形式语言与自动机理论试题答案解析

合集下载

《形式语言与自动机》(王柏、杨娟编著)课后习题答案-推荐下载

《形式语言与自动机》(王柏、杨娟编著)课后习题答案-推荐下载

P2
9.对应图(a)(b)的状态转换图写出正则式。(图略) (1) 由图可知 q0=aq0+bq1+a+ε
q1=aq2+bq1 q0=aq0+bq1+a =>q1=abq1+bq1+aaq0+aa =(b+ab) q1+aaq0+aa =(b+ab) *( aaq0+aa)
=>q0=aq0+b(b+ab) *( aaq0+aa ) +a+ε
(2) 由生成式得:
S=aA+B ①
A=bB+cC ② B=a+bB ③ C=D+abB ④ D=dB ⑤ 由③得 B=b*a ⑥ 将⑤⑥代入④ C=d+abb*a=d+ab+a ⑦ 将⑥⑦代入② A=b+a+c(d+b+a) ⑧ 将⑥⑧代入① S=a(b+a+c(d+ab+a))+b*a
=ab+a+acd+acab+a+b*a
4.对下列文法的生成式,找出其正则式 (1) G=({S,A,B,C,D},{a,b,c,d},P,S),生成式 P 如下:
S→aA S→B
A→abS A→bB
B→b B→cC
C→D D→bB
D→d
(2) G=({S,A,B,C,D},{a,b,c,d},P,S),生成式 P 如下:
S→aA S→B
P: S→aS S→bS S→ε
(2) 右线性文法 G=({S},{a,b},P,S)
P: S→aS S→bS S→abb

形式语言与自动机Chapter6练习参考解答

形式语言与自动机Chapter6练习参考解答

Chapter 6 练习参考解答Exercise 6.2.1 设计PDA 使它接受下列语言,你可以使用以终结状态方式接受或者以空栈方式接受中方便的一个。

b) 所有由0,1 构成的,并且任何前缀中 1 的个数都不比0 的个数多的串的集合。

c) 所有0,1 个数相同的0,1 串的集合。

参考解答:b)构造以终态方式接受的PDA P = (Q,艺,r , S , q o, Z o, F),其中Q={q o};状态q o表示当前扫描过的输入串的任何前缀中1的个数不比0的个数多;工={0 , 1};r ={ Z o, X};下推栈中,X的个数表示当前扫描过的输入串中o的个数比1 的个数多多少;F={q o};S (q o,o, Z o)={( q o,X Z o)}, S (q o,o, X)={( q o,X X)}, S (q o,1, X)={( qo, )}.c)构造以空栈方式接受的PDA P = (Q, 2 , r , S , q o, Z o),其中Q={q o, q i };状态q o表示当前扫描过的输入串的任何前缀中o的个数不少于1 的个数,状态q1 表示当前扫描过的输入串的任何前缀中 1 的个数不少于o 的个数;2 ={o, 1};r ={ Z o, X };下推栈中,X的个数表示当前扫描过的输入串中o的个数比i 的个数或 1 的个数比o 的个数多多少;S(q o,o, Z o)={( q o,X Z o)}, S(q o,1, Z o)={( q1,X Z o)};S (q i,O, Z o)={( q o,X Z o)}, S (q i,1, Z o)={( q i,X Z o)};S (q o,O, X)={( q o,X X)}, S (q o,1, X)={( q o, )};S(q1,o, X)={( q 1, )},S(q1,1, X)={( q 1, X X)} ;S(q o, , Z o)={( q o, )},S(q1, , Z o)={( q1, )}.Exercise 6.3.2 把下面的文法S aAAA aS | bS | a转换成以空栈方式接受同样语言的PDA 。

形式语言与自动机理论_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年

形式语言与自动机理论_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年

形式语言与自动机理论_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年1.令字母表【图片】, 则克林闭包【图片】中元素的长度为?参考答案:只能是有限的2.由字符0和1构成且含有奇数个1的DFA,至少需要几个状态?参考答案:23.双栈PDA可以接受任意图灵机接受的语言。

参考答案:正确4.由某字母表【图片】中的字符构成的全部正则表达式的集合,也可以看做是一个语言,则该语言为:参考答案:上下文无关语言5.由字符0和1构成且含有奇数个1和偶数个0的DFA,至少需要几个状态?参考答案:46.字符串的长度可以是任意的,那么也可以是无穷长的。

