度量空间与连续映射

合集下载

点集拓扑讲义.ppt

点集拓扑讲义.ppt
则称 是集合 X 的一个度量.
称 (X , ) 是一个度量空间. 在不至引
起混淆的前提下,迳称 X 是一个度量
空间; (x, y) 称为点 x 到 y 的距离.
3
常见度量空间
➢➢➢实实实数数数空集空间间R RR
设设 ::RRRRRR ,,对对于于任任意意xx,,yy∈∈RR,, 令令((xx,,yy))||xxyy||,,容容易易验验证证 是是 RR 的的
间间,,ff :: XX YY,,xx00 XX 则则下下述述条条件件
((11))和和((22))分分别别等等价价于于条条件件((11)) **和和((22))**::
((11)) ff 在在点点 xx00 处处是是连连续续的的;;
((11))** ff ((xx00))的的每每一一个个邻邻域域的的原原象象是是
由由由于于于
AAA000AA是是A是一一一个个个使使使开开开得得得集集集xxx,,,从从从AAA而而而000 ,,存存,存在在在
AA
BBB(((xxx,,,))) 满满满足足足
BBB(((xxx,,,))) AAA000 UUU AAAAAA AAA
故故故AAUUUAA AAA是是是开开开集集集... AA 18
一一个个度度量量..
(R, )称为实数空间或直线.这
个度量称为 R 的通常度量,并且常常
迳称 R 为实数空间.
4
常见度量空间
➢➢➢nnn维重 重重欧笛 笛笛氏卡 卡卡空儿 儿儿间积 积积RRRnRnnn 定 定定义 义义 :::RRRnnn RRRnnn RRR
能对 对对够任 任任验意 意意证xxx(((xxx为111,,,xxx22R2,,,LLnL的,,,xxx度nnn))), ,量,xxx,((称(yyy111,,,(yyyR222,,n,LLL, ,,,)yyynnn)))

第二章 拓扑空间与连续映射

第二章 拓扑空间与连续映射
2010-8-31 宁德师范高等专科学校 11
-1
2.3 邻域
定义2 定义2.3.1 设(X, T)是拓扑空间. x∈X, UX称为x 的邻域, 如果存在V∈T使x∈VU; 若U是开的, U称 为x的开邻域. 定理2.3.1 设UX. U是X的开集U是它的每一 定理2 点的邻域. 证 由定义得“”; 利用开集之并为开得 “” . x在X的所有邻域构成的族称为x的邻域系, 记为 Ux.
2010-8-31
宁德师范高等专科学校
9
2.2 拓扑空间与连续映射(3)
定义2 定义2.2.3 可度量化空间. 离散空间是可度量化空间. 多于一点的平庸空间不是可 度量化空间. 度量化问题是点集拓扑学研究的中心问题之 一. 本书将在§6.6中给出该问题的一个经典的解. 定义2 定义2.2.4 X, Y是两拓扑空间. f: X→Y. 称f连续, 若Y中每 -1 一开集U的原象f (U)是X中的开集. 定理2 定理2.2.1 恒同映射连续. 连续函数的复合是连续的. 定义2.2.5 f: X→Y称为同胚或同胚映射, 若f是一一映射且 定义2 -1 f及f 均连续.
设f是包含a的所有闭集之交20121027宁德师范高等专科学校2224定理249对度量空间x20121027宁德师范高等专科学校232420121027宁德师范高等专科学校2425定义251a的所有内点的集合称为a的内部记为a20121027宁德师范高等专科学校2525是a所包含的所有开集之并是含于a内的最大开集
2010-8-31 宁德师范高等专科学校 13
2.3 邻域(3)
利用邻域与开集的关系(定理2.3.1)导出开集, 从Ux(x∈X) 具有定理2.3.2的性质的(1)-(4)出发, 定义 T={UX|x∈U, U∈Ux}, 则(X, T)是拓扑空间, 且这空间中每一点x的邻域系 恰是Ux. 详见定理2.3.3. 定义2.3.2(点连续) 映射f: X→Y称为在点x∈X连续, 如果U 定义2 -1 是f(x)在Y中的邻域, 则f (U)是x在X中的邻域. 定理2.1.4保证了在度量空间中点的连续性与由度量导出 的拓扑空间中的点的连续性的一致. 另一方面, 关于点的连 续性, 易验证(定理2.3.4), 恒等映射在每一点连续, 两点连续 的函数之复合仍是点连续的.

