222对数函数及其性质(2)

合集下载

2.2.2对数函数及其性质(二)

2.2.2对数函数及其性质(二)

§2.2.2 对数函数及其性质(二)学习目标1.熟练掌握对数函数概念、图象、性质2.掌握对数函数定义域、值域的求法,判断其单调性※ 学习重点、难点:重点:对数函数单调性的应用难点:灵活运用对数函数的图象与性质学习过程(预习教材P 72,找出疑惑之处)一.课前导学※ 复习回顾复习1:对数函数的概念一般地,我们把函数 叫做对数函数,其中 是自变量,函数的定义域是复习2:对数函数的图像与性质探究1:对数函数的图像及性质与底数间的规律问题1:在同一坐标系中,作出函数图象的草图2log y x =,12log y x =,3log y x =,13log y x =,4l g y o x =,14log y x=y0 x思考:在第一象限,底数对图象的影响? 在第一象限,对数函数的图象,底数大的在 . 例1.下图是函数1log a y x =,2log ,a y x =3log a y x =,4log a y x =的图象,则底数之间的关系为 .二.课内探究※ 知识检测1.解对数方程3log )2(log )1(21221=-x x01)32(log )2(22=-++x x※ 能力达标2.求x 的范围 2log 21>x(1)2log 2>x (2)小结:注意考虑有意义的范围3.求下列函数的定义域(1) (2) (3))2(log +=x y x (4) y =x 2log 1小结:定义域的限制条件:4.对数函数的真数大于0 ※ 拓展提高4.求下列函数的定义域,值域小结:三.总结提升※ 学习小结2212(1)log (4)(2)log 1)y x y =+=2log a y x =log (4)a y x =-xy 3log )6(=)且(101log )3(≠>>a a x a x y 311log )5(7-=1.对数复合函数定义域,值域的求法四.课后作业1.下列函数中,定义域相同的一组是( )A.x y a =与log a y x =(0a >且1a ≠)B.y x =与y =C.lg y x =与y =D.2y x =与2lg y x =2.函数22log (1)y x x =+≥的值域为( )A. (2,)+∞B. (,2)-∞C. [)2,+∞D. [)3,+∞3.不等式的41log 2x >解集是( ) A.(2,)+∞ B.(0,2) C.1(,)2+∞ D.1(0,)24.的定义域是 ,值 域是 .5.求下列函数的定义域:(1)3log (36)y x =-(2)y (3)y =(4)33log 34y x =+ (5)(1)log (42)x y x -=-6.函数)1(log )1(log )(x x x f a a -++=, 判断函数的奇偶性y。

对数函数及其性质(2)教学设计

对数函数及其性质(2)教学设计

对数函数及其性质(2)教学设计延长县中学焦存江一、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

二、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

三、教学目标1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。

2、通过对对数函数有关性质的研究,渗透数形结合、分类讨论的数学思想。

培养观察、分析、归纳的思维能力和交流能力,增强学习的积极性。

掌握对数函数的图象与性质,并会初步应用。

3、培养学生自主学习、数学交流能力和数学应用意识。

通过联系观点分析,解决两数比较大小的问题。

四、教学重点和难点重点:1、对数函数的定义、图象、性质。

2、对数函数的性质的初步应用。

难点:底数a对对数函数图象、性质的影响。

第二章 2.2.2 第2课时 对数函数及其性质(二)

第二章 2.2.2 第2课时  对数函数及其性质(二)

第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。

2.2.2 对数函数及其性质

2.2.2   对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。

对数函数的图像与性质(第2课时)

对数函数的图像与性质(第2课时)

y 2
1
0
11 42
1
2 3
4
x
-1 … -2 …
3. 对数函数的性质:
a>1 0<a<1
y
图 象
y
O
x
O
x
性 x∈(0, 1)时,y<0; x∈(0, 1)时,y>0 质 x∈(1, +∞)时,y>0. x∈(1, +∞)时,y<0.
在(0,+∞)上是增函数
定义域:(0, +∞); 值域:R 过点(1, 0),即当x=1时,y=0.

