物理化学(重点)超强总结
物理化学期末复习重点总结

物理化学1第一章 1热力学是研究能量相互转换过程中所遵循的规律的科学.是12定律的基础。
一是研究化学变化和相变的热效应问题。
二是解决变化方向和限度问题及化学平衡相平衡的有关问题 2局限性:对微观无法解答,只反应微观粒子平均行为有统计意义,只研究体系变化可能性限度问题。
4状态函数:是体系状态的单值函数与体系形成和将来变化无关,变化仅取决于始终态,微小变化是全微分 准静态准静态压缩环境做功最少,环境对体系做最小功 可逆:状态1-2,体系环境都完全复原。
特点:体系无限接近平衡态,体系环境完全复原,体系在可逆中做最大功环境最小功 11盖斯定律:一个化学反应,不论一步还是几步热效应同 12生成热:元素单质化合成单一化合物的反应热(后面-前面) 第二章 热力学第一定律:能量守恒.不供给能量而可连续不断对外做的第一类永动机是不可能造成的.自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种,能量保持不变 1自发过程共同特征:不可逆性 1第二定律:1克劳修斯不可能把热量由低温物到高温无无其他变化2开尔文:不可能单一热源取出热全转为功无其他变化(第二类永动机不可造成) 2卡诺循环结论:可逆热机效率只与两热源温度有关 卡诺定理:在同一组热源之间工作的所有热机可你热机效率最大 3熵增原理:状态函数.在绝热过程中体系的熵值永不减少△S >=0(条件:绝热、孤立、自发) △S=Qr/T(熵变定义)基本公式 过程可逆热效应才能带(混合过程不可逆不行) 4亥姆霍兹函数:F=U-TS d F(T,V,W ’)<=0是定温定容和非体积功为0的条件下自发过程的判据 5吉不斯函数:G=H-TS d G(T,P,W ’)<=0:定温定压,体系G 减小等于可逆过程非体积功,不可逆则大于非体积功 dG=-SdT+Vdp 5化学势定义:是偏摩尔吉布斯函数,由高类相到低类,压力增,化学势增. 物理意义:决定物质传递方向和限度的强度因素 判据 TP 一定才有偏摩尔量 6拉乌尔:定温下,稀溶液中溶剂A 饱和蒸汽压pA 与溶剂在溶液中摩尔分数xA 正比 PA=PA*Xa 7亨利定律:定温稀溶液挥发性溶质的平衡分压pB 与该溶质在溶液中的浓度成正比pb=kbxb 8稀溶液依数性:蒸汽压下降,沸点升高,凝固点降低,渗透现象.本质是蒸气压下降(沸点高凝低渗透现象)生理盐水与血液等渗 眼药水与眼球组织等 第六章 4反应机理:反应物变为产物所经历的途径,又称反应历程 5基元反应:由反应物分子(或离子.原子.自由基等)直接作用生成新产物的反应 A+B=C 是简单反应基元反应双分子反应二级反应 是双分子反应一定是二级反应 10一级反应:反应速率与反应物浓度的一次方成正比的反应 特征:速率常数k 的数值与所用的浓度单位无关k 的量纲为【时间】-1 属于一级反应的有:放射性元素的蜕变。
物化期末知识点总结大全

物化期末知识点总结大全一、物理知识点总结一、机械运动1. 位移、速度、加速度的关系机械运动的基本量是位移、速度、加速度。
位移指物体从一个位置到另一个位置之间的直线距离。
速度是指物体在单位时间内移动的距离,是位移对时间的比值。
加速度是速度对时间的变化率,表示物体单位时间内速度的增量。
2. 牛顿三定律牛顿三定律是描述物体运动状态的普遍定律,包括惰性定律、运动定律和作用-反作用定律。
3. 动能和势能物体的运动状态可以转化为动能和势能。
动能是物体由于运动而具有的能量,与物体的速度和质量有关。
势能是物体由于位置而具有的能量,与物体的位置和形状有关。
4. 动量和冲量动量是物体运动状态的表示,是物体质量和速度的乘积。
冲量是受力作用时间的乘积,是动量的变化量。
5. 受力分析受力分析是描述物体运动规律的方法,通过受力分析可以得到物体的运动状态、加速度和速度等信息。
6. 转动运动转动运动是物体围绕轴线进行的旋转运动,与物体的转动惯量、角速度和角加速度有关。
7. 简谐运动简谐运动是物体周期性运动的一种形式,与物体的振幅、周期和频率有关。
二、电磁学知识点总结1. 电荷、电场和电势电荷是物质固有的物理特性,根据电荷之间的相互作用可以定义电场和电势。
电场是电荷在周围产生的力场,描述了电荷之间的相互作用。
电势是描述电荷位置的物理量,与电势能和电势差有关。
2. 电路和电流电路是由电源、导线和电阻等元件组成的电路网络,描述了电荷在电路中的流动情况。
电流是电荷在单位时间内通过导线的数量,是描述电路中电荷流动的物理量。
3. 电场和电势的关系电场和电势之间存在一定的关系,电场强度的定义与电势的梯度有关,描述了电场在空间中的分布情况。
4. 电磁感应和电磁波电磁感应是描述导体中感生感应电动势的物理过程,与导体的运动状态和磁场的变化有关。
电磁波是由电场和磁场相互作用而产生的电磁波动,与电磁场的振荡有关。
5. 电磁场的能量和动量电磁场具有能量和动量,能量密度和动量密度是描述电磁场物理性质的重要参数。
物理化学的知识点总结

物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。
热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。
2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。