度量空间连续映射的等价条件

度量空间连续映射的等价条件
( 1 ) 厂 ( A) )] A;
( 2 ) 厂 ( ) )c U; ( 3 ) A u B) = A )u B);
( 4 ) , ( A n曰 )c A )n B); ( 5 ) 厂 ( u V ) =厂。 ( )u厂 ( V );
2 0 1 3年 2月
渭南师 范学 院学报
J o u ma l o f We i n a n N o r ma l Un i v e r s i t y
F eb .2 0l 3 Vo l _ 28 No. 2
第2 8卷 第 2期
度量空 间连续 映射 的等价条件
Hale Waihona Puke 作者简介 : 赵 正波 ( 1 9 6 6 一) , 男, 陕西华县人 , 渭南师范学院数学与信息科 学学 院讲 师, 理学硕士 , 主要从事非经 典逻辑
研究.
命题演算具有可靠性 、 完备性和可判定性 , 但是谓词演算却是半可判定的 J . 把证明过程的每一步用 命题来描述 , 使得证明过程的每一步都变成命题之间的蕴涵关系 , 有助于证 明过程的规范化和帮助数学知 识 的推 广和普 及 . 点集拓 扑 中的度量 空 间上连续 映射 的等 价条 件是 连 续概 念 由实数 空 间 和 n维 欧 氏空 间
c B 乍 U B = B ∞ n B =A营 A D B’  ̄ oA U B = X ̄ oA n B =

关于映射的像集和原像集用到的概念和性质介绍如下 : 定义 1 设 x和 Y是两 个集合 , f : X y , 4 c , U C Y , 则称
A )= { Y∈Y 1
∈A , Y= ) }
为, 下 A的像集 , 厂 ( U ): { ∈X I )∈ } 称为厂F 的原像集.

泛函分析部分知识点汇总

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1° 的充要条件为x=y2° 对任意的z 都成立,则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。

x 中的元素称为点。

2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。

(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。

(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义 (4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。

收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。

(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。

(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列,即: 按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。

度量空间中的自列紧集、紧集、连通集与连续映射

度量空间中的自列紧集、紧集、连通集与连续映射

由 d x, r r 和 d r, s r s 得 d s, x d r, s d r, x r s r s 。所
以 x N 。同理可得,若 x N ,则 x M 。所以 M N 。
因为集 A 是连通的,所以集合 A \ M N 不空(若空则 M 、 N 分离集 A )。
自列紧集(列紧闭集)与连续映射 1.度量空间的自列紧子集在连续映射下的象是自列紧集。 证明: 设 X、Y 是度量空间, A 是 X 的自列紧子集。
设 f : A Y 是连续映射,象集为 B f X Y 。设yn 是 B 的序列。对任意
正整数 k,设 yk 的某个原象是 xk A X ,这样得到 X 的序列xn 。因为 X 是自
R 的定义是函数值小于 y0 的自变量集合)。同理,对于任意点 s S ,存在邻域
U s, s 使得U s, s A S 。
对任意点 r R ,s S ,设s s 2 ;设 dr inf d r, s s S ,显然 dr 0
(否则,便不存在不包含 S 的点的邻域), d r, s s d r, s s 0 。
紧集与连续映射 1.度量空间的紧子集在连续映射下的象是紧集。 证明:
设 X、Y 是度量空间, A 是 X 的紧子集。设 f : A Y 是连续映射,象集为
B f XY 。
设 B 的一个开覆盖为 G 。任意 S G 是开集,所以对任意 y S ,存在邻域
U y, y S 。对于任意 x f 1 y ( f 1 y 是 y 的原象集),因为 f : A Y 是连
所以,对任意 r R ,s S 都有 d r, s s dr 4 。对任意 r R ,设r dr 4 。

拓扑学第2章拓扑空间连续映射

拓扑学第2章拓扑空间连续映射

第二章 拓扑空间与连续映射本章是点集拓扑学基础中之基础, 从度量空间及其连续映射导入一般拓扑学中最基本的两个概念: 拓扑空间、连续映射, 分析了拓扑空间中的开集、邻域、聚点、闭集、闭包、内部、边界、基与子基的性质,各几种不同的角度生成拓扑空间,及刻画拓扑空间上的连续性.教材中先介绍度量空间概念,由于刚刚结束泛函分析课程,所以此节不讲,而补充如下内容。