参考答案:错误7.设【图片】和【图片】是字母表【图片】上的任意语言且【图片】是无穷的,则两个语言的连接【图片】一定是无穷的。

参考答案:错误8.每一个有穷的语言都是正则语言。

参考答案:正确9.任何正则语言都是上下文无关语言。

参考答案:正确10.任意有穷集合的克林闭包一定是无穷集合。

参考答案:错误11.递归可枚举语言是可判定的语言。

参考答案:错误12.任何有限的语言都是上下文无关语言。

参考答案:正确13.NFA处于某个状态q且输入某字符a时,如果状态转移函数未定义,则NFA会:参考答案:停止自动机的运行,并拒绝该串。

14.有穷自动机有了空转移(不消耗输入串的状态跳转), 改变了它识别语言的能力。

参考答案:错误15.对同一个语言,可能存在两个不同的有穷自动机识别。

参考答案:正确16.带有空转移的非确定有穷自动机中,对于某一个状态,是否可以同时存在“对某字符a的非确定性”和“空转移”?参考答案:可以。

17.图灵机是算法的好模型。

参考答案:错误18.确定的图灵机与非确定的图灵机等价。

参考答案:正确19.由字符0和1构成且含有偶数个1的DFA,至少需要几个状态?参考答案:220.如果一个语言是不可判定的,那么它的补也一定是不可判定的参考答案:错误21.确定的有穷自动机中,“确定的”含义是:参考答案:状态转移是确定的22.由字符0和1构成且长度为偶数的全部字符串的DFA,至少需要几个状态?参考答案:223.集合的克林闭包与正比包一定不相等参考答案:错误24.设【图片】是字母表【图片】上的任意语言,则语言【图片】的闭包【图片】一定是无穷的。

形式语言与自动机蒋宗礼答案

形式语言与自动机蒋宗礼答案

形式语言与自动机蒋宗礼答案形式语言与自动机蒋宗礼答案【篇一:形式语言第四章参考答案(蒋宗礼)】p> 解:所求正则表达式为:(0+1)*。

+⑵ {0, 1}。

解:所求正则表达式为:(0+1)+。

⑶ { x│x∈{0,1}且x中不含形如00的子串 }。

解:根据第三章构造的fa,可得所求正则表达式为:1*(01+)*(01+0+1)。

⑷ { x│x∈{0,1}*且x中不含形如00的子串 }。

++ +q1为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)* q2为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*q3为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)* q4为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)* 将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。

⑺ { x│x∈{0,1}且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。

解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。

另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。

由题设,x=0时,│x│=1,模5是1,不符合条件,所以不必增加关于它的状态。

下面对每一个状态考虑输入0和1时的状态转移。

q: 输入1,模5是1,进入q1。

+q0: 设x=5n。

输入0,x=5n*2=10n,模5是0,故进入q0输入1,x=5n*2+1=10n+1,模5是1,故进入q1q1:设x=5n+1。

输入0,x=(5n+1)*2=10n+2,模5是2,故进入q2输入1,x=(5n+1)*2+1=10n+3,模5是3,故进入q3 q2:设x=5n+2。

形式语言与自动机答案蒋宗礼

形式语言与自动机答案蒋宗礼

形式语言与自动机答案蒋宗礼【篇一:形式语言第四章参考答案(蒋宗礼)】p> 解:所求正则表达式为:(0+1)*。

+⑵ {0, 1}。

解:所求正则表达式为:(0+1)+。

⑶ { x│x∈{0,1}且x中不含形如00的子串 }。

解:根据第三章构造的fa,可得所求正则表达式为:1*(01+)*(01+0+1)。

⑷ { x│x∈{0,1}*且x中不含形如00的子串 }。

++ +q1为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)* q2为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*q3为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)* q4为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。

⑺ { x│x∈{0,1}且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。

解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。

另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。

由题设,x=0时,│x│=1,模5是1,不符合条件,所以不必增加关于它的状态。

下面对每一个状态考虑输入0和1时的状态转移。

q: 输入1,模5是1,进入q1。

+q0: 设x=5n。

输入0,x=5n*2=10n,模5是0,故进入q0输入1,x=5n*2+1=10n+1,模5是1,故进入q1q1:设x=5n+1。

输入0,x=(5n+1)*2=10n+2,模5是2,故进入q2输入1,x=(5n+1)*2+1=10n+3,模5是3,故进入q3 q2:设x=5n+2。

形式语言与自动机 形式语言与自动机理论-蒋宗礼-第三章参考答案

形式语言与自动机 形式语言与自动机理论-蒋宗礼-第三章参考答案

形式语言与自动机形式语言与自动机理论-蒋宗礼-第三章参考答案导读:就爱阅读网友为您分享以下“形式语言与自动机理论-蒋宗礼-第三章参考答案”的资讯,希望对您有所帮助,感谢您对的支持!因此我们只需要证明对任何的2NFA M1?(Q1,?,?1,F1,q0),都存在FAM2?(Q2,?,?2,F2,q0)与之等价。