解:
比较大小:
11
1) log64
>
log74
方法二
当底数不相
同,真数相 同时,利用 图象判断大 y1=log6x 小. y2=log7x
x
利用对数函数图象 得到 log64 > log74
y
o
1
3
课堂小结
对数函数定义、图象、性质;
课后作业
1、教材P104:练习A第2、练习B 第2题
2、选作
关于x轴对称
猜猜: 对数函数
y log 3 x和y log 1 x的图象。
y3 2 x log
y log 3 x
y 2
1
0
11 42
1 2 3
4
x
y log 1 x
y log 1 x
2
-1 -2
3
y log a x与y log 1 x关于轴对称
a
(a 0且a 1)
3. 对数函数的性质:
y 2 1
0
11 42
y log 2 x

对数函数及其性质2

对数函数及其性质2

例3.已知f(x) = lg(ax-bx) ( a>1>b>0 ) (1)求 f ( x ) 的定义域;
解:由题 ax -b x >0 得 ax > bx ∵ a>1>b>0 ∴ x >0
a x ( ) 1 b
故 f ( x ) 的定义域为 ( 0 , + ∞ ) (2)判断 f ( x ) 的单调性.
(3)令u=a-ax, ∵u>0,a>1,∴ax<a,x<1, ∴y=loga(a-ax)的定义域为{x|x<1}, ∵ax<a,且ax>0,u=a-ax<a,
∴y=loga(a-ax)<logaa=1,
∴函数的值域为{y|y<1}. 【评析】求函数的值域一定要注意定义域对它的影响, 然后利用函数的单调性求之,当函数中含有参数时,有 时需要讨论参数的取值.
综上所述,0 ≤a≤1. 【评析】本题两小题的函数的定义域与值域正好错位.
(1)中函数的定义域为R,由判别式小于零确定;
(2)中函数的值域为R,由判别式不小于零确定.
返回目录
例5 对数函数的单调性
y log 2 ( x 2 2 x) 的单调递增区间。 1.求函数
2.求函数 y log 1 ( x x 2) 的单调递减区间。
求值域: (1)y=log2 (x2-4x+6);
1 (2) y log 2 2 . - x 2x 2
(1)∵x2-4x+6=(x-2)2+2≥2,又∵y=log2x在(0,+∞)上是增 函数, ∴log2(x2-4x+6)≥log22=1. ∴函数的值域是[1,+∞). (2) ∵-x2+2x+2=-(x-1)2+3≤3, 1 1 ∴ - x 2 2x 2 <0或 - x 2 2x 2 ≥ 1 . 1 1 3 log 2 ∴ ≥ log 2 - x 2x 2 1 3 ∴函数的值域是 log 2 , ,

2.2.2对数函数及其性质(2)

2.2.2对数函数及其性质(2)

(3)已知 a>0,且 a≠1,函数 y=ax 与 y=loga(-x)的图像只 能是图中的( )
[答案] B
[解析] 函数 y=loga(-x)的定义域是{x|x<0},图像只能在 y 轴 左侧,故排除 A,C.再看单调性,y=ax 的单调性与 y=loga(- x)的单调性正好相反,又排除 D.
【变式】 函数 f(x)=ln(x2+1)的图像大致是(
)
[答案] A
[解析] 因为 f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x),排除选 项 C,又 f(0)=0,排除选项 B,D,故选 A.
拓展
函数 f(x)=1+log2x 与 g(x)=2-x+1 在同一坐标 )
系下的图像大致是(
∴此函数不具备奇偶性.
拓展 已知函数 f(x)=lg(ax +2x+1). (1)若 f(x)的定义域为 R,求实数 a 的取值范围; (2)若 f(x)的值域为 R, 求实数 a 的 取值范围.
2
解:(1)若 f(x)的定义域为 R,则关于 x 的不等式 ax2+2x+ 1>0 的解集为 R. 1 当 a=0 时,x>- ,这与 x∈R 矛盾,所以 a≠0. 2 当 a≠0
f(x),∴f(x)=log2|x|为偶函数. 1-x 1+x 1-x -1 1-x (2)设 f(x)=lg ,f(-x)=lg =lg( ) =-lg 1+x 1-x 1+x 1+x 1-x =-f(x),∴y=lg 为奇函数. 1+x
x-1>0 (3)由于 x+1>0
,∴x>1,定义域不关于原点对称.
a>0, 时,由题意得 解得 Δ = 4 - 4 a <0 ,

