一元一次不等式与一次函数

合集下载

一次函数与一元一次不等式的关系

一次函数与一元一次不等式的关系

一次函数与一元一次不等式的关系一次函数和一元一次不等式是初中数学中比较基础的知识点,两者之间也有着密切的联系。

本文将从定义、性质、图像等方面探讨一次函数和一元一次不等式之间的关系。

一、一次函数的定义一次函数是指形如 $y=kx+b$ 的函数,其中 $k$ 和 $b$ 都是常数,$x$ 和 $y$ 是变量。

其中,$k$ 称为斜率,表示函数图像的倾斜程度;$b$ 称为截距,表示函数图像与 $y$ 轴的交点。

二、一元一次不等式的定义一元一次不等式是指形如 $ax+b>0$ 或 $ax+b<0$ 的不等式,其中 $a$ 和 $b$ 都是实数,$x$ 是变量。

其中,$a$ 表示不等式左侧的系数,$b$ 表示不等式右侧的常数。

三、一次函数的性质1. 斜率为正,则函数是单调递增的;斜率为负,则函数是单调递减的。

2. 截距表示函数与 $y$ 轴的交点,当 $x=0$ 时,$y=b$。

3. 一次函数的图像是一条直线,可以通过两个点来确定。

四、一元一次不等式的性质1. 当 $a>0$ 时,不等式的解集为 $x>-b/a$;当 $a<0$ 时,不等式的解集为 $x<-b/a$。

2. 如果不等式中的 $<$ 变成了 $leq$ 或 $geq$,则解集不变。

3. 如果不等式中的 $>$ 和 $<$ 交换,不等式的解集也随之交换。

五、一次函数和一元一次不等式的关系1. 一次函数的图像可以用来表示一元一次不等式的解集。

例如,不等式 $2x+3>0$ 的解集可以表示成一次函数 $y=2x+3$ 在$y>0$ 区域的图像。

2. 一元一次不等式的解集也可以用来表示一次函数的定义域或值域。

例如,不等式 $3x-1<5$ 的解集为 $x<2$,则一次函数$y=3x-1$ 的定义域为 $(-infty, 2)$。

3. 一次函数的斜率和截距也可以用来确定一元一次不等式的形式。

一元一次不等式与一次函数优秀教案

一元一次不等式与一次函数优秀教案

一元一次不等式与一次函数【课时安排】2课时【第一课时】【教学目标】一、教学知识点。

(一)一元一次不等式与一次函数的关系。

(二)会根据题意列出函数关系式,画出函数图像,并利用不等关系进行比较。

二、能力训练要求。

(一)通过一元一次不等式与一次函数的图像之间的结合,培养学生的数形结合意识。

(二)训练大家能利用数学知识去解决实际问题的能力。

三、情感与价值观要求。

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

【教学重点】了解一元一次不等式与一次函数之间的关系。

【教学难点】自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。

【教学方法】研讨法。

即主要由学生自主交流合作来解决问题,老师只起引导作用。

【教学准备】投影片两张。

【教学过程】一、创设问题情境,引入新课。

[师]上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用。

二、新课讲授。

(一)一元一次不等式与一次函数之间的关系。

[师]大家还记得一次函数吗?请举例给出它的一般形式。

[生]如y=2x -5为一次函数。

[师]在一次函数y=2x -5中, 当y=0时,有方程2x -5=0; 当y >0时,有不等式2x -5>0; 当y <0时,有不等式2x -5<0。

由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。

下面我们来探讨一下一元一次不等式与一次函数的图像之间的关系。

(二)做一做。

请大家讨论后回答:[生](1)当y=0时,2x -5=0,∴x=25,∴当x=25时,2x -5=0。

(2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图像上可知,y >0时,图像在x 轴上方,图像上任一点所对应的x 值都满足条件,当y=0时,则有2x-5=0,解得x=25。

一元一次不等式与一次函数

一元一次不等式与一次函数

一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。

两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。

另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。

事实上,不等式与函数和方程是紧密联系的一个整体。

2.一次函数的图象与一元一次不等式的关系。

一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。

【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。

题型有选择题、填空题及解决实际问题(多为压轴题)。

【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。

思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。

解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。

评注:(1)两点确定一条直线。

(2)大于往右看,小于往左看。

【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。

已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。

解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。

评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。

一元一次不等式与一次函数

一元一次不等式与一次函数

一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。

一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。

这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。

具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。

例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。

总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。

一元一次不等式与一次函数讲解

一元一次不等式与一次函数讲解

一元一次不等式与一次函数讲解一元一次不等式与一次函数是数学中非常重要的概念,它们在我们的生活中都有广泛的应用。

本文将从定义、性质、解法等多个方面介绍一元一次不等式与一次函数,帮助读者更加深入地理解这两个概念。

一、一元一次不等式一元一次不等式,简单来说,就是只有一个未知量的一次不等式。

比如:ax + b > c,其中a、b、c是已知实数,x是未知实数。

一元一次不等式常常用于解决一些实际问题,比如数量关系、利润计算等。

一、一元一次不等式的性质1. 对于一元一次不等式ax + b > c,如果a > 0,则当x > (c-b)/a时,不等式成立;如果a < 0,则当x < (c-b)/a时,不等式成立。