对于任何的2NFA M1?(Q1,?,?1,F1,q0),构造FA M2?(Q2,?,?2,F2,q0),按三个方式构造?2:1.如果q?Q1,a??,?1(q,a)?{p,R},则?2(q,a)?p;2.如果q?Q1,a??,?1(q,a)?{p,S},则如果??1(p,a)?{o,R},则?2(q,a)?o;如果??1(p,a)?{o,S},则重复第二步;如果??1(p,a)?{o,L},则对于集合A = {r|b?Q1,?1(r,b)?(o,R)},?2(q,a)?r,r?A。

3.如果q?Q1,a??,?1(q,a)?{p,L},则设集合 A = {r|b?Q1,?1(r,b)?(p,R)},?2(q,a)?r,r?A*************************************************** ****************************28.证明定理3-8:Moore机与Mealy机等价(郭会02282015)证明:不妨设Moore机M1=(Q1,?,?,?1,?1,q01),Mealy机M2=(Q2,?,?,?2,?2,q02),则根据Moore机和Mealy机等价的定义知,必须证明:T1(x)??1(q0)T2(x),其中T1(x)和T2(x)分别表示M1和M2关于x的输出。

??Moore机M1,?Mealy机M2,使M2与M1等价(1)构造M2,?2??1,q02?q01,Q2?Q1?q?Q1?{q01},?1(q)?a,?q'?Q1且?b??,?1(q',b)=q,就构造?2(q',b)=a(2)证明?x??*,?1(q0)T2(x)?T1(x)不妨设x?x1x2……xn,则?i?N,(i?1,2……n)则M1的输出为:T1(x)??1(q0)?1(?1(q0,x1))……?1(?1((…?1(q0,x1),x2)…),xn)由题意可知?1(q0,x1),?1(?1(q0,x1),x2),…,?1(……?1 (?1(q0,x1),x2) xn) 均为Moore机中的状态,由(1)中的构造假设知,M2的输出为:T2(x)??2(q0,x1)?2(?2(q0,x1),x2)…?2(……?2(?2(q0,x1),x2) ? ?1(q0,x1)?1(?1(q0,x1),x2)…?1(……?1(?1(q0,x1),x2) xn) xn) ?T1(x)??1(q0)T2(x)??Mealy机M2,?Moore机M1,使M1与M2等价(1)构造M1,q01?q02Q1?Q2?{qij|??2(qi,a)?qj,其中qi,qj?Q2,a??}?1?{?|?(qi,a)?qij,?(qij,?)?qj其中?2(qi,a)?qj}?1?{?|?1(qi,a)?qij,?1(qij,?)?qj,?(qij)??2(qi,a) }(2)证明?x??*,T1(x)=?1(q0)T2(x)不妨设x?x1x2……xn,则?i?N,(i?1,2……n)则M1的输出为:T2(x)??2(?2(q0,x1))……?2(?2((…?2(q0,x1),x2)…),xn) 由题意可知?2(q0,x1),?2(?2(q0,x1),x2),…,?2(……?2 (?2(q0,x1),x2) xn) 均为Mealy机中的状态,由(1)中的构造假设知,M1的输出为:T1(x)??1(q0)?1(?2(q0,x1))?1(?1(q0,x1),x2)…?1(……?1(?1(q 0,x1),x2) xn)??1(q0)?2(?2(q0,x1))……?2(?2((…?2(q0,x1),x2)…),xn) ?T1(x)??1(q0)T2(x)综上所述,Moore机与Mealy机等价第三章作业答案1.已知DFA M1与M2如图3-18所示。

