催化裂化
催化裂化工艺介绍

1。
0催化裂化催化裂化是原料油在酸性催化剂存在下,在500℃左右、1×105~3×105Pa 下发生裂解,生成轻质油、气体和焦炭的过程.催化裂化是现代化炼油厂用来改质重质瓦斯油和渣油的核心技术,是炼厂获取经济效益的重要手段。
催化裂化的石油炼制工艺目的:1)提高原油加工深度,得到更多数量的轻质油产品;2)增加品种,提高产品质量。
催化裂化是炼油工业中最重要的一种二次加工工艺,是重油轻质化和改质的重要手段之一,已成为当今石油炼制的核心工艺之一。
1。
1催化裂化的发展概况催化裂化的发展经历了四个阶段:固定床、移动床、流化床和提升管。
见下图:固定床移动床流化床提升管(并列式)在全世界催化裂化装置的总加工能力中,提升管催化裂化已占绝大多数。
1。
2催化裂化的原料和产品1。
2。
0原料催化裂化的原料范围广泛,可分为馏分油和渣油两大类。
馏分油主要是直馏减压馏分油(VGO),馏程350—500℃,也包括少量的二次加工重馏分油如焦化蜡油等,以此种原料进行催化裂化称为馏分油催化裂化。
渣油主要是减压渣油、脱沥青的减压渣油、加氢处理重油等。
渣油都是以一定的比例掺入到减压馏分油中进行加工,其掺入的比例主要受制于原料的金属含量和残炭值.对于一些金属含量低的石蜡基原有也可以直接用常压重油为原料。
当减压馏分油中掺入渣油使通称为RFCC。
以此种原料进行催化裂化称为重油催化裂化。
1。
2.1产品催化裂化的产品包括气体、液体和焦炭。
1、气体在一般工业条件下,气体产率约为10%-20%,其中含干气和液化气。
2、液体产物1)汽油,汽油产率约为30%-60%;这类汽油安定性较好。
2)柴油,柴油产率约为0—40%;因含较多芳烃,所有十六烷值较低,由重油催化裂化得到的柴油的十六烷值更低,这类柴油需经加氢处理。
3)重柴油(回炼油),可以返回到反应器内,已提高轻质油收率,不回炼时就以重柴油产品出装置,也可作为商品燃料油的调和组分。
4)油浆,油浆产率约为5%—10%,从催化裂化分馏塔底得到的渣油,含少量催化剂细粉,可以送回反应器回炼以回收催化剂。
催化裂化原理

催化裂化原理催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质烃分子裂解成轻质烃的过程。
其原理是在催化剂的作用下,长链烷烃分子发生裂解,生成短链烷烃和烯烃。
这种工艺可以将原油中的重质烃转化为汽油和柴油等轻质烃,是炼油过程中不可或缺的一环。
催化裂化的原理主要包括以下几个方面:1. 催化剂的作用。
催化裂化过程中,催化剂起着至关重要的作用。
催化剂可以降低裂解反应的活化能,加速反应速率,提高产物选择性,延长催化剂寿命等。
常用的催化剂包括硅铝比较高的沸石类催化剂和钼、镍等金属氧化物催化剂。
2. 裂化反应。
在催化裂化反应中,长链烷烃分子在催化剂的作用下发生裂解,生成短链烷烃和烯烃。
裂化反应是一个烷烃分子内部发生的裂解反应,主要包括碳-碳键的断裂和碳-碳键的重排。
裂化反应的产物主要是烷烃、烯烃和芳烃。
3. 反应条件。
催化裂化的反应条件包括温度、压力、催化剂种类和用量等。
通常情况下,催化裂化反应需要在较高的温度下进行,以提高反应速率和产物选择性。
此外,适当的压力和催化剂的选择也对裂化反应的效果有重要影响。
4. 产物分离。
催化裂化反应产生的混合气体需要进行分离和纯化,以得到所需的轻质烃产品。
通常采用的分离技术包括精馏、萃取、吸附等,以获得高纯度的汽油和柴油产品。
5. 催化剂再生。
在催化裂化过程中,催化剂会因受到焦炭和烃类物质的污染而失活,需要进行再生。