3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。
4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。
此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。
5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。
二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。
2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。
3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。
4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。
5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。
三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。
2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。
3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。
四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。
2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。
物理化学知识点总结(热力学第一定律)

热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
物理化学知识点归纳

物理化学知识点归纳物理化学是化学学科的一个重要分支,它综合运用物理学的原理和方法来研究化学现象和过程。
以下是对物理化学一些重要知识点的归纳:一、热力学第一定律热力学第一定律,也就是能量守恒定律,表明能量可以在不同形式之间转换,但总量保持不变。
在热力学中,通常用公式△U = Q + W来表示,其中△U 是系统内能的变化,Q 是系统吸收或放出的热量,W 是系统对外做功或外界对系统做功。
例如,在一个绝热容器中进行的化学反应,如果体系对外做功,那么内能就会减少;反之,如果外界对体系做功,内能就会增加。
二、热力学第二定律热力学第二定律有多种表述方式,其中克劳修斯表述为:热量不能自发地从低温物体传到高温物体。
开尔文表述为:不可能从单一热源取热使之完全变为有用功而不产生其他影响。
熵(S)的概念在热力学第二定律中至关重要。
对于一个孤立系统,熵总是增加的,这意味着系统总是朝着更加混乱和无序的方向发展。
比如,混合气体自发扩散后,不会自动分离回到初始状态,因为这个过程熵增加了。
三、热力学第三定律热力学第三定律指出,绝对零度(0K)时,纯物质完美晶体的熵值为零。
这一定律为计算物质在不同温度下的熵值提供了基准。
四、化学平衡化学平衡是指在一定条件下,可逆反应中正逆反应速率相等,反应物和生成物的浓度不再随时间改变的状态。
平衡常数(K)是衡量化学平衡的重要参数。
对于一个一般的化学反应 aA + bB ⇌ cC + dD,平衡常数 K 的表达式为:K = C^cD^d / A^aB^b (其中方括号表示物质的浓度)。
影响化学平衡的因素包括温度、浓度、压强等。
例如,对于吸热反应,升高温度会使平衡向正反应方向移动;增加反应物浓度,平衡也会向正反应方向移动。
五、相平衡相平衡研究的是多相体系中各相的组成、性质以及它们之间的相互转化规律。
相律是描述相平衡体系中自由度、组分数和相数之间关系的定律,其表达式为 F = C P + 2,其中 F 是自由度,C 是组分数,P 是相数。
物理化学重要知识点总结及其考点说明

物理化学重要知识点总结及其考点说明
一、化学热力学
1、化学热力学的定义:化学热力学是研究化学反应中物质的热量及能量变化的学科。
2、热力学三定律:第一定律:能量守恒定律;第二定律:热力学第二定律确定有序
能可以被有度能转化;第三定律:热力学第三定律始终指出热力学反应的可能性和温度有关。
3、焓的概念:焓是衡量物质的热力学状态的量,它是物质的热力学特性连续变化的
测量,是物质拥有的热量能量,也可以视为物质拥有的有序能。
4、热力学平衡:热力学平衡是指在不变的温度、压力和其他条件下,恒定的化学反
应发生,直至反应物和生成物的物质形式和化学结构保持不变,热量吸积也变得稳定,这
种状态称为热力学平衡。
二、物理化学
1、物理化学的概念:物理化学是一门融合了物理学和化学的学科,通过应用物理方法,来研究化学性质的变化和分子间的作用及反应,其研究具有多学科的性质。
2、气体的特性:气体的物理性质有很多,如压强、体积、温度、熵、焓等。
质量和
体积的关系为:在一定温度下,气体的质量和体积都成正比。
3、溶质的溶解度:溶解度是衡量溶质溶解在溶剂中的性质,它是指在一定温度、压
力下,溶质在溶剂中的最高溶解量。
溶质的溶解度与温度,压强及溶剂特性有关。