§ 2-1 数学分析中对连续性的刻画由于映射的连续性是刻画拓扑变换的重要概念,所以,我们先回顾一下数学分析中函数的连续性是如何刻画的。

设11:f E E →是一个函数,10x E ∈,则f 在0x 处连续的定义有如下几种描述方法:(1)序列语言若序列1,2,{}n n x = 收敛于0x ,则序列1,2,{()}n n f x = 收敛于0()f x ;(2)εδ-语言对于0ε∀>,总可以找到0δ>,使当0x x δ-<时,有0()()f x f x ε-<(3)邻域语言若V 是包含0()f x 的邻域(开集),则存在包含0x 的邻域U ,使得()f U V ⊂。

解释:(1)和(2)中用到距离的概念,可用于度量空间映射连续性的描述; 对于没有度量的场合,可以用(3)来描述;所谓拓扑空间就是具有邻域(开集)结构的空间。

§ 2-2 拓扑空间的定义一、 拓扑的定义注:这是关于拓扑结构性的定义定义1 设X 是一非空集,X 的一个子集族2Xτ⊆称为X 的一个拓扑,若它满足(1),X τ∅∈;(2)τ中任意多个元素(即X 的子集)的并仍属于τ;(3) τ中有限多个元素的交仍属于τ。

集合X 和它的一个拓扑τ一起称为一个拓扑空间,记(,)X τ。

τ中的元素称为这个拓扑空间的一个开集。

下面我们解释三个问题:(1)拓扑公理定义的理由; (2) 为什么τ中的元素称为开集;(3) 开集定义的完备性。

● 先解释拓扑定义的理由:① 从εδ-语言看:0x x δ-<和0()()f x f x ε-<分别为1E 上的开区间;② 从邻域语言看:,U V 是邻域,而()f U 是0()f x 的邻域,连续的条件是()f U V ⊂,即一个邻域包含了另一个邻域,也就是说,0()f x 是V 的内点,有内点构成的集合为开集。

3.度量空间

3.度量空间

lim
n
xnx, 或x n来自x(n)21
定理3.1 设 {xn}是度量空间{V,d}中收敛于x序 列,则
(1){xn}是有界的;
(2){xn}的极限是唯一的。
证明: (1)已知
lim
n
x
n
x.
取=1,则存在自然
数N,当n>N时有
(xn,x)<1 令M=1+max{(x1,x),,(xN,x),1},则对一 切n∈N,有 (xn , xm) (xn , x) (xm, x) 2M
Br (x) {y V | (x, y) r}是闭集.
实际上,y Br (x),(x, y) r.令r0 r (x, y) 0,
z Br0 (y),由于(z, x) (z, y) (y, x) r0 (x, y) r,
故z Br (x),因此, Br0 (y) Br (x)
U(a,)U(x,).U(a,)中必包含有异于x的中之点.
从而,U(x,)必包含有异于x的A中之点.
29
因此,x是A的极限点, 即x A.所以,( A) A.
(2)x A B.当x A B时,显然x A B;
当x(AB)′时,则x不是A的极限点, 就是B的极限点. 若不对,即x既不是A的极限点,也不是B的极限点, 于是,有x的邻域U(x,),它不包含A的点, 又有x的邻域U(x,)U(x,), 它既不包含A的点,也不包含B的点, 这与x是AB的极限点矛盾.
‖x‖= (x, x)
x, y∈V两点间的距离定义为
d(x,y)=‖x-y‖= (x y, x y)
可以证明:d满足度量三公理,从而
{V,d}是度量空间。
6
首先证明:x,yV,有Cauchy不等式

度量空间中的开集与连续映射

度量空间中的开集与连续映射

定理:定义在度量空间的开子集上的函数,连续⇔开集的逆象是开集。

证明:设X 、Y 是度量空间,A 是X 的开子集,设有映射:f A Y →。

(1)充分性:设映射:f A Y →连续,需证开集的逆象是开集。

设S 是Y 的任一开子集,并设S 的逆象是()1R f S -=。

任取x R ∈,那么()f x S ∈。

因为A 是开集,所以存在正数x σ使得(),x U x A σ⊆。

因为S 是开集,所以存在正数x ε使得()(),x U f x S ε⊆。

因为:f A Y →是连续映射,故存在正数x τ使得()()()(),,x x f U x A U f x S τε⋂⊆⊆。

设{}min ,x x x δστ=,那么()(),,x x U x U x A δσ⊆⊆且()(),,x x U x U x δτ⊆,所以()()()()()()()(),,,,x x x x f U x f U x A f U x A U f x S δδτε=⋂⊆⋂⊆⊆,那么(),x U x R δ⊆。