催化剂再生是通过热氧化或化学氧化等方法将焦炭烧除,恢复催化剂的活性和选择性,延长催化剂的使用寿命。
总的来说,催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质烃分子裂解成轻质烃,可以提高原油的利用率,生产出更多的汽油和柴油产品。
催化裂化的原理涉及催化剂的作用、裂化反应、反应条件、产物分离和催化剂再生等多个方面,需要综合考虑和控制,以实现高效、稳定的生产过程。
催化裂化原理

4
4.1 概述
二、催化裂化的发展历程 催化裂化自1936年实现工业化至今经历了四个阶段: 固定床、移动床、流化床和提升管。
Fixed Bed
Moving Bed
5
4.1 概述
Fluid Bed
Lift Pipe
在全世界催化裂化装置的总加工能力中,提升管催化
裂化已占绝大多数。
6
4.1 概述
三、催化裂化主要发展方向 1、加工重质原料
25
4.3 烃类的催化裂化反应
H C H 3CC H 3
+
H + (C at.)+C H 3C HC H 3
思考1:为什么催化裂化产物中少C1、C2,多C3、C4? 正碳离子分解时不生成<C3、C4的更小正碳离子。 思考2:为什么催化裂化产物中多异构烃?
伯、仲正碳离子稳定性差,易转化为叔正碳离子。
20
4.3 烃类的催化裂化反应
2、正碳离子机理
以正n-C16H32来说明。 (1)生成正碳离子
正n-C16H32得到一个H+,生成正碳离子。如
H
H
n -C 5 H 1 1CC 1 0 H 2 0+H + n -C 5 H 1 1CC 1 0 H 2 1
+
(2)β断裂
大正碳离子不稳定,容易在β位置上断裂,生成一个烯
若正碳离子为伯正碳离子,易变成仲碳离子,再进行β 断裂,甚至异构化为叔正碳离子,再进行β断裂。
22
4.3 烃类的催化裂化反应
C H 2C 8H 17 +
C H 3C HC 7H 16 +
C H 3C HC H 2+C H 2C 5H 11 +
催化裂化计算公式

催化裂化计算公式催化裂化是石油炼制工艺中常用的一种方法,通过在一定的温度和压力条件下,利用催化剂对石油馏分进行裂解和转化,得到更高价值的产品。
催化裂化反应的计算公式主要包括裂解反应速率公式、选择性公式和生长率公式。
下面将详细介绍这些公式。
1.裂解反应速率公式催化裂化的核心是裂解反应,也是得到高价值产品的关键步骤。
裂解反应速率公式可以描述反应速率与反应物浓度之间的关系,常用的裂解反应速率公式为Arrhenius公式:r = k * C^n * exp(-E/RT)其中,r为裂解反应的速率,k为反应速率常数,C为反应物的浓度,n为反应级数,E为反应的活化能,R为气体常数,T为反应温度。
2.选择性公式催化裂化过程中,会产生许多不同的裂解产物,选择性公式可以描述不同产物的生成速率与不同因素之间的关系。
一般来说,选择性公式可以根据不同的产物选择适当的描述方式,比如用分率、摩尔比或摩尔分数等。
例如,对于裂解产物燃料油和液化气的选择性公式可以表示为:Se=K1*F1+K2*F2其中,Se为选择性系数,K为选择性常数,F为反应物的摩尔比。
3.生长率公式催化裂化反应中,一些分子会通过生长过程生成更大的分子,这些生长过程可以通过生长率公式描述。
一般来说,生长率公式可以基于碳原子的增长数量表示。
G=A*C^m其中,G为生长率,A为生长常数,C为反应物的浓度,m为生长度。
需要注意的是,上述公式只是催化裂化反应计算中的常用公式,实际应用中还需要结合具体的反应机理和实验数据进行修正和拟合。
