函数的单调性和奇偶性教案(学生版)
函数的奇偶性教案

函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数的基本性质教案

函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。
2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。
2. 教学难点:函数性质的证明和应用。
四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。
2. 利用实例进行分析,帮助学生理解函数性质的应用。
3. 引导学生进行自主学习,培养学生的逻辑思维能力。
4. 利用小组讨论,提高学生的合作能力。
五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。
2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。
3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。
4. 练习:布置练习题,让学生巩固所学内容。
5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。
6. 作业布置:布置课后作业,巩固所学知识。
7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。
六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。
2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。
七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。
八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。
2.1.4(一)函数的奇偶性教案学生版

2.1.4 函数的奇偶性(一)【学习要求】1.理解函数的奇偶性及其几何意义;2.学会运用函数图象理解和研究函数的性质;3.掌握判断函数奇偶性的方法与步骤. 【学法指导】通过学习函数奇偶性概念的形成过程,加深对函数的奇偶性概念的理解;通过从代数的角度给予函数奇偶性严密的代数形式表达,培养严谨、认真、科学的探究精神,并渗透数形结合的数学思想方法. 填一填:知识要点、记下疑难点1.奇函数的定义:设函数y =f(x)的定义域为D ,如果对D 内的任意一个x ,都有-x∈D,且 f(-x)=-f(x) ,则这个函数叫做奇函数.2.奇函数的性质:如果一个函数是奇函数,则这个函数的图象是以 坐标原点 为对称中心的中心对称图形;反之,如果一个函数的图象是以 坐标原点 为对称中心的中心对称图形,则这个函数是奇函数.3.偶函数的定义:设函数y =g(x)的定义域为D ,如果对D 内的任意一个x ,都有-x∈D,且 g(-x)=g(x) ,则这个函数叫做偶函数.4.偶函数的性质:如果一个函数是偶函数,则它的图象是以 y 轴 为对称轴的轴对称图形;反之,如果一个函数的图象关于y 轴 对称,则这个函数为偶函数. 研一研:问题探究、课堂更高效[问题情境] 美丽的蝴蝶,盛开的鲜花,六角形的雪花晶体,中国的古建筑,我们学校的综合大楼,它们都具有对称的美. 这种“对称美”在数学中也有大量的反映.今天,让我们开启知识的大门,进入更精彩纷呈的函数奇偶性的学习.探究点一 奇函数的概念问题1 观察函数f(x)=x 和f(x)=1x的图象(下图),你能发现两个函数图象有什么共同特征吗?问题2 求当x 分别取-3,-2,-1,1,2,3时,函数f(x)=x 的值,及当x 分别取-3,-2,-1,1,2,3时,函数f(x)=1x的函数值,从中你能发现什么规律吗?问题3 你能把问题2中的由具体的函数值得出的规律扩展到一般形式吗?问题4 平面直角坐标系中,点P(x ,f(x))关于原点对称的点的坐标是什么?问题5 若点P(x ,f(x))是奇函数y =f(x)的图象上的一点,如何说明点P(x ,f(x))关于原点对称的点P′(-x ,-f(x))也在函数y =f(x)的图象上?问题6由问题5的讨论,你能得出奇函数的图象具有怎样的对称性?具有奇函数图象对称性的函数是否为奇函数?探究点二偶函数的概念问题1 观察下列函数的图象,你能通过函数的图象,归纳出三个函数的共同特征吗?问题2关于y轴对称的点的坐标有什么关系?问题3 怎样说明函数f(x)=x2的图象关于y轴对称?问题4如果函数y=f(x)的图象关于y轴对称,我们就说这个函数是偶函数,类比奇函数的定义,如何定义偶函数?问题5 类比奇函数图象的对称性,偶函数的图象有怎样的对称性质?例1 判断下列函数哪些是偶函数:(1)f(x)=x2+1;(2)f(x)=x2,x∈[-1,3];(3)f(x)=0.跟踪训练1 判断下列函数是否为偶函数.(1)f(x)=(x+1)(x-1); (2)f(x)=x3-x2x-1.例2 判断下列函数是否具有奇偶性:(1)f(x)=x+x3+x5; (2)f(x)=x+1.跟踪训练2 判断下列各函数的奇偶性: (1)f(x)=(x -2)2+x2-x; (2)f(x)=⎩⎪⎨⎪⎧x +2 x<-1,0 |x|≤1,-x +2 x>1.探究点三 函数奇偶性的应用例3 如图,给出了偶函数y =f(x)的局部图象,试比较f(1)与f(3)的大小.跟踪训练3 研究函数y =1x2的性质并作出它的图象练一练:当堂检测、目标达成落实处1.下列函数中不是偶函数的是 ( )A .f(x)=-3x 2B .f(x)=3x 2+|x|C .f(x)=+-2D .f(x)=x 2-x +12.已知f(x)是定义在R 上的奇函数,则 ( )A .f(x)-f(-x)>0B .f(x)-f(-x)≤0C .f(x)·f(-x)>0D .f(x)·f(-x)≤03.如果偶函数f(x)在区间[-5-2]上是减函数且最大值为7,那么f(x)在区间[2,5]上是( )A .增函数且最小值为-7B .增函数且最大值为7C .减函数且最小值为-7D .减函数且最小值为7 课堂小结:1.两个定义:对于f(x)定义域内的任意一个x ,如果都有 f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(x)为奇函数; 如果都有f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(x)为偶函数.2.两个性质:函数为奇函数⇔它的图象关于原点对称;函数为偶函数⇔它的图象关于y 轴对称.。
新高一数学教案(22) 函数的单调性与奇偶性综合应用