所以S 的逆象()1R f S -=是开集。

(2)必要性:设开集的逆象是开集,需证映射:f A Y →连续。

任取x A ∈。

任取正数x ε,设()(),x S U f x ε=,显然S 是Y 的开子集。

设S 的逆象是()1R f S -=,那么R 是开集,所以存在正数x δ使得(),x U x R δ⊆ 。

因为()1R f S -= ,所以 ()()(),x f R S U f x ε⊆= 。

又因为(),x U x R δ⊆,所以()()()()(),,x x f U x f R S U f x δε⊆⊆= 。

所以映射:f A Y →连续。

附录:1.利用以上定理可得到判定集合开闭的一种方法。

主要针对x:f(x)<c 和x:f(x)≦c 这类。

其中f 是连续的。

2.象与逆象的概念:设X 、Y 是非空集合,:f X Y →是X 到Y 的映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义2.1.1定理2.1.1作业第2章度量空间与连续映射从数学分析中读者已经熟知单变量和多变量的连续函数,它们的定义域和值域都是欧氏空间(直线,平面或空间等等)或是其中的一部分.在这一章中我们首先将连续函数的定义域和值域主要特征抽象出来用以定义度量空间,将连续函数的主要特征抽象出来用以定义度量空间之间的连续映射(参见§2.1).然后将两者再度抽象,给出拓扑空间和拓扑空间之间的连续映射(参见§2.2).随后再逐步提出拓扑空间中的一些基本问题如邻域,闭包,内部,边界,基和子基,序列等等.§2.1度量空间与连续映射本节重点:掌握拓扑学中度量的概念及度量空间中的连续映射的概念.注意区别:数学分析中度量、连续映射的概念与本节中度量、连续映射的概念.注意,在本节的证明中,应细细体会证明的方法.首先让我们回忆一下在数学分析中学习过的连续函数的定义.函数f:R→R称为在点∈R处是连续的,如果对于任意实数ε>0,存在实数δ>0,使得对于任何x∈R,当|x-|<δ时,有|f(x)-f()|<ε.在这个定义中只涉及两个实数之间的距离(即两个实数之差的绝对值)这个概念;为了验证一个函数在某点处的连续性往往只要用到关于上述距离的最基本的性质,而与实数的其它性质无关,关于多元函数的连续性情形也完全类似.以下,我们从这一考察出发,抽象出度量和度量空间的概念.定义2.1.1 设X是一个集合,ρ:X×X→R.如果对于任何x,y,z∈X,有(1)(正定性),ρ(x,y)≥0并且ρ(x,y)=0当且仅当x=y;(2)(对称性)ρ(x,y)=ρ(y,x);(3)(三角不等式)ρ(x,z)≤ρ(x,y)+ρ(y,z)则称ρ是集合X的一个度量.如果ρ是集合X的一个度量,称(X,ρ)是一个度量空间,或称X是一个对于ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已作交代,不提它不至于引起混淆,这时我们称X是一个度量空间.此外,对于任意两点x,y∈X,实数ρ(x,y)称为从点x到点y的距离.着重理解:度量的本质是什么?例2.1.1 实数空间R.对于实数集合R,定义ρ:R×R→R如下:对于任意x,y∈R,令ρ(x,y)=|x-y|.容易验证ρ是R的一个度量,因此偶对(R,ρ)是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量ρ,称为R的通常度量,并且常常略而不提,迳称R为实数空间.(今后我们说实数空间,均指具有通常度量的实数空间.)例2.1.2 n维欧氏空间.对于实数集合R的n重笛卡儿积=R×R×…×R定义ρ:×→R如下:对于任意x=(),y=,令ρ(x,y)=容易验证(详见课本本节最后部分的附录)ρ是的一个度量,因此偶对(,ρ)是一个度量空间.这个度量空间特别地称为n维欧氏空间.这里定义的度量ρ,称为的通常度量,并且常常略而不提,迳称为n维欧氏空间.2维欧氏空间通常称为欧氏平面或平面.