此外,催化裂化反应过程中还涉及到反应器设计、催化剂选择、操作参数优化等多方面的问题,需要综合考虑才能得到准确的计算结果。
催化裂化机理及特点

催化裂化机理及特点催化裂化是一种通过加热和催化剂的作用将长链烃分子裂解为短链烃分子的重要工艺。
催化裂化机理及特点主要包括以下几个方面:一、催化裂化机理1.构造反应:长链烃分子在裂化过程中首先发生构造反应,通过裂解碳-碳键,形成相对较短的碳链碳烃和烯烃。
2.重排反应:长链烃分子中的骨架碳骨架会经历一系列重排反应,使得产物中更多的是相对稳定的异构体和环状化合物。
3.脱氢反应:重排反应过程中,长链分子中的烃基可能失去氢原子,从而形成烯烃,增加了催化裂化的产物中烯烃的含量。
4.脱氢裂解反应:在高温高压下,部分碳链碳烃可以发生脱氢裂解反应,形成更短的链长烃烃烃烃、烯烃和芳香烃。
二、催化裂化特点1.催化裂化具有高选择性:在催化剂的影响下,催化裂化反应主要发生在长链烃分子中的弱键和缺陷位置,使得产物中的碳链长度相对较短,同时产生更多的异构体和环状化合物。
2.催化裂化反应速度快:催化剂的存在提高了反应活性,使得裂化反应可以在相对低的温度和压力下进行,加快了反应速度。
3.催化裂化可以产生高附加值的产品:催化裂化使得重质燃料油转化为轻质烃类产品,其中包括汽油、炼厂气、润滑油基础油等,这些产品有较高的附加值。
4.催化裂化可以降低能源消耗:通过催化裂化将重质原油转化为较轻质产品,如汽油和炼厂气,不仅提供了更多的高附加值产品,还减少了对原油的需求,降低了能源消耗。
5.催化裂化可以调节产品分布:通过不同的催化剂组合和反应条件,可以调节催化裂化产物的碳链长度分布,以满足市场需求,提高产品经济效益。
总之,催化裂化是一种高效、高选择性的炼油工艺,通过加热和催化剂的作用,将长链烃分子裂解为短链烃分子,产生高附加值产品,并降低能源消耗。
催化裂化机理和特点的深入研究对于提高炼油工艺的效率和降低能源消耗具有重要意义。
催化催化裂化技术

催化催化裂化技术催化裂化技术是一种重要的炼油工艺,可以将重质石油馏分转化为高附加值的轻质产品。
本文将从催化裂化技术的原理、应用和发展前景等方面进行探讨,以期为读者提供对该技术的全面了解。
一、催化裂化技术的原理催化裂化技术是通过催化剂的作用将重质石油馏分分解为较轻的产品。
其主要原理是在高温和高压的条件下,将原料油与催化剂接触,使其发生裂化反应。
这种反应可以将长链烃分子裂解成短链烃分子,从而提高汽油和燃料油的产率。
催化裂化反应主要分为两个阶段:热裂化和催化裂化。
在热裂化阶段,原料油在高温下分解成烃气和液体烃。
然后,在催化剂的作用下,烃气和液体烃进一步反应,生成较轻的产品,如汽油、液化气和柴油等。
二、催化裂化技术的应用催化裂化技术在炼油行业中具有广泛的应用。
首先,它可以提高汽油的产率。
由于汽车的普及,对汽油的需求量不断增加。
催化裂化技术可以将重质石油馏分转化为轻质的汽油,从而满足市场需求。
催化裂化技术可以生产出高质量的柴油。
在催化裂化过程中,石油馏分中的硫、氮和金属等杂质可以得到有效去除,从而提高柴油的质量。
这对于减少柴油排放的污染物具有重要意义。
催化裂化技术还可以生产出液化气、石脑油和石化原料等产品。
这些产品在化工、冶金和化肥等行业中具有广泛的应用。
三、催化裂化技术的发展前景随着能源需求的增加和石油资源的日益枯竭,催化裂化技术在未来的发展前景十分广阔。
一方面,随着汽车工业的高速发展,对汽油的需求将持续增加,催化裂化技术将成为满足市场需求的重要手段。
另一方面,随着环境保护意识的提高,对燃料油质量的要求也越来越高。