[例 4]f(x)是定义在 上的增函数,且 .
①求f(1)的值;②若f(6)=1,解不等式 .
课后作业
1.函数 为偶函数,那么 的大小关系为__________________.
2.如果奇函数 在区间[3,7]上是增函数,且最小值是5,那么 在区间[-7,-3]上的最______________值为____________.
新高一数学教案(22)函数的单调性与奇偶性综合应用
教学目标
1.掌握函数的单调性、奇偶性的定义.
2.掌握函数的单调性、奇偶性的综合应用.
教学重点
函数的单调性、奇偶性.
教学难点
函数的单调性与奇偶性综合应用
教学过程
一、【名人名言】
1.选择作为学生,学习是我们的本职,学习对天才是一块垫脚石,对勤奋的人是一笔财富,对懒惰的人是一个万丈深渊。
2.爱心诚信是做人根本,求实谦虚为治学前提。
3.踏实,是学有所获的前提;勤奋,是学有所进的根本;坚持,是学有所成的途径。
4.要想得到别人的认可和尊重,你就做出让别人赞同的事。
5.学习之道,难在坚持,贵在坚持,成在坚持。
二、【典型例题剖析】
[例 1]R上的偶函数 在 上是减函数,
[例 2]定义在(-1,1)上的奇函数f(x)是减函数,且满足条件f(1-a)+f(1-2a)<0,求a的取值范围.
3.若函数 是函数,且 ,则必有()
A. B. C. D.不确定
4.已知y=f(x)是(-3,3)上的减函数,解不等式 .
5.设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.
函数的单调性和奇偶性的综合应用教案

函数的单调性和奇偶性的综合应用教案一、教学目标:1. 知识与技能:(1)理解函数的单调性和奇偶性的概念;(2)掌握判断函数单调性和奇偶性的方法;(3)学会运用函数的单调性和奇偶性解决实际问题。
2. 过程与方法:(1)通过实例引导学生观察、分析函数的单调性和奇偶性;(2)利用图形直观地展示函数的单调性和奇偶性;(3)培养学生运用函数的单调性和奇偶性解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生合作、探究的精神;(3)培养学生运用数学知识解决实际问题的意识。
二、教学重点与难点:1. 教学重点:(1)函数的单调性和奇偶性的概念;(2)判断函数单调性和奇偶性的方法;(3)运用函数的单调性和奇偶性解决实际问题。
2. 教学难点:(1)函数的奇偶性在实际问题中的应用;(2)函数的单调性在实际问题中的应用。
三、教学准备:1. 教师准备:(1)熟练掌握函数的单调性和奇偶性的概念及判断方法;(2)准备相关实例和练习题;(3)准备多媒体教学设备。
2. 学生准备:(1)掌握函数的基本概念;(2)了解简单的函数图形;(3)具备一定的数学运算能力。
四、教学过程:1. 导入新课:(1)引导学生回顾函数的基本概念;(2)引导学生思考函数的单调性和奇偶性在实际问题中的应用。
2. 知识讲解:(1)讲解函数的单调性概念及判断方法;(2)讲解函数的奇偶性概念及判断方法;(3)结合实例分析函数的单调性和奇偶性在实际问题中的应用。
3. 图形展示:(1)利用图形直观地展示函数的单调性和奇偶性;(2)引导学生观察、分析图形,加深对函数单调性和奇偶性的理解。
4. 课堂练习:(1)布置针对性练习题,让学生巩固所学知识;(2)引导学生互相讨论、交流,共同解决问题。
5. 总结提升:(1)总结本节课所学内容,强调函数的单调性和奇偶性在实际问题中的应用;(2)鼓励学生在日常生活中发现和运用函数的单调性和奇偶性。
9运用函数的单调性与奇偶性解抽象函数不等式(附加半节课)—学生版.doc