(今后说通常度量,均指满足这种公式的度量)例2.1.3 Hilbert空间H.记H为平方收敛的所有实数序列构成的集合,即H={x=()|<∞}定义ρ如下:对于任意x=(),y=()∈H令ρ(x,y)=说明这个定义是合理的(即验证<∞)以及验证ρ是H的一个度量,均请参见课本本节最后部分的附录.偶对(H,ρ)是一个度量空间.这个度量空间特别地称为Hilbert空间.这里定义的度量ρ称为H的通常度量,并且常常略而不提,迳称H为Hilbert 空间.例2.1.4 离散的度量空间.设(X,ρ)是一个度量空间.称(X,ρ)是离散的,或者称ρ是X的一个离散度量,如果对于每一个x∈X,存在一个实数>0使得ρ(x,y)>对于任何y∈X,x≠y,成立.例如我们假定X是一个集合,定义ρ:X×X→R使得对于任何x,y∈X,有ρ(x,y)=容易验证ρ是X的一个离散的度量,因此度量空间(X,ρ)是离散的.通过这几个例子,可知,度量也是一种映射,但它的象空间是实数.离散的度量空间或许是我们以前未曾接触过的一类空间,但今后会发现它的性质是简单的.定义2.1.2 设(X,ρ)是一个度量空间,x∈X.对于任意给定的实数ε>0,集合{y∈X|ρ(x,y)<ε}记作B(x,ε),或,称为一个以x为中心以ε为半径的球形邻域,简称为x的一个球形邻域,有时也称为x的一个ε邻域.此处的球形邻域是球状的吗?定理2.1.1 度量空间(X,ρ)的球形邻域具有以下基本性质:(1)每一点x∈X,至少有一个球形邻域,并且点x属于它的每一个球形邻域;(2)对于点x∈X的任意两个球形邻域,存在x的一个球形邻域同时包含于两者;(3)如果y∈X属于x∈X的某一个球形邻域,则y有一个球形邻域包含于x的那个球形邻域.证明:(1)设x∈X.对于每一个实数ε>0,B(x,ε)是x的一个球形邻域,所以x 至少有一个球形邻域;由于ρ(x,x)=0,所以x属于它的每一个球形邻域.(2)如果B(x,)和B(x,)是x∈X的两个球形邻域,任意选取实数ε>0,使得ε<min{ },则易见有B(x,ε)B(x,)∩B(x,)即B(x,ε)满足要求.(3)设y∈B(x,ε).令=ε-ρ(x,y).显然.>0.如果z∈B(y,),则ρ(z,x)≤ρ(z,y)+ρ(y,x)<+ρ(y,x)=ε所以z∈B(x,ε).这证明B(y,)B(x,ε).定义2.1.3 设A是度量空间X的一个子集.如果A中的每一个点都有一个球形邻域包含于A(即对于每一个a∈A,存在实数ε>0使得B(a,ε)A,则称A是度量空间X中的一个开集.注意:此处的开集仅是度量空间的开集.例2.1.5 实数空间R中的开区间都是开集.设a,b∈R,a<b.我们说开区间(a,b)={x∈R|a<x<b}是R中的一个开集.这是因为如果x∈(a,b),若令ε=min{x-a,b-x},则有B(x,ε)(a,b).也同样容易证明无限的开区间(a,∞)={x∈R|x>a},(-∞,b)={x∈R|x<b}(-∞,∞)=R都是R中的开集.然而闭区间[a,b]={x∈R|a≤x≤b}却不是R中的开集.因为对于a∈[a,b]而言,任何ε>0,B(x,ε)[a,b]都不成立.类似地,半开半闭的区间(a,b]={x∈R|a<x≤b},[a,b)={x∈R|a≤x<b}无限的闭区问[a,∞)={x∈R|x≥a},(-∞,b]={x∈R|x≤b}都不是R中的开集.定理2.1.2 度量空间X中的开集具有以下性质:(1)集合X本身和空集都是开集;(2)任意两个开集的交是一个开集;(3)任意一个开集族(即由开集构成的族)的并是一个开集.证明根据定理2.1.1(1)X中的每一个元素x都有一个球形邻域,这个球形邻域当然包含在X中,所以X 满足开集的条件;空集中不包含任何一个点,也自然地可以认为它满足开集的条件.(2)设U和V是X中的两个开集.如果x∈U∩V,则存在x的一个球形邻域B(x,)包含于U,也存在x的一个球形邻域B(x,)包含于V.根据定理2.1.1(2),x有一个球形邻域B(x,ε)同时包含于B(x,)和B(x,),因此B(x,ε)B(x,)∩B(x,)U∩V由于U∩V中的每一点都有一个球形邻域包含于U∩V,因此U∩V是一个开集.