催化裂化技术可以提高燃料油的质量,减少对环境的污染,因此在未来的发展中具有重要的作用。
随着科技的不断进步,催化剂的研发和改进也将推动催化裂化技术的发展。
新型的催化剂可以提高反应的选择性和活性,从而提高产品的产率和质量。
催化裂化技术作为一种重要的炼油工艺,在提高石油产品产率和质量方面具有重要的作用。
催化裂化的工艺特点及基本原理
催化裂化的工艺特点及基本原理催化裂化是一种重要的石油加工工艺,其开发和应用对于提高石油产业发展水平具有重要的意义。
催化裂化工艺的特点和基本原理如下:一、工艺特点:1.高选择性:催化裂化工艺可以将石油馏分中的大分子烃化合物按照其碳数分解为较低碳数的烃化合物,其中可选择的烃化合物主要是汽油和液化气。
因此,催化裂化可以提高汽油和液化气产率,达到更好的操作经济效益。
2.产物分布广:催化裂化反应不仅可以生成汽油和液化气,还可以生成较低碳数的烃化合物,如乙烯、丙烯等。
因此,催化裂化反应可以提供多种不同碳数的烃化合物,满足不同需求。
3.增塔体积积极:催化裂化工艺采用固定床反应器,反应器内填充了催化剂颗粒,因此反应器体积较大。
大体积的反应器可以增加催化裂化反应的容量,提高石油裂解速率,并且还可以增加反应过程的稳定性和可控性。
4.废气利用:催化裂化反应产生的废气中含有非常丰富的烃化合物和能量,可以通过适当的处理和回收利用,从而得到更好的经济效益,并减少对环境的污染。
二、基本原理:催化裂化反应是通过催化剂的作用来进行的,其基本原理如下:1.裂解反应:石油中的长链烃化合物在催化剂的作用下发生热裂解反应,将大分子烷烃分解成较小分子的烃化合物。
这种反应是一个链状反应过程,会生成一系列的短链烃化合物和碳氢烃中间体。
2.重排反应:短链烃化合物和碳氢烃中间体在催化剂的作用下发生重排反应,重新组合成不同碳数的烃化合物。
3.芳构化反应:在催化裂化过程中,由于催化剂特殊的性质,烃化合物还会发生芳构化反应,生成芳烃类化合物,如苯、甲苯等。
4.积碳反应:由于裂化过程产生的碳元素会在催化剂表面析出,形成碳黑,导致催化剂失活。
因此,催化裂化还需要定期对催化剂进行再生,以保持其活性。
综上所述,催化裂化工艺具有高选择性、广泛的产物分布、增塔体积积极和废气利用等特点。
其基本原理包括裂解反应、重排反应、芳构化反应和积碳反应。
催化裂化工艺的开发和应用有助于提高石油产业的经济效益和环境可持续性。
简述催化裂化工艺流程
简述催化裂化工艺流程催化裂化的流程主要包括三个部分:①原料油催化裂化;②催化剂再生;③产物分离。
原料喷入提升管反应器下部,在此处与高温催化剂混合、气化并发生反应。
反应温度480~530℃,压力0.14~0.2MPa (表压)。
反应油气与催化剂在沉降器和旋风分离器(简称旋分器),分离后,进入分馏塔分出汽油、柴油和重质回炼油。
裂化气经压缩后去气体分离系统。
结焦的催化剂在再生器用空气烧去焦炭后循环使用,再生温度为600~730℃。
5.1反应部分原料经换热后与回炼油混合经对称分布物料喷嘴进入提升管,并喷入燃油加热,上升过程中开始在高温和催化剂的作用下反应分解,进入沉降器下段的气提段,经汽提蒸汽提升进入沉降器上段反应分解后反应油气和催化剂的混合物进入沉降器顶部的旋风分离器(一般为多组),经两级分离后,油气进入集气室,并经油气管道输送至分馏塔底部进行分馏,分离出的催化剂则从旋分底部的翼阀排出,到达沉降器底部经待生斜管进入再生器底部的烧焦罐。