教学内容概要
学生:高中数学备课组教师:年级:高三
日期:上课时间:
主课题:运用函数的单调性与奇偶性解抽象函数不等式
教学目标:
1、函数单调性的定义与逆用;
2、函数奇偶性的定义与性质;
3、抽象函数性质的提取,抽彖函数不等式的转换;
4、会解决转化后的不等式恒成立问题;
教学重点:
1、函数的奇偶性、单调性等性质;
2、利用函数单调性脱掉”号,解不等式;
3、不等式恒成立问题的解法;
教学难点:
1、利用函数单调性脱掉号,解不等式;
2、不等式恒成立问题的解法;
家庭作业
1、复习知识点,归纳整理错题、难题;
2、完成巩固练习;。
高一数学上册《函数的基本性质》教案、教学设计

3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
25 函数的单调性和奇偶性教案 函数--教案

普通高中课程标准实验教科书—数学第一册[苏教版]第10课时 函数的单调性和奇偶性教学目标熟练掌握判断函数奇偶性的方法,能利用函数的奇偶性和单调性解决一些问题. 教学重点、难点综合利用函数的奇偶性和单调性解决问题. 教学过程 一.问题情境 1.问题:(1)若函数()2f x x b =+的图象关于原点对称,则实数b 应满足的条件是 ;(2)判断函数()|2|2f x x =+-的奇偶性.2.回忆函数奇偶性的有关概念、结论及证明函数奇偶性的基本步骤. 二.数学运用 1.例题例1.已知奇函数()f x 在[0,)+∞上是增函数,求证:()f x 在(,0]-∞上也是增函数. 证明:设120x x <≤,则120x x ->-≥,∵()f x 在[0,)+∞上是增函数,∴12()()f x f x ->-,∵()f x 是奇函数,∴11()()f x f x -=-,22()()f x f x -=-, ∴12()()f x f x ->-,∴12()()f x f x <,∴()f x 在(,0]-∞上也是增函数. 说明:一般情况下,若要证()f x 在区间A 上单调,就在区间A 上设12x x <.例2.已知()f x 是定义域为R 的奇函数,当0x <时,2()2f x x x =+-,求()f x 的解析式,并写出()f x 的单调区间.解:设0x >,则0x -<,由已知得22()()()22f x x x x x -=-+--=--, ∵()f x 是奇函数,∴2()()2f x f x x x =--=-++, ∴当0x >时,2()2f x x x =-++;又()f x 是定义域为R 的奇函数,∴(0)0f =.综上所述:222,0,()0,0,2,0.x x x f x x x x x ⎧+-<⎪==⎨⎪-++>⎩()f x 的单调增区间为11[,]22-,单调增区间为1(,]2-∞-和1[,)2+∞.说明:一般情况下,若要求()f x 在区间A 上的解析式,就在区间A 上设x .例3.定义在)1,1(-上的奇函数)(x f 在整个定义域上是减函数,若(1)(13)0f a f a -+-<,求实数a 的取值范围.解:原不等式化为(13)(1)f a f a -<--,∵)(x f 是奇函数,∴(1)(1)f a f a --=-,∴原不等式化为(13)(1)f a f a -<-,∵)(x f 是减函数,∴131a a ->-, ∴12a <. ① 又)(x f 的定义域为)1,1(-,∴1111131a a -<-<⎧⎨-<-<⎩,解得203a <<, ②由①和②得实数a 的取值范围为1(0,)2.说明:要重视定义域在解题中的作用.例4.已知函数3()1f x ax bx =++,常数a 、b R ∈,且(4)0f =,则(4)f -= . 略解:法一:设3()g x ax bx =+,则()()1f x g x =+,且()g x 是奇函数,(4)1g =-, ∴(4)(4)1g g -=-=,∴(4)(4)12f g -=-+=. 法二:33()()112f x f x ax bx ax bx -+=--++++=, ∴(4)2(4)202f f -=-=-=. 说明:审题要重视问题的特征. 三.回顾小结本节课主要运用函数的奇偶性和单调性解决了一些常见问题.要在理解道理的基础上掌握各类问题的常规解法,重视答题规范.四、课外作业:课本第43页第9题.补充:1.已知()y f x =是偶函数,其图象与x 轴共有四个交点,则方程()0f x =的所有实数解的和是( )()A 4 ()B 2 ()C 0 ()D 不能确定2.已知函数53()8f x x ax bx =++-,且(2)10f -=,则(2)f = . 3.已知偶函数()f x 在[0,)+∞上是增函数,若()()f a f b >,则必有( )()A a b > ()B a b < ()C ||||a b > ()D ||a b >4.已知偶函数()f x 在[0,)+∞上是减函数,求证:()f x 在(,0]-∞上是增函数. 5.已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,求()f x 的单调增区间及最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性和奇偶性一、目标认知学习目标:1.理解函数的单调性、奇偶性定义;2.会判断函数的单调区间、证明函数在给定区间上的单调性;3.会利用图象和定义判断函数的奇偶性;4.掌握利用函数性质在解决有关综合问题方面的应用.重点、难点:1.对于函数单调性的理解;2.函数性质的应用.二、知识要点梳理1.函数的单调性(1)增函数、减函数的概念一般地,设函数f(x)的定义域为A,区间如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数;如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数.如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间.要点诠释:[1]“任意”和“都”;[2]单调区间与定义域的关系----局部性质;[3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;[4]不能随意合并两个单调区间.(2)已知解析式,如何判断一个函数在所给区间上的单调性?基本方法:观察图形或依据定义.2.函数的奇偶性偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数.奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数.要点诠释:[1]奇偶性是整体性质;[2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;[3]f(-x)=f(x)的等价形式为:,f(-x)=-f(x)的等价形式为:;[4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;[5]若f(x)既是奇函数又是偶函数,则必有f(x)=0;[6],.三、规律方法指导1.证明函数单调性的步骤:(1)取值.设是定义域内一个区间上的任意两个量,且;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.2.函数单调性的判断方法:(1)定义法;(2)图象法;(3)对于复合函数,若在区间上是单调函数,则在区间或者上是单调函数;若与单调性相同(同时为增或同时为减),则为增函数;若与单调性相反,则为减函数.3.常见结论:(1)若是增函数,则为减函数;若是减函数,则为增函数;(2)若和均为增(或减)函数,则在和的公共定义域上为增(或减) 函数;(3)若且为增函数,则函数为增函数,为减函数;若且为减函数,则函数为减函数,为增函数.(4)若奇函数在上是增函数,且有最大值,则在是增函数,且有最小值;若偶函数在是减函数,则在是增函数.经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性.证明:总结升华:[1]证明函数单调性要求使用定义;[2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6)(7)思路点拨:根据函数的奇偶性的定义进行判断.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.9. 设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a 的取值范围.类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.解:12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.14. 判断函数上的单调性,并证明.证明:15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.解:学习成果测评基础达标一、选择题1.下面说法正确的选项( )A.函数的单调区间就是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是( )A.B.C.D.3.已知函数为偶函数,则的值是( )A. B. C. D.4.若偶函数在上是增函数,则下列关系式中成立的是( )A.B.C.D.5.如果奇函数在区间上是增函数且最大值为,那么在区间上是( )A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是6.设是定义在上的一个函数,则函数,在上一定是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数.7.下列函数中,在区间上是增函数的是( )A.B.C.D.8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则( )A. f(3)+f(4)>0B. f(-3)-f(2)<0C. f(-2)+f(-5)<0D. f(4)-f(-1)>0二、填空题1.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是____________.2.函数的值域是____________.3.已知,则函数的值域是____________.4.若函数是偶函数,则的递减区间是____________.5.函数在R上为奇函数,且,则当,____________.三、解答题1.判断一次函数反比例函数,二次函数的单调性.2.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围.3.利用函数的单调性求函数的值域;4.已知函数.①当时,求函数的最大值和最小值;②求实数的取值范围,使在区间上是单调函数.能力提升一、选择题1.下列判断正确的是( )A.函数是奇函数B.函数是偶函数C.函数是非奇非偶函数D.函数既是奇函数又是偶函数2.若函数在上是单调函数,则的取值范围是( )A.B.C.D.3.函数的值域为( )A.B.C.D.4.已知函数在区间上是减函数,则实数的取值范围是( )A.B.C.D.5.下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3)的递增区间为;(4) 和表示相等函数.其中正确命题的个数是( )A.B.C.D.6.定义在R上的偶函数,满足,且在区间上为递增,则( )A.B.C.D.二、填空题1.函数的单调递减区间是____________________.2.已知定义在上的奇函数,当时,,那么时,______.3.若函数在上是奇函数,则的解析式为________.4.奇函数在区间上是增函数,在区间上的最大值为8,最小值为-1,则__________.5.若函数在上是减函数,则的取值范围为__________.三、解答题1.判断下列函数的奇偶性(1)(2)2.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数.3.设函数与的定义域是且,是偶函数,是奇函数,且,求和的解析式.4.设为实数,函数,.(1)讨论的奇偶性;(2)求的最小值.综合探究1.已知函数,,则的奇偶性依次为( )A.偶函数,奇函数B.奇函数,偶函数C.偶函数,偶函数D.奇函数,奇函数2.若是偶函数,其定义域为,且在上是减函数,则的大小关系是( )A.>B.<C.D.3.已知,那么=_____.4.若在区间上是增函数,则的取值范围是________.5.已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式.6.当时,求函数的最小值.7.已知在区间内有一最大值,求的值.8.已知函数的最大值不大于,又当,求的值..。