4、化学均衡:化学均衡是指在特定温度和压强下,混合物中物质的各种浓度比例,
产物与原料之间的反应紊乱程度,变化状态的一种稳定平衡状态。
物理化学重点(总结好累啊)

第一章热力学第一定律1、热力学三大系统:(1)敞开系统:有物质和能量交换;(2)密闭系统:无物质交换,有能量交换;(3)隔绝系统(孤立系统):无物质和能量交换。
2、状态性质(状态函数):(1)容量性质(广度性质):如体积,质量,热容量。
数值与物质的量成正比;具有加和性。
(2)强度性质:如压力,温度,粘度,密度。
数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。
特征:往往两个容量性质之比成为系统的强度性质。
3、热力学四大平衡:(1)热平衡:没有热隔壁,系统各部分没有温度差。
(2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同(3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。
(4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。
4、热力学第一定律的数学表达式:∆U = Q + W Q为吸收的热(+),W为得到的功(+)。
12、在通常温度下,对理想气体来说,定容摩尔热容为:单原子分子系统,V m C =32R双原子分子(或线型分子)系统 ,V m C =52R多原子分子(非线型)系统 ,V m C 632R R ==定压摩尔热容:单原子分子系统 ,52p m C R =双原子分子(或线型分子)系统 ,,p m V m C C R -=,72p m C R =多原子分子(非线型)系统 ,4p m C R =可以看出:,,p m V m C C R -=13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经,2'p m c C a bT T=++ 验常数,与物质和温度范围有关)14、在发生一绝热过程时,由于0Qδ=,于是dU W δ=理想气体的绝热可逆过程,有:,V m nC dTpdV =- ⇒ 22,11lnln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ⇒= ,,p mV mC pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =()H pμ∂∂- J T μ->0 经节流膨胀后,气体温度降低;J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。
物理化学知识点总结

物理化学每章总结 第1章 热力学第一定律及应用1.系统、环境及性质热力学中把研究的对象(物质和空间)称为系统,与系统密切相关的其余物质和空间称为环境。
根据系统与环境之间是否有能量交换和物质交换系统分为三类:孤立系统、封闭系统和敞开系统。
2.热力学平衡态系统的各种宏观性质不随时间而变化,则称该系统处于热力学平衡态。
必须同时包括四个平衡:力平衡、热平衡、相平衡、化学平衡。
3.热与功 (1) 热与功的定义热的定义:由于系统与环境间温度差的存在而引起的能量传递形式。
以Q 表示,Q>0 表示环境向系统传热。
功的定义:由于系统与环境之间压力差的存在或其它机、电的存在引起的能量传递形式。
以W 表示。
W>0 表示环境对系统做功。
(2) 体积功与非体积功功有多种形式,通常涉及到是体积功,是系统体积变化时的功,其定义为:V p Wd δe -=式中pe 表示环境的压力。
对于等外压过程 )(12e V V p W --=对于可逆过程,因ep p =,p 为系统的压力,则有Vp W V V d 21⎰-=体积功以外的其它功,如电功、表面功等叫非体积功,以W ′表示。
4.热力学能热力学能以符号U 表示,是系统的状态函数。
若系统由状态1变化到状态2,则过程的热力学增量为 12U U U -=∆对于一定量的系统,热力学能是任意两个独立变量的状态函数,即),(V T f U =则其全微分为VV U T T U U TV d d d ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=对一定量的理想气体,则有 0=⎪⎭⎫⎝⎛∂∂TV U 或 U =f (T )即一定量纯态理想气体的热力学能只是温度的单值函数。
5.热力学第一定律及数学表达式 (1) 热力学第一定律的经典描述① 能量可以从一种形式转变为另一种形式,但在转化和传递过程中数量不变 ② “不供给能量而可连续不断做功的机器称为第一类永动机,第一类永动机是不可能存在的。
(2) 数学表达式对于封闭系统,热力学第一定律的数学表达式为W Q U δδd += 或 W Q U +=∆即封闭系统的热力学能的改变量等于过程中环境传给系统的热和功的总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章热力学第一定律1、热力学三大系统:(1)敞开系统:有物质和能量交换;(2)密闭系统:无物质交换,有能量交换;(3)隔绝系统(孤立系统):无物质和能量交换。
2、状态性质(状态函数):(1)容量性质(广度性质):如体积,质量,热容量。