5.2再生部分再生器阶段,催化剂因在反应过程中表面会附着油焦而活性降低,所以必须进行再生处理,首先主风机将压缩空气送入辅助燃烧室进行高温加热,经辅助烟道通过主风分布管进入再生器烧焦罐底部,从反应器过来的催化剂在高温大流量主风的作用下被加热上升,同时通过器壁分布的燃油喷嘴喷入燃油调节反应温度,这样催化剂表面附着的油焦在高温下燃烧分解为烟气,烟气和催化剂的混合物继续上升进入再生器继续反应,油焦未能充分反应的催化剂经循环斜管会重新进入烧焦罐再次处理。
最后烟气及处理后的催化剂进入再生器顶部的旋风分离器进行气固分离,烟气进入集气室汇合后排入烟道,催化剂进入再生斜管送至提升管。
5.3烟气利用再生器排除的烟气一般还要经三级旋风分离器再次分离回收催化剂,高温高速的烟气主要有两种路径,一、进入烟机,推动烟机旋转带动发电机或鼓风机;二、进入余热锅炉进行余热回收,最后废气经工业烟囱排放。
催化裂化
第五章 催化裂化第一节 概述一、催化裂化在炼油工业中的地位和作用1、石油二次加工的作用一般原油经常减压蒸馏后可得到10~40%的汽油,煤油及柴油等轻质油品,其余的是重质馏分和残渣油。
如果不经过二次加工它们只能作为润滑油原料或重质燃料油。
但是国民经济和国防上需要的轻质油量是很大的,由于内燃机的发展对汽油的质量提出更高的要求.而直馏汽油(辛烷值较低40)则一般难以满足这些要求。
原油经简单加工所能提供的轻质油品的数量和质量同生产发展所需要的轻质油品的数量和质量之间的矛盾促使了二次加工过程的产生和发展。
2、催化裂化在二次加工中的作用催化裂化大分子烃类在催化裂化剂的作用下,在一定的温度压力下,裂化为铰小分子的烃类的过程叫催化裂化。
原料在450—530℃ ,1—3大气压及与催化剂接触的条件下,经裂化生成气体、汽油、柴油、重质油、及焦碳。
石油的二次加工包括,重油轻质化工艺热裂化、焦化、加氢裂化和催化裂化催化裂化,汽油的催化重整工艺。
在重质油轻质化的工艺中,热裂化的过程技术落后已经被淘汰。
加氢裂化,技术先进、产品收率高、质量好、灵活性大,但设备复杂,制造成本高、耗氢量大,从技术经济上受到一定的限制。
催化裂化是重质油轻质的主要手段,2001年底,中国的实际原油加工能力为280Mt/a,催化裂化加工能力约为100 Mt/a,催化裂化占原油加工能力之比为35.7%。
在目前我们国家的汽油中,80%来自于催化裂化。
二、催化裂化技术的发展概况催化裂化装置的工艺过程催化裂化反应是在催化剂表面进行的,分解反应生成气体汽油、柴油等分子较小的产物离开催化剂进入产品回收系统,而缩合反应生成的焦碳,则沉积在催化剂上,使其活性逐渐下降,为了使反应不断进行,就必须及时烧去催化剂表面上的积炭使之恢复活性,这一过程称为“再生”。
可见它必须包括两个过程 催化裂化自1936年实现工业化至今60多年的历史。
经过了如下发展过 :1、固定床催化裂化1936年第一套固定床催化裂化装置投产。
石油烃类催化裂化反应介绍
反应条件
01
温度: 400500℃
02
压力:12MPa
03
催化剂:金 属氧化物或 金属硫化物
04
反应时间: 数秒至数分
钟
反应产物
汽油:主要产物, 包括直链烷烃、 环烷烃和芳香烃
柴油:主要产物, 包括直链烷烃、 环烷烃和芳香烃
液化石油气:副 产物,包括丙烷、
丁烷和戊烷
焦炭:副产物, 包括碳氢化合物
作用
催化裂化反应可以提 高石油的轻质油收率
催化裂化反应可以降 低石油的硫含量,提
高油品质量
催化裂化反应可以降 低石油的烯烃含量,
提高油品的稳定性
化学品生产
石油烃类催化裂化反 应是生产化学品的重 要方法之一。
催化裂化反应在化学 品生产中具有高效、 节能、环保等优点。
催化裂化反应可以生 产各种化学品,如烯 烃、芳烃、烷烃等。
石油烃类催化裂化反应介绍
演讲人
目录