(3)设*Α是一个由X中的开集构成的子集族.如果,则存在∈*A使得x∈由于是一个开集,所以x有一个球形邻域包含于,显然这个球形邻域也包含于.这证明是X中的一个开集.此外,根据定理2.1.1(3)可见,每一个球形邻域都是开集.球形邻域与开集有何联系?为了讨论问题的方便,我们将球形邻域的概念稍稍作一点推广.定义2.1.4 设x是度量空间X中的一个点,U是X的一个子集.如果存在一个开集V 满足条件:x∈V U,则称U是点x的一个邻域.下面这个定理为邻域的定义提供了一个等价的说法,并且表明从球形邻域推广为邻域是自然的事情.定理2.1.3 设x是度量空间X中的一个点.则X的子集U是x的一个邻域的充分必要条件是x有某一个球形邻域包含于U.证明如果U是点x的一个邻域,根据邻域的定义存在开集V使得x∈V U,又根据开集的定义,x有一个球形邻域包含于V,从而这个球形邻域也就包含于U.这证明U满足定理的条件.反之,如果U满足定理中的条件,由于球形邻域都是开集,因此U是x的邻域.现在我们把数学分析中的连续函数的概念推广为度量空间之间的连续映射.定义2.1.5 设X和Y是两个度量空间,f:X→Y,以及∈X如果对于f()的任何一个球形邻域B(f(),ε),存在的某一个球形邻域B(,δ),使得f(B(,δ))B(f(),ε),则称映射在点处是连续的.如果映射f在X的每一个点x∈X处连续,则称f是一个连续映射.以上的这个定义是数学分析中函数连续性定义的纯粹形式推广.因为如果设ρ和分别是度量空间X和Y中的度量,则f在点处连续,可以说成:对于任意给定的实数ε>0,存在实数δ>0使得对于任何x∈X只要ρ(x,)<δ(即x∈B(,δ)便有(f(x),f())<ε.(即f(x)∈B(f(),ε)).下面的这个定理是把度量空间和度量空间之间的连续映射的概念推广为拓扑空间和拓扑空间之间的连续映射的出发点.定理2.1.4 设X和Y是两个度量空间,f:X→Y以及∈X.则下述条件(1)和(2)分别等价于条件(1)*和(2)*:(1)f在点处是连续的;(1)*f()的每一个邻域的原象是的一个邻域;(2)f是连续的;(2)*Y中的每一个开集的原象是X中的一个开集.证明条件(1)蕴涵(1)*:设(1)成立.令U为f()的一个邻域.根据定理2.1.3,f()有一个球形邻域B(f(),ε)包含于U.由于f在点处是连续的,所以有一个球形邻域B(,δ)使得f(B(,δ))B(f(),ε).然而,(B(f(),ε)(U),所以B(,δ)(U),这证明(U)是的一个邻域.条件(1)*蕴涵(1).设条件(1)*成立.任意给定f()的一个邻域B(f(),ε),则(B(f(),ε)是的一个邻域.根据定理2.1.3,有一个球形邻域B(,δ)包含于(B(f(),ε).因此f(B(,δ))B(f(),ε).这证明f在点处连续.条件(2)蕴涵(2)*.设条件(2)成立.令V为Y中的一个开集,U=(V).对于每一个x∈U,我们有f(x)∈V.由于V是一个开集,所以V是f(x)的一个邻域.由于f在每一点处都连续,故根据(1)*,U是x的一个邻域.于是有包含x 的某一个开集Ux使得Ux U.易见U=∪x∈UUx.由于每一个Ux都是开集,根据定理2.1.2,U是一个开集.条件(2)*蕴涵(2).设(2)*成立,对于任意x∈X,设U是f(x)的一个邻域,即存在包含f(x)的一个开集V U.从而x∈(V)(U).根据条件(2)*,(V)是一个开集,所以(U)是x的一个邻域,对于x而言,条件(1)*成立,于是f 在点x处连续.由于点x是任意选取的,所以f是一个连续映射.从这个定理可以看出:度量空间之间的一个映射是否是连续的,或者在某一点处是否是连续的,本质上只与度量空间中的开集有关(注意,邻域是通过开集定义的).这就导致我们甩开度量这个概念,参照度量空间中开集的基本性质(定理2.1.2)建立拓扑空间和拓扑空间之间的连续映射的概念作业:P47 1.2.3.4.。

相关文档
最新文档