数值与物质的量成正比;具有加和性。
(2)强度性质:如压力,温度,粘度,密度。
数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。
特征:往往两个容量性质之比成为系统的强度性质。
3、热力学四大平衡:(1)热平衡:没有热隔壁,系统各部分没有温度差。
(2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同(3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。
(4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。
4、热力学第一定律的数学表达式:∆U = Q + W Q为吸收的热(+),W为得到的功(+)。
12、在通常温度下,对理想气体来说,定容摩尔热容为:单原子分子系统,V m C =32R双原子分子(或线型分子)系统 ,V m C =52R多原子分子(非线型)系统 ,V m C 632R R ==定压摩尔热容:单原子分子系统 ,52p m C R =双原子分子(或线型分子)系统 ,,p m V m C C R -=,72p m C R =多原子分子(非线型)系统 ,4p m C R =可以看出:,,p m V m C C R -=13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经,2'p m c C a bT T=++ 验常数,与物质和温度范围有关)14、在发生一绝热过程时,由于0Qδ=,于是dU W δ=理想气体的绝热可逆过程,有:,V m nC dTpdV =- ⇒ 22,11lnln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ⇒= ,,p mV mC pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T=()H pμ∂∂- J T μ->0 经节流膨胀后,气体温度降低;J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。
16、气体的节流膨胀为一定焓过程,即0H∆=。
17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所吸收或放出的热,称为此过程的热效应,或“反应热”。
18、化学反应进度:()()()n B n B B ξν-=末初(对于产物v 取正值,反应物取负值)1ξ=时,r r m UU ξ∆∆=,r r mHH ξ∆∆=19、(1)标准摩尔生成焓(0r m H ∆):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的标准摩尔生成焓。
(2)标准摩尔燃烧焓(0c m H ∆):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标准摩尔燃烧焓。
任意一反应的反应焓0r m H ∆等于反应物燃烧焓之和减去产物燃烧焓之和。
20、反应焓与温度的关系-------基尔霍夫方程()()r B A p p p p p p H H H C B C A C T T T ∂∆∂∂⎛⎫⎛⎫⎛⎫=-=-=∆ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭()()()()210,021p p p C H T H H C T T ∆=∂∆>∆-∆=∆- 0,Cp ∆<即产物热容小于反应物热容,则 ()0p H T ∂∆<,即温度升高时反应焓减小。
0,Cp ∆>即产物热容大于反应物热容,则 ()0p H T ∂∆>,即温度升高时反应焓增大。
0,p C ∆=或很小时,反应焓将不随温度而改变。
21、基尔霍夫方程的应用:()()()2121p H H C T T ∆-∆=∆-适用条件:温度变化范围不大时,将 p C ∆近似看作常数,与温度无关。
第二章 热力学第二定律1、热力学第二定律的经典表述:人们不可能设计成这样一种机器,这种机器能不断循环工作,它仅仅从单一热源吸热变为功而没有任何其他变化。
2、卡诺循环:过程1 保持T 2定温可逆膨胀。
故22121lnV Q W RT V =-= 过程2 绝热可逆膨胀。
由于系统不吸热,0Q =,故 212()V W U C T T =∆=-过程3 保持T 1定温可逆压缩。
故 41313lnV Q W RT V =-= 过程4 绝热可逆压缩。
故421()V W U C T T =∆=-卡诺热机的效率:2122W T T Q T η--== 制冷效率:121T T T β=- 3、卡诺定理:(1)在两个不同温度的热源之间工作的任意热机,以卡渃热机的效率为最大。
否则将违反热力学第二定律。
(2)卡诺热机的效率只与两个热源的温度有关,而与工作物质无关。
否则也将违反热力学第二定律。
4、热力学第二定律人数学表达式--------克劳修斯不等式QdS Tδ≥dS 是系统的熵变,Q δ是实际过程中传递的热,T 是热源温度,QTδ是实际过程中的热温商。
该式的等号适用于可逆过程;大于号适用于不可逆过程。