01. 催化裂化反应原理 02. 催化裂化反应技术 03. 催化裂化反应的应用 04. 催化裂化反应的发展趋势
催化裂化反应原理
反应过程
原料:石油烃类 催化剂:金属或金属氧化物 反应条件:高温、高压 反应产物:轻质油、气体和焦炭 反应机理:自由基链反应和离子型反应 反应特点:转化率高、选择性好、能耗低
复合催化剂:由两种或 两种以上催化剂组成的 复合催化剂,用于提高 催化裂化反应的效率和
选择性。
两性催化剂:如氧化 铝、氧化硅等,用于 催化裂化反应中的两
性催化裂化过程
反应器设计
反应器类型:固 定床反应器、流 化床反应器、移 动床反应器等
反应器结构:包 括反应区、加热 区、冷却区等
反应器尺寸:根 据反应规模和效 率要求确定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化裂化
催化裂化是目前石油炼制工业中最重要的二次加工过程,也是重油轻质化的核心工艺,是提高原油加工深度、增加轻质油收率的重要手段。
催化裂化原料:重质馏分油(减压馏分油、焦化馏分油)、常压重油、减渣(掺一部分馏分油)、脱沥青油。
产品分布及特点:
★气体: 10~20%,气体中主要是C3、C4,烯烃含量很高
★汽油: 产率在30~60%之间,ON高,RON可达90左右
★柴油: 产率在0~40%,CN较低,需调和或精制
★油浆:产率在0~10%
★焦炭: 产率在5%~10%,C:H=1:0.3~1
催化裂化的工艺特点
催化裂化过程是以减压馏分油、焦化柴油和蜡油等重质馏分油或渣油为原料,在常压和450℃~510℃条件下,在催化剂的存在下,发生一系列化学反应,转化生成气体、汽油、柴油等轻质产品和焦炭的过程。
催化裂化过程具有以下几个特点:
⑴轻质油收率高,可达70%~80%;
⑵催化裂化汽油的辛烷值高,马达法辛烷值可达78,汽油的安定性也较好;
⑶催化裂化柴油十六烷值较低,常与直馏柴油调合使用或经加氢精制提高十六烷值,以满足规格要求;
⑷催化裂化气体,C3和C4气体占80%,其中C3丙烯又占70%,C4中各种丁烯可占55%,是优良的石油化工原料和生产高辛烷值组分的原料。
根据所用原料,催化剂和操作条件的不同,催化裂化各产品的产率和组成略有不同,大体上,气体产率为10%~20% ,汽油产率为30%~50%,柴油产率不超过40%,焦炭产率5%~7%左右。
由以上产品产率和产品质量情况可以看出,催化裂化过程的主要目的是生产汽油。
我国的公共交通运输事业和发展农业都需要大量柴油,所以催化裂化的发展都在大量生产汽油的同时,能提高柴油的产率,这是我国催化裂化技术的特点。
在同一条件下,剂油比大,表明原料油能与更多的催化剂接触。
㈡影响催化裂化反应深度的主要因素
影响催化裂化反应转化率的主要因素有:原料性质、反应温度、反应压力、反应时间。
1、原料油的性质原料油性质主要是其化学组成。
原料油组成中以环烷烃含量多的原料,裂化反应速度较快,气体、汽油产率比较高,焦炭产率比较低,选择性比较好。
对富含芳烃的原料,则裂化反应进行缓慢,选择性较差。
另外,原料油的残炭值和重金属含量高,会使焦炭和气体产率增加。
2、反应温度反应温度对反应速度、产品分布和产品质量都有很大影响。
在生产中温度是调节反应速度和转化率的主要因素,不同产品方案,选择不同的反应温度来实现,对多产柴油方案,采用较低的反应温度(450℃~470℃),在低转化率高回炼比下操作。
对多产汽油方案,反应温度较高(500℃~530℃);采用高转化率低回炼比。
3、反应压力提高反应压力的实质就是提高油气反应物的浓度,或确切地说,油气的分压提高,有利于反应速度加快。