2. 对于一元一次不等式ax + b < c,如果a > 0,则当x < (c-b)/a时,不等式成立;如果a < 0,则当x > (c-b)/a时,不等式成立。

上述性质可以帮助我们更好地解决一元一次不等式的问题。

二、一次函数一次函数,是指一个函数的自变量只有一个,且函数的表达式是一个一次多项式。

一次函数通常表示成f(x) = kx + b的形式,其中k 和b为常数。

一次函数在实际问题中经常被用到,比如直线运动、物品价格变化等,因为它的表达式简单,易于计算,而且有明确的几何意义。

二、一次函数的性质1. 一次函数的图像是一条直线。

2. 当k > 0时,函数图像单调递增;当k < 0时,函数图像单调递减。

3. 如果k = 0,则函数是一个常函数,图像为一条水平直线;如果b = 0,则函数是一个零函数,图像过原点。

4. 一次函数的x轴截距为-b/k,y轴截距为b。

上述性质有助于我们更好地理解一次函数的性质,同时也为我们解决一些实际问题提供了帮助。

三、一元一次不等式的解法对于一元一次不等式ax + b > c,我们可以通过以下几个步骤来解决:1. 将不等式移项得到ax > c-b。

2023年一次函数与一元一次不等式说课稿

2023年一次函数与一元一次不等式说课稿

2023年一次函数与一元一次不等式说课稿2023年一次函数与一元一次不等式说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。

在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。

本节内容在初中数学学习阶段中,占据重要的`地位,以及为其他学科和今后高中数学学习打下基础。

2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。

(2)、过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。

(3)情感、态度与价值观通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略:教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。

学法:建构主义教学构想的核心思想是:通过问题的解决来学习。

根据本节课的特点,采用自主探究、合作交流的探究式学习方法。

一元一次不等式与一次函数(2)

一元一次不等式与一次函数(2)

y2=0.5ax+(40-x)a,即y2=(40-0.5x)a。
令y1=y2,得32a=(40-0.5x)a,解得x=16; 令y1>y2,得32a > (40-0.5x)a,解得x > 16;
令y1<y2,得32a < (40-0.5x)a,解得x < 16。
所以,当x=16时,两种购票方案费用相同;当17≤x ≤ 40时,选 择女士票价打五折的购票方案;当0 < x < 16时,选择买团体 票的购票方案。
一元一次不等式与一次函数
一、复习练习
1、一次函数 y= -3x+12中x为何值时: (1)当x取何值时,y>0;(2)当x取何值时, y=0;(3)当x取何值时,y<0 。 解:(1)当y>0时,则有-3x+12>0,
-3x>-12, x<4
(2)当y=0时,则有-3x+12=0, -3x=-12, x=4 (3)当y<0时,则有-3x+12<0, -3x<-12, x>4 注意:(1)不等式两边同时乘以(或除以)一个 负数,不等号的方向要改变。
三随堂练习
解:设此公司40名员工中女士有x人,则男士有(40-x)人,景点 票价每张a元,打八折的购票方案费用为y1元,女士票价打五折 的购票方案费用为y2元。
根据题意得:y1=40×0.8a,即y1=32a;
某公司40名员工到一景点集体参观,景点门票价格 为30元/人。该景点规定满40人可以购买团体票, 票价打八折。这天恰逢妇女节,该景点做活动,女 士票价打五折,但 不能同时享受两种优惠。请你帮 助他们选择购票方案。
四、考考你
某电信公司的A类手机收费标准:不管通话时间多长, 每部手机必须缴月租费50元,另外每通话1分钟交 费0.4元;B类手机收费如下:没有月租费,但每通 话1分钟收费0.6元。 (1)分别写出A类、B类标准下每月应交费用y元与 通话时间x(分)之间的关系式; (2)什么情况下选择A类收费标准? (3)什么情况下选择B类收费标准? 解(1)A类:y1=50+0.4x, B类:y2=0.6x (2)y1<y2,即50+0.4x<0.6x,x>250,通话时间超过 250分钟时选择A类标准。 (3)y1>y2,50+0.4x>0.6x,x<250,通话时间少于 250分钟时选择B类标准。