形式语言与自动机课后习题答案部分

形式语言与自动机课后习题答案部分

– 产生语言{0x|x{0, 1}*}的文法
• S0A;
– G: S0A A|0A|1A
2013-7-24 (C)Guohong Fu, CS@HLJU 11
G F H
课后作业二 (cont.)
• 习题8(3)的解答
– 分析:语言的特点
• {11x11|x*}{111, 11};
– 产生语言{x|x{0, 1}*}的文法
G F H
课后作业二 (cont.)
• pp.84:习题 8
设={0, 1},构造产生下列语言的文法 (1) 所有以0开头的串; (3) 所有以11开头,以11结尾的串;
• 8(1)解答
– 分析语言的特点: {0x|x{0, 1}*}; – 产生子语言{x|x{0, 1}*}的文法
• A|0A|1A;
– 习题 15(1) --- -NFANFA
2013-7-24
(C)Guohong Fu, CS@HLJU
20
G 课后作业四 (cont.) F H pp.128 习题 11(1) 构造与NFA M等价的DFA M
2013-7-24 (C)Guohong Fu, CS@HLJU 2
G F H – – – –
课后作业一
• pp.39-41:L基本概念
习题 21 ---字母表 习题 22 --- 前/后缀 习题 23 --- 前/后缀 习题 28(1)(2)(10) --- L的描述
2013-7-24
(C)Guohong Fu, CS@HLJU
用自然语言描述下列文法定义的语言
G: AaaA|aaB BBcc|D#cc DbbbD|#
• 解题思路
– 观察每个产生式及其组合产生的子语言的特点; – 根据开始符的产生式将它们并起来就是整个文法产生的语言;

《形式语言与自动机》期末复习题及答案(一)

《形式语言与自动机》期末复习题及答案(一)

形式语言与自动机期末复习题及答案(一)1.有图灵机 M=(Q, ∑, Γ, δ,q 0 , B , F) 接受语言{w t w│w ∈{a, b}*},按照下图说明其接受过程。

(本题15分 )[q 1[q 6,B]答:abtab 的分析过程:[q 1,B]abtab├a [q 2,a]btab├ab [q 2,a]tab├abt [q 3,a]ab├ ab [q 4,B]tab├a [q 5,B]btab├[q 6,B]abtab├a [q 1,B]btab ├ab [q 2,b]tab├abt [q 3,b]ab ├abta [q 3,b]b ├abt [q 4,B]ab├a [q 5,B]btab ├ab [q 7,B]tab ├abt [q 8,B]ab├abta [q 8,B]b ├abtab [q 8,B]B├abta [q 9,B]b 接受abtab√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√2.简述《形式语言与自动机》课程的主要内容。

(本题10分)答:语言的文法描述;RL (RG 、FA 、RE 、RL 的性质 );CFL (CFG(CNF 、GNF)、PDA 、CFL 的性质);TM (基本TM 、构造技术、TM 的修改);CSL (CSG 、LBA )。

3.简述《形式语言与自动机》课程的学习目的和基本要求。

(本题10分) 答:本专业人员4种基本的专业能力:计算思维能力、算法的设计与分析能力、程序设计和实现能力、计算机软硬件系统的认知、分析、设计与应用能力。

其中计算思维能力包括:逻辑思维能力和抽象思维能力、构造模型对问题进行形式化描述、理解和处理形式模型。

本课程应使学生掌握如下知识:正则语言、下文无关语言的文法、识别模型及其基本性质、图灵机的基本知识。

锻炼培养如下能力:形式化描述和抽象思维能力、了解和初步掌握“问题、形式化描述、自动化(计算机化)”这一最典型的计算机问题求解思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形式语言与自动机理论试题答案解析
一、按要求完成下列填空
1.给出集合{Φ,{Φ}}和集合{ε,0,00}的幂集(2x4')
(1) {Φ,{Φ},{{Φ}},{Φ,{Φ}}}
(2) {Φ,{ε},{0},{00},{ε,0},{ε,00},{0,00},{ε,0,00}}
2.设∑={0,1},请给出∑上的下列语言的文法(2x5')
(1)所有包含子串01011的串
S→X01011Y
X→ε|0X|1X
Y→ε|0Y|1Y
(2)所有既没有一对连续的0,也没有一对连续的1的串
A→ε|A’|A”
A’→0|01|01A’
A”→1|10|10A”
3.构造识别下列语言的DFA 2x6'
(1) {x|x∈{0,1}+且x以0开头以1结尾}
(设置陷阱状态,当第一个字符为1时,进入陷阱状态)
(2) {x|x∈{0,1}+且x的第十个字符为1}
(设置一个陷阱状态,一旦发现x的第十个字符为0,进入陷阱状态)
二、判断(正确的写T ,错误的写F ) 5x2'
1.设1R 和2R 是集合{a,b,c,d,e}上的二元关系,则
3231321)(R R R R R R R ⊆ ( T )
任取(x.,y),其中x,y },,,,{e d c b a ∈,使得321)(),(R R R y x ∈。