提高反应压力有利于缩合反应,焦炭产率明显增高,气体中烯烃相对产率下降,汽油产率略有下降,但安定性提高。
提升管催化裂化反应器压力控制在0.3MPa ~0.37MPa。
4、空速和反应时间在提升管反应器中反应时间就是油气在提升管中的停留时间。
图3-5表示提升管催化裂化的反应时间与转化率的关系。
由图可见,反应开始阶段,反应速度最快,1秒后转化率的增加逐渐趋于缓和。
反应时间延长,会引起汽油的二次分解,同时因为分子筛催化剂具有较高的氢转移活性,而使丙烯、丁烯产率降低。
提升管反应器内进料的反应时间要根据原料油的性质,产品的要求来定,一般约为1秒~4秒。
催化裂化 - 工艺过程
催化裂
化
催化裂化的流程(图1)包括三个部分:①原料油催化裂化;②催化剂再生;③产物分离。
原料经换热后与回炼油混合喷入提升管反应器下部,在此处与高温催化剂混合、气化并发生反应。
反应温度480~530℃,压力0.14MPa(表压)。
反应油气与催化剂在沉降器和旋风分离器(简称旋分器)分离后,进入分馏塔分出汽油、柴油和重质回炼油。
裂化气经压缩后去气体分离系统。
结焦的催化剂在再
生器用空气烧去焦炭后循环使用,再生温度为600~730℃。
使用分子筛催化剂时,为了使炼厂产品方案有一定的灵活性,可根据市场需要改变操作条件以得到最大量的汽油、柴油或液化气(见表)。
催化裂化过程具有以下几个特点:
⑴轻质油收率高,可达70%~80%;
⑵催化裂化汽油的辛烷值高,汽油的安定性也较好;
⑶催化裂化柴油十六烷值较低,常与直馏柴油调合使用或经加氢精制提高十六烷值,以满足规格要求;
⑷催化裂化气体,C3和C4气体占80%,其中C3丙烯又占70%,C4中各种丁烯可占55%,是优良的石油化工原料和生产高辛烷值组分的原料.
根据所用原料,催化剂和操作条件的不同,催化裂化各产品的产率和组成略有不同,大体上,气体产率为10%~20% ,汽油产率为30%~50%,柴油产率不超过40%,焦炭产率5%~7%左右.由以上产品产率和产品质量情况可以看出,催化裂化过程的主要目的是生产汽油.我国的公共交通运输事业和发展农业都需要大量柴油,所以催化裂化的发展都在大量生产汽油的同时,能提高柴油的产率,这是我国催化裂化技术的特点.
催化裂化装置的组成单元
按照工艺流程,整个装置可以分为四个单元或“系统”:
(1)反应-再生系统------包括原料油的裂化反应和催化剂的再生两个工艺过程。
l一辅助燃烧室,
2一主风(空气)分布管;
3一再生器密相段(床);
4一再生器稀相段;
5一再生器一、二级旋风分离器
6一烟气集气室,
7一反应油气集气室,
8一沉降器一、二级旋风分离器
9一快速分离器,
10一沉降器沉降段,
11一沉降器汽提段;
12一待生斜管,
13一待生单动滑阀;
14一再生淹流斗;
15一提升管反应器;
16一再生斜管;
17一再生单动滑阀图
3-1提升管催化裂化装置反应—再生系统流程
(2)分馏系统------根据裂化产品的沸程不同,将其分割成气体、汽油、柴油、回炼油和油浆。
图3-2 分馏系统典型流程示意图
(3)吸收稳定系统-------用稳定汽油将裂化气体中的C3和C4组分(液化石油气的主要成分)吸收下来,把乙烷及其以下的轻组分(裂化干气的主要组分)汽提出去,作为燃料气使用。
(4)能量回收系统------由于催化剂再生时产生的烟气携带有大量热能和压力能,回收这部分能量,可以降低生产成本和能耗,提高经济效益。
对于大型装置,一般都是采用烟气轮机回收压力能,用作驱动主风机的动力和带动薄电机发电;用余热锅炉进行热能回收,以产生蒸汽,供汽轮机使用或外输。