人猫鸡米过河模型
数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。
人猫鸡米渡河问题的数学模型

重庆大学本科生数学模型作业报告人猫鸡米渡河问题的数学模型组员:唐新赵广志<指导教师:黄光辉人猫鸡米渡河问题的数学模型一、摘要:本文主要对数学建模基础模型跟“商人过河”类似简单问题:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,建立数学模型,并使渡河次数尽量地少。
模仿“商人过河”的模型设计出新的数学模型。
二、问题的重述人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
关键词:人不在场时猫要吃鸡、鸡要吃米,船需人划,穷举法三、模型假设不考虑外界其他影响,只考虑问题所述的条件:1、船除需要人划之外,至多能载猫、鸡、米三者之一2、当人不在场时猫要吃鸡、鸡要吃米四、符号说明五、问题分析安全过河问题可以看着是一个多部决策的过程。
每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。
否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。
因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s 表示某一岸的状况,决策变量d 表示是乘车方案,我们容易得到s 和d 的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。
六、模型建立与求解Ⅰ. 模型的建立:人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许状态集合为()()()()(){}0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1=S (1) 以及他们的5个反状态。
决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记0=i u ,允许决策集合为()()()(){}0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1=D (2)记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为()kd k k s k s 11-+=+, (3)设计安全过河方案归结为求决策序列,,,,21D d d d n ∈ ,使状态S s k ∈按状态转移律由初始状态()1,1,1,11=s 经n 步达到()0,0,0,01=+n s 。
求解夫妻过河问题

求解夫妻过河问题曲靖师范学院本科生毕业论文论文题目: matlab求解夫妻过河问题作者、学号:郭彩虹2010111212学院、年级:数学与信息科学学院2010级学科、专业:数学数学与应用数学指导教师:郭昀完成日期:2013年12月27日曲靖师范学院教务处摘要渡河问题.[]1始于公元8 世纪,至今它仍是一个逻辑难题,许多数学建模教材上已经提到.这个问题指的是:有不同的对象或生物,他们其中一些相互不共存,逐步地让一小群体从河的一岸到另一岸,经过有限步后,该群体全部从一岸达到另一岸,并且要求没有任何损失.在渡河问题的夫妻过河问题中我们发现状态转移问题有时不一定有解,有时的解又不一定有规律,本文对于夫妻过河问题利用图解法和matlab编写程序求解5对、6对夫妻过河是否有解,并推广到n对夫妻与船的运载能力m对于能否安全渡河时它们之间的关系。
关键词:多步决策 matlab 数学模型渡河问题Problem of couples across the riverAbstract: the problem of crossing the river. In the 8th century, it still is a logical problem, many mathematical modeling teaching material has been mentioned. The question is: have different objects or creatures, they lack some mutual coexistence, gradually to a small group from one bank to another bank of the river, after finite steps, the group all from one side to the other shore, and requires no losses. In crossing the river problem of couples across the river, we found that state transition problem sometimes does not necessarily have a solution, sometimes the solution is not necessarily regular, in this paper, using the graphical method for the problem of couples across the river and the matlab program to solve the 5, 6 for couple across a river if there is a solution,And derived to n couple with the ability to run m to safe crossing the river when the relationship between them.Keywords: Multistep decision Matlab Mathematical model Problem of crossing the river目录1 引言 (1)2 文献综述 (1)2.1 国内外研究现状 (1)2.2 国内外研究现状评价 (2)2.3 问题提出 (2)3 模型假设 (2)4 符号说明 (2)5 重述3、4对夫妻过河问题的解 (3)5.1 3对夫妻过河的解 (3)5.2 4对夫妻过河的解 (3)6 五对夫妻过河模型 (4)6.1 模型构成 (4)6.2 模型建立 (4)6.3 模型求解 (4)6.31 Matlab编程求解 (4)6.32 图解法 (7)7 六对夫妻过河模型 (8)7.1 模型构成 (8)7.2 模型求解 (9)8 n对夫妻过河情况 (10)8.1 求解 (10)8.2 验证 (11)9 总结与展望 (12)9.1 总结 (12)9.2后续研究工作展望 (13)参考文献 (14)附录 (15)1 引言这是一个古老的阿拉伯数学问题。
北京工业大学工程数学-实验1-数学建模入门