高中数学必修一导学案:222+对数函数及其性质

高中数学必修一导学案:222+对数函数及其性质

东北师范大学附属中学学科:数学年级:高一编稿老师:邢昌振审稿老师:王艳平[同步教学信息]2.2.2 对数函数及其性质【教材阅读提示】函数源于实际生活.我们在研究指数函数时,曾经讨论过细胞分裂问题,得到的细胞案的个数y是分裂次数x的函数指数函数,即y=2x.我们现在要思考的是:(1)如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数x就是要得到的细胞个数y的函数,从而到的函数如何表示,它和指数函数有什么关系?(2)此函数有哪些基本性质?【基础知识精讲】(一)教学知识点知识目标:1.对数函数的概念、对数函数的单调性;2.对数函数的图象和性质;3.对数形式的复合函数的单调性;4.同底数对数、不同底对数的大小的比较.能力目标:1.理解对数函数的概念,掌握对数函数的图象和性质;2.掌握同底对数、不同底对数的大小的比较方法;3.掌握对数形式复合函数的单调性的判断及证明方法;情感、态度、价值观:1.用联系的观点分析问题;2.认识事物之间的相互转化;教学重点:掌握对数函数的图象和性质.教学难点:对数函数的定义,对数函数的图象和性质及应用.(二)知识框架图(三)知识点精讲1.函数x y a log 的图象及其性质:2.对数函数的定义域、值域分别为相应的指数函数的值域和定义域,它们的图象关于直线y=x 对称;3.(1,0)为所有对数函数图象的交汇点;4.和指数函数的单调性一样,当a >1时,y=log a x 在(0,+∞)上是增函数,当0<a <1时,y=log a x 在(0,+∞)上是减函数.【应用举例】【例 1】求下列函数的定义域:(1) y=log a x 2; (2)y=log a (4-x ); (3)y=log a (9-x 2);(4)x y 21log =; ()x y 5l o g 15=. 解:(1)∵x 2>0,∴x ≠0,∴定义域是{x|x ∈R 且x ≠0};(2)∵4-x >0,∴x <4,∴定义域是{x|x <4};(3)∵9-x 2>0,∴-3<x <3,∴定义域是{x |-3<x <3};(4)10,1210,1log log 0log 212121≤<∴<<≥⇒≥x x x ,∴定义域是{x |0<x ≤1}; (5)∵log 5x ≠0,∴log 5x ≠log 51,∴x ≠1,∴定义域为{x|x ≠1}.求函数定义域方法小结:(1) 分母不能为零;(2) 偶次方根的被开方数大于或等于零;(3) 对数的真数必须大于零;(4) 指数函数、对数函数的底数要求大于零且不等于1.【例 2】比较下列各组数中两个值的大小:()()()();1,095log 15log 3;72log 81log 2;58log 43log 1303022≠>⋅⋅⋅⋅⋅⋅⋅⋅a a a a 与与与(4)log 76,log 67 ; (5)log 3π,log 20.8.解:(1)考察对数函数y=log 2x ,∵2>1,∴y=log 2x 在(0,+∞)上是增函数,∴log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,∵0.3<1,∴y=log 0.3x 在(0,+∞)上是减函数,∴72log 81log 3030⋅<⋅⋅⋅.(3)由于两个对数的底数a 大小不一定,而a 的大小直接影响函数的单调性,因此要对底数进行讨论:当a >1时,y=log a x 在(0,+∞)上是增函数,∴95log 15log ⋅<⋅a a ;当0<a <1时,y =log a x 在(0,+∞)上是减函数,∴95log 15log ⋅>⋅a a .(4)∵log 76>log 66=1,log 67<log 77=1,∴log 76>log 67.(5)∵log 3π>log 31=0,log 20.8<log 21=0,∴log 3π>log 20.8.小结:1.当比较的对数值是底数相同的情况时,只需考虑相应对数函数的单调性,利用函数的单调性来判断大小;当比较的数值是底数不相同的情况时,常常需要引入中间值(例如0或1)来间接比较它们的大小;2.对于log a b 的正负性,可直接利用下列性质来判断:(1) 若a >1,b >1,或0<a <1,0<b <1时,log a b >0;(2) 若a >1,0<b <1或b >1,0<a <1时,log a b <0.【例3】证明函数()()()∞++=,在01log 22x x f 上是增函数;并判断()()()01log 22,在∞-+=x x f 上是增函数还是减函数?分析:此题目的是在于让学生熟悉函数单调性证明的通法,同时熟悉利用对数函数的单调性比较同底数对数大小的方法.证明:(),则,且,、设21210x x x x <∞+∈()()()(),11,01log 1log 22212122221221+<+∴<<+-+=-x x x x x x x f x f 又, ()()()()().1log 1log 0log 212222122x f x f x x x y <+<+∴∞+=即上是增函数,,在又∴函数()()()∞++=,在01log 22x x f 上是增函数;同理可证函数()()()01log 22,在∞-+=x x f 上是减函数. 【自我检测】【同步训练初级】1.四个函数分别为①x y 3-=;②x y ⎪⎭⎫ ⎝⎛=31;③x y 31log =;④()x y -=31log . 其图象关于原点对称的是 ( )A .②和③B .①和②C .②和④D .①和②、③和④2.已知函数()()22lg 2+-=x x x f 的定义域为F ,函数()()()2lg 1lg -+-=x x x g 的定义域为G ,那么 ( )A .φ=G FB . F =GC .F G D .F G 3.将log 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x∈(0, 1)时,y>0 x∈(1, +∞)时,y<0.
在(0,+∞)上是增函数
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.

