例 2】 (1)函数 f(x)=log1 (x2+2x+3)的值域是________.
2
(2)若函数 f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值
课堂互动
课堂反馈
方向3 与对数函数有关的复合函数的单调性
【例 3-3】 (1)求函数 y=log0.3(3-2x)的单调区间; (2)函数 f(x)=log1 (3x2-ax+7)在[-1,+∞)上是减函数,
3
求实数 a 的取值范围. 解 (1)由 3-2x>0,解得 x<32,设 t=3-2x,x∈-∞,32, ∵函数 y=log0.3t 是减函数,且函数 t=3-2x 是减函数, ∴函数 y=log0.3(3-2x)在-∞,32上是增函数,即函数 y= log0.3(3-2x)的单调递增区间是-∞,32,没有单调递减区间.
课堂反馈
规律方法 1.两类对数不等式的解法 (1)形如logaf(x)<logag(x)的不等式. ①当0<a<1时,可转化为f(x)>g(x)>0; ②当a>1时,可转化为0<f(x)<g(x). (2)形如logaf(x)<b的不等式可变形为logaf(x)<b=logaab. ①当0<a<1时,可转化为f(x)>ab; ②当a>1时,可转化为0<f(x)<ab.
A.(-∞,-2)
B.(-∞,1)
C.(1,+∞)
D.(4,+∞)
高一数学 《对数函数及其性质(2)》公开课教案(教学反思、点评)

对数函数及其性质(2)一、教学内容分析函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
四、教学目标1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。
2.2.2 对数函数及其性质

第一课时 对数函数的概念、图象与性质
学习目标
1. 理解对数函数的概念;
2. 掌握对数函数的图象与性质; 3. 对数函数的图象与性质应用.
北京青年报曾报道:潮 白河底挖出冰冻古树可 能是山杨,专家经过检 测可推断树的埋藏时 间.
• 你知道专家是根据什 么推断树的埋藏时间 的吗?
y
描 点
2
1 11
42
0 1 23 4
连 -1
线
-2
2 4 ….. 1 2…
x
作y=log0.5x图像
列
x
1/4 1/2 1 2 4
表 y log 2 x -2 -1 0 1 2
y log 1 x
2
1 0 -1 -2
y
2
描
2
点
1 11
42
0 1 23 4
x 这两个函
连
-1
线
-2
数的图象 有什么关
系呢?
关于x轴对称
(3)根据对称性(关于x轴对称)已知 f (x) log3 x
的图象,你能画出 f (x) log 1 x
3
y
的图象吗?
1
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1 图
0<a<1
象
定义域 : 值域:
3.已知对数函数过点(16,4)则函数解析式为—
2. 对数函数:y = loga x (a>0,且a≠ 1)
图象与性质
在同一坐标系中用描点法画出对数函数
y log2 x和y log 1 x 的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=ax (a > 0,且 a 1互) 为反函数。
Байду номын сангаас
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
溶液酸碱度的测量。
溶液酸碱度是通过pH刻画的。pH的计算公式 为pH=-lg[H+],其中[H+]表示溶液中氢离子 的浓度,单位是摩尔/升。
(1)根据对数函数性质及上述pH的计算公式, 说明溶液酸碱度与溶液中氢离子的浓度之间的 变化关系;
2.2.2 对数函数及其性质(二)
对数函数y=log a x (a>0, a≠1)
a>1
0<a<1
图
y
y
象
o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
质 x>1时, y>0
(4) 0<x<1时, y>0; x>1时, y<0
(2)已知纯净水中氢离子的浓度为[H+]=107摩尔/升,计算纯净水的pH。
探究
在指数函数y=2x中,x为自变量,y为因变量。 如果把y当成自变量,x当成因变量,则x是y的函 数吗? 若是,对应关系是什么?
此时,对数函数y = log2x (x∈(0,+∞))是指数函数
y=2x(x∈R)的反函数(inverse function)。