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。

一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。

一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。

二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。

2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。

3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。

三、解法1. 一元一次不等式的解法有两种:图像法和代数法。

图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。

代数法是通过移项、化简等代数运算来求解。

2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。

四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。

2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。

3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。

一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)设:根据已知条件写出含有待定系数的函数关系式;
(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解:解方程得出未知系数的值;
(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
二、典型例题:
1、若点 在函数 的图象上,则 的值是
(1)当x分别取何值时,y1=y2,y1<y2,y1>y2?
(2)在同一坐标系中,分别作出这两个函数的图像,请你说说(1)中的解集与函数图像之间的关系.
6、某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).
增减性
k>0,y随x的增大而增大;(从左向右上升)
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
4、用待定系数法确定函数解析式的一般步骤:( 设、列、解、答 )
自变量
范 围
x为全体实数
图 象
一条直线
必过点
(0,0)、(1,k)
(0,b)和(- ,0)
走 向
k>0时,直线经过一、三象限;
k<0时,直线经过二、四象限
k>0,b>0,直线经过第一、二、三象限
k>0,b<0直线经过第一、三、四象限
k<0,b>0直线经过第一、二、四象限
k<0,b<0直线经过第二、三、四象限
所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐
标轴的交点:,.即横坐标或纵坐标为0的点.
3、正比例函数和一次函数及性质小结
正比例函数 y=kx
一次函数 y=kx+b
概 念
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数.
一次函数
一、知识要点:
1、一次函数的定义:
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量)。当b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.
一次函数的解析式: ( )
注:一次函数的解析式的形式是 ,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
一次函数一般形式 y=kx+b (k不为零) k不为零 x指数为1 b取任意实数
一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:(k、b是常数,k 0)
A.y>0 B.y<0 C.-2<y<0 D.y<-2
(1)(2)
3、已知函数y=mx+2x-2,要使函数值y随自变量x的增大而增大,则m的取值范围是()
A.m≥-2 B.m>-2 C.m≤-2 D.m<-2
4、已知y1=3x+2,y2=-x-5,如果y1>y2,则x的取值范围是_____.
5、已知一次函数y=(a+5)x+3经过第一,二,三象限,则a的取值范围是____.
例3、对于函数y=-x+4,当x>-2时,y的取值范围是().
A.y<4 B.y>4 C.y>6 D.y<6
随堂练习:
1、如图1,直线y=kx+b与x轴交于点A(-4,0),则当y>0时,x的取值范围是()毛
A.x>-4 B.x>0 C.x<-4 D.x<0
2、已知一次函数y=kx+b的图像,如图2所示,当x<0时,y的取值范围是()
2、根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较:
3、注意数形结合:
二、典型题目:
例1、如图,直线 交坐标轴于 两点,则不等式 的解集是()
A. B. C. D.
例2、已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是().
A.x>5 B.x< C.x<-6 D.x>-6
(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?
例2、我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.图1-5-3中,LA,LB分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.
(1)A,B哪个速度快?
(2)B能否追上A?
例3、某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8 m3,则每立方米按1元收费;若每户每月用水超过8m3,则超过部分每立方米按2元收费.某用户7月份用水比8m3多xm3,交纳水费y元.
(A) k>0,b>0 (B) k>0,b<0
(C) k<0,b>0 (D) k<0,b<0
6、已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y= x的图象相交于点(2,a),(1)求a的值,(2)k,b的值,(3)这两个函数图象与x轴所围成的三角形的面积。
小结:一次函数关系式的确定
(1)每月行驶的路程在什么范围内,租出租公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算?
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
课后作业:
1、对于一次函数y=2x+4,当______时,2x+4>0;当________时,2x+4<0;当_______时,2x+4=0。
(1)求y关于x的函数解析式,并写出x的取值范围.
(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?
例4、园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)试分别写出y1,y2与x之间的函数关系式.
(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算?
7、某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元, 应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:
将函数y=kx+b图像向上平移3个单位变为,然后再向右平移3个单位
变为;将函数y=kx+b图像向下平移3个单位变为然后再向
左平移3个单位变为
一次
函数

符号
图象
性质
随 的增大而
随 的增大而
2、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,
知识回顾:
1、定义:
不等式:一般地用不等号连接的式子叫做不等式。
2、不等式的基本性质:
(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、解不等式:
把不等式变为 或 的形式。
小结:
综合运用
例1、某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为 分钟,甲、乙两种的费用分别为 1和 2元.
(1)试分别写出 1、 2与x之间的函数关系式;
(2)在同一坐标系中画出 1、 2的图像;
2、已知正比例函数 ,点 在函数上,则y随x的增大而
3、如果一次函数 的图象经过第一、二、四象限,则m的取值范围是
4、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t(℃)与高度h(m)的函数关系式是__________。
5、已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )
一般步骤:(1)设出函数关系式的一般形式;
(2)把已知条件代入关系式,得方程或方程组;
(3)解方程(组)求出待定系数的值;
(4)写出函数关系式
元一次不等式与一次函数
一、知识概括:
1、一元一次不等式与一次函数的关系.:
一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即
为方程,当函数值大于或小于0时即为不等式。
2、已知,y1≤y2。
3、已知2x-y=0,且x-5>y,则x的取值范围是________。
4、一次函数y=3x+m-2的图象不经过第二象限,则m的取值范围是( )
相关文档
最新文档