d1100101010011000过河的方式有两种过河次数为奇数时船从此岸划向彼岸过河次数为偶数时船从彼岸划向此岸所以则状态ks随决策kd变化的规律为??kdkksks11????因此设计安全过河方案归结为求决策序列21ddddn??使状态ssk?按状态转移律由初始状态??11111?s经n步达到??00001??ns
我们将人,猫,鸡,米在岸上的情况,依次用四维向量S表示,即S(人,猫,鸡,米),并将这些向量称为状态,则第k次渡河前的状态记为 。
当一物在此岸时,相应分量记为1,在彼岸时记为0。例如(1,1,1,1)表示它们都在此岸,(0,1,1,0)表示猫和鸡在此岸,人和米在彼岸。由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。安全渡河条件下的状态称为允许状态。对本问题而言,允许状态集合为:
(1,0,0,0)
(1,0,0,1)
(1,0,1,0)
(1,1,0,0)
(1,0,0,0)
(1,0,1,0)
1
2
3
4
5
6
7
8
(1,1,1,1)
(0,1,0,1)
(1,1,0,1)
(0,0,0,1)
(1,1,0,1)
(0,0,1,0)
(1,0,1,0)
(0,0,0,0)
(1,0,1,0)
(1,0,0,0)
(2)甲乙两站之间有汽车想通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙两站之间有一中间站丙,某人每天在随机时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,大约10天到达乙站。问开往甲乙两站的汽车经过两站的时刻表是如何安排的?
数学建模课后答案

数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
数学建模习题答案

数学建模习题答案数学建模部分课后习题解答中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3)椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位在地面上所处的位置不变,由此可知,f (π)=g (0),g (π)=f (0).而由f (0)>0,g (0)=0,得g (π)>0,f (π)=0。
令h (θ)=f(θ)-g (θ),由f(θ)和g(θ)的连续性知h(θ)也是连续函数。
大学《数学建模》考试题目汇总

答案:
解:设供应点 Ai 供应需求点 B j 的物资的数量为 xij (i 1,2,3; j 1,2,4) ,
则可建立运输问题的数学模型:
min Z x11 8x12 5x13 11x14 3x21 4x22 2x23 5x24 7x31 10x32 9x33 6x34
x11 x12 x13 x14 7 x11 x21 x31 3
3.2030 级新生入学后,大数据学院共有在校学生 600 人,其中数据分析及大数据 专业 320 人,人工智能专业 200 人,统计分析专业 80 人。要在全院推选 25 名学 生组成学生代表团,试用下面的方法分配各专业的学生代表: (1)按比例分配取整的方法,剩下的名额按惯例分配给小数部分较大者; (2)用 Q 值方法进行分配
9. 某厂生产甲、乙、丙三种产品,消耗两种主要原材料 A 与 B。每单位产品生 产过程中需要消耗两种资源 A 与 B 的数量、可供使用的原材料数量以及单位产 品利润如下表:
甲
乙
丙
原料数量
A
60
30
50 4500 公斤
B
30
40
50 3000 公斤
产品利润 400 元 300 元 500 元
甲、乙、丙三种产品各生产多少使总利润最大? (1)建立线性规划问题数学模型。 (2)写出用 LINGO 软件求解的程序。 答案:(数据乘 10)
4.某商店每天要订购一批牛奶零售,设购进价 c1 ,售出价 c2(c2 c1) ,当天销售不 出去则削价处理,处理价 c3(c3 c1) 并能处理完所有剩余的牛奶。如果该商店每 天销售牛奶的数量 r 是随机变量,其概率密度函数为 f (r) 。如果商店每天订购牛 奶的数量为 n , L 该商店销售牛奶每天所得利润,则 L 是 r 与 n 的函数 L g(r) (1)建立利润函数 L g(r) ; (2)确定每天的购进量 n ,使该商店每天的期望利润最大。
安全过河问题

安全过河
一、问题提出
人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽可能少。
二、模型假设
不考虑外界其他影响,只考虑问题所述的条件。
符号说明:
三、模型的建立
人、猫、鸡、米分别记为i=1,2,3,4,当i在此岸时记为x i=1,否则记x i=0,则此岸的状态可用S=(x,1x2,x3,x4)表示。
记s的反状态为s'=(1-x,11-x2,1-x3,1-x4),允许状态集合为D={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)} (1)
以及他们的5个反状态决策为乘船方案,记作d=(u,1u2,u3,u4),当i在船上时记作u i=1,否则记为u i=0,允许决策集合为D={(1,1,0,0),(1,01,0),(1,0,0,1),(1,0,0,0)} (2)
记第k次渡河前的此岸的状态为s k,第k次渡河的决策为d k,则状态转移律为s k1+=s k+()1-k d k,(3)
设计安全过河方案归结为求决策序列d1,d2,···,d k∈D,使状态s k∈S按状态转移律由初始状态s1=(1,1,1,1)经n步达到s n1+=(0,0,0,0)。
四、模型的求解
从而我们得到一个可行的方案如下:
因此,该问题的最优方案是:1、人先带鸡过河,然后人再回来,把米带过河,然后把鸡运回河岸,人再把猫带过河,最后人回来把鸡带过去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A
我们的参赛报名号为(如果赛区设置报名号的话):J2202
所属学校(请填写完整的全名):江西环境工程职业学院
参赛队员(打印并签名) :1. 杨松泉
2. 付建华
3. 付琪
指导教师或指导教师组负责人(打印并签名):教练组
日期: 2012年 8月 8日赛区评阅编号(由赛区组委会评阅前进行编号):
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):。