x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
x∈(0, 1)时,y>0 x∈(1, +∞)时,y<0.
课堂小结
1.比较对数大小的方法; 2. 对数复合函数单调性的判断; 3. 对数复合函数定义域、值域的求法.
2.2.2 对数函数及其性质
第二课时
复习引入
1. 对数函数的定义: 函数y=logax (a>0且a≠1)叫做
对数函数,定义域为(0,+∞), 值域为(-∞,+∞).
2. 对数函数的性质:
a>1
图 象
0<a<1
性 质
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
性 质

2. 对数函数的性质:
讲授新课
例1 比较下列各组数中两个值的大小:
练习 比较大小
例2 已知a= 时, 不等式loga(x2-x-2)>loga(-x2+2x+3) 成立,求使此不等式成立的x的取值范围.
例3 若函数f(x)=logax (0<a<1)在 区间[a, 2a]上的最大值是最小值的 3倍,求a的值.
例4 求证: 函数f(x)= 在[0, 1]上是增函数.
图y
a>1
0<a<1
y
象O
x
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.

x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
2. 对数函数的性质:
图y
a>1
0<a<1
y
象O
x
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
例5 已知f (x)=loga (a-ax) (a>1). (1) 求f (x)的定义域和值域; (2) 判证并证明f (x)的单调性.
例6 溶液酸碱度的测量. 溶液酸碱度是通过pH刻画的. pH的
计算公式为pH=-lg[H+],其中[H+]表 示溶液中氢离子的浓度,单位是摩尔/升.
(1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢离 子的浓度之间的变化关系;
在(0,+∞)上是增函数 在(0,+∞)上是减函数
练习 1. 略
2. 函数y=x+a与y=logax的图象可能是
y
y
(③)
1 ① O1 x
y
1
③O1
x
1 ②O 1 x
y 1
④O 1 x
练习
函数y=x+a与y=logax的图象可能是
y
y
(③)
1 ① O1 x
y
1
③O1
x
1 ②O 1 x
y 1
④O 1 x
图y
a>1
象O
x
定义域:(0, +∞);
0<a<1
y
O
x
性 质
2. 对数函数的性质:
图y
a>1
0<a<1
y
象O
x
O
x
定义域:(0, +∞); 值域:R
性 质
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.

2. 对数函数的性质:
(2)已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升,计算纯净水的pH.
例7 (备选题)已知f(x)=logax (a>0, a≠1), 当0<x1<x2时,试比较
的大小,并利用函数图象给予几何解释.
课堂小结
1.比较对数大小的方法;
课堂小结
1.比较对数大小的方法; 2. 对数复合函数单调性的判断;

x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
x∈(0, 1)时,y>0 x∈(1, +∞)时,y<0.
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.

x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
相关文档
最新文档