)),(),((321R y z R R z x z ∈∧∈∃⇒ },,,,{e d c b a z ∈ )),(),(),((321R y z R z x R z x z ∈∧∈∧∈∃⇒
)),(),(()),(),((3231R y z R z x z R y z R z x z ∈∧∈∃∧∈∧∈∃⇒ 3231),(),(R R y x R R y x ∈∧∈⇒ 3231),(R R R R y x ∈⇒
2.对于任一非空集合A ,Φ⊆A
2 ( T ) 3.文法G :S A|AS A a|b|c|d|e|f|g 是RG ( F ) 4.3型语言
2型语言
1型语言
0型语言 ( F )
5.s (rs+s )*r=rr *s (rr *s )* ( F )
不成立,假设r,s 分别是表示语言R ,S 的正则表达式,例如当R={0},S={1}, L(s(rs+s)*r)是以1开头的字符串,而L(rr*s(rr*s)*)是以0开头的字符串.L(s(rs+s)*r) ≠ L(rr*s(rr*s)*) 所以s(rs+s)*r ≠ rr*s(rr*s)*,结论不成立
三、设文法G 的产生式集如下,试给出句子aaabbbccc 的至少两个不同的推导(12分)。

aSBC
aBC S |→ ab aB →
bB →bb CB →BC bC →bc cC →cc
推导一: S=>aSBC
=>aaSBCBC =>aaaBCBCBC =>aaabCBCBC =>aaabBCCBC =>aaabbCCBC =>aaabbCBCC =>aaabbBCCC =>aaabbbCCC =>aaabbbcCC =>aaabbbccC =>aaabbbccc
推导二:
S=>aSBC
=>aaSBCBC =>aaaBCBCBC
=>aaaBBCCBC =>aaaBBCBCC
=>aaabBCBCC
=>aaabbCBCC
=>aaabbBCCC =>aaabbbCCC =>aaabbbcCC
=>aaabbbccC =>aaabbbccc
四、判断语言{n n n 010|n>=1}是否为RL ,如果是,请构造出它的有穷描述(FA,RG 或者RL );如果不是,请证明你的结论(12分)
解:设L={n n n 010|n>=1}。

假设L 是RL ,则它满足泵引理。

不妨设N 是泵引理所指的仅依赖于 L 的正整数,取Z=N N N 010 显然,Z ∈L 。

按照泵引理所述,必存在u ,v ,w 。

由于|uv|<=N,并且|v|>=1,所以v 只可能是由0组成的非空串。

不妨设v=k 0,k>=1 此时有u=j k N --0 ,w=N N j 010 从而有uv i w=N N j i k j k N 010)0(0-- 当i=2时,有uv 2w=N N k N 010+ 又因为k>=1, 所以 N+k>N 这就是说N N k N 010+不属于L , 这与泵引理矛盾。

所以,L 不是RL 。

五、构造等价于下图所示DFA 的正则表达式。

(12分)
答案(之一):(
01+(1+00)((1+00*1)0)*((1+00*1)1)
)*
(ε+(1+00)((1+00*1)0)*00*)
去掉q 3:
去掉q 1
3Y
2Y
Y
S
30
.
去掉q 2:
去掉q 0:
六、设M=({210,,q q q },{0,1},{0,1,B},{δ},0q ,B,{2q }),其中δ的定义如下:
δ(0q ,0)=(0q ,0,R ) δ(0q ,1)=(1q ,1,R ) δ(1q ,0)=(1q ,0,R ) δ(1q ,B )=(2q ,B ,R )
请根据此定义,给出M 处理字符串00001000,10000的过程中ID 的变化。

(10分)
解:处理输入串00001000的过程中经历的ID 变化序列如下:
0q 00001000
00q 0001000 000q 001000 0000q 01000 00000q 10000
000011q 0000
0000101q 00
00001001q 0
000010001q
00001000B 2q
处理输入串10000的过程中经历的ID 变化序列如下: 0q 10000 11q 00000 101q 000 1001q 00 10001q 0 100001q
10000B 2q
七、根据给定的NFA ,构造与之等价的DFA 。

(14分) NFA M 的状态转移函数如下表
q 0
ε
X
Y
ε+(1+00)((1+00*1)0)*00*
01+(1+00)((1+00*1)0)*((1+00*1)1)
X
Y
(01+(1+00)((1+00*1)0)*((1+00*1)1))* (ε+(1+00)((1+00*1)0)*00*)
解答:。

相关文档
最新文档