它的含义是:(1) 假如某一过程的发生将使系统的熵变大于热温商,则该过程是一个不违反热力学第二定律的、有可能进行的不可逆过程。
(2) 假如某一过程发生时,系统的熵变为热温商相等地,则该过程是一个可逆过程。
(3)QdS Tδ<的过程不可能发生。
(4) 克劳修斯不等式用于孤立系统时,0dS ≥,即孤立系统中所发生的任意过程总是向着熵增大的方向进行。
5、熵变的计算:(1)定温过程中的熵变:221112lnln ln rV nRT Q V p V SnR nR TT V p ∆====⎰(2)定压过程的熵变:221121ln T T rp T T Q C dT T SCp T T T δ∆===⎰⎰(3)定容过程的熵变:221121ln T T r V V T T Q C dT T S C T T T δ∆===⎰⎰(4)相变化的熵变:H n HS T T∆∆∆==(定温定压,两相平衡,可逆) 6、熵是系统混乱度的度量: ln S k =Ω Ω是热力学概率,k 是玻耳兹曼常数。
7、热力学第二定律的本质:一切自发过程,总的结果都是向混乱度增加的方向进行。
8、热力学第三定律:在0K 时,任何纯物质的完美晶体其熵值为零。
9、有反应:a Ab B g G h H+→+ 熵变计算:()()()()oo o o or mm m m m S gS G hS H aS A bS B ⎡⎤⎡⎤∆=+-+⎣⎦⎣⎦10、定温定容的系统--------亥姆霍兹函数A (1)定义A U TS =-(2)(),'T V A W ∆≤ 等式表示可逆,不等式表示不可逆。
在定温定容条件下,系统亥姆霍兹函数的减少等系统所能做的最大有效功(绝对值)。
(3)(),0T V A ∆< ,表示能够发生的不可逆过程。
(),0T V A ∆= ,表示可逆过程(或平衡) (),0T V A ∆> ,表示不可能发生的过程11、定温定压系统-----------吉布斯函数G (1)定义: G H TS U pV TS A p V=-=+-=+(2)(),'T p G W ∆≤ 等式表示可逆,不等式表示不可逆。
在定温定压条件下,系统亥姆霍兹函数的减少等系统所能做的最大有效功(绝对值)。
(3)(),0T p G ∆< ,表示能够发生的不可逆过程。
(),0T p G ∆= ,表示可逆过程(或平衡)(),0T p G ∆> ,表示不可能发生的过程12、热力学的基本公式:当系统只做体积功不做其他功时dU TdS pdV dH TdS VdpdA SdT pdV dG SdT Vdp=-=+=--=-+13、麦克斯韦关系式:V S T p V S ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭S p T V p S ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ V T S p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ p T S V p T ⎛⎫∂∂⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ 14、计算G ∆: (1)定温:221121ln p p p p nRT p GVdp dp nRT p p ∆===⎰⎰(2)发生相变:始态和终态的两个相平衡,且温度和压力相同,则0G ∆= 始态和终态不平衡,则设计可逆过程来计算。
(3)化学反应:G H T S ∆=∆-∆(4)G ∆温度的变化--------吉布斯--亥姆霍兹公式定温:()p G S T ∂∆⎡⎤=-∆⎢⎥∂⎣⎦ ()p G T G H T ∂∆⎡⎤⇒=∆-∆⎢⎥∂⎣⎦⇒ ()2p G T HT T ∂∆⎡⎤∆=-⎢⎥∂⎣⎦应用式:221122111()T T T T G G H dT H T T TT T ∆∆∆⎛⎫⎛⎫⎛⎫-=-=∆- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰附第二章 化学势1、 (1)偏摩尔量的定义:多组分系统的任一种容量性质X (X 可分别代表V ,U ,H ,S ,A ,G 等),可以看成是温度T 、压力p 及各物质的量,B C n n ,…的函数:(),,,,,B C D X f T p n n n =C A ,(B)A ,(B),,(C A)d d d d p n T n T p n X X X X T p n T p n ≠⎛⎫⎛⎫∂∂∂⎛⎫=++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭C B B ,,(C B)d T p n X n n ≠⎛⎫∂++ ⎪∂⎝⎭ 定义:()BB ,,CBd e f C T p n X X n ≠⎛⎫∂ ⎪∂⎝⎭则A A B B d d d XX n X n =++B B Bd X n =∑B X 称为B 的“偏摩尔量”。
(2)偏摩尔量的集合公式:A A C C X n X n X =++……2、(1)化学势定义:BB B ,,(C B)C T P n G G n μ≠⎛⎫∂= ⎪∂⎝⎭ (2)物理意义:决定物质传递方向和限度的强度因素。
(3)定温定压下:'B B r dG dn W μδ==∑ ,也就是说B B dn μ∑是定温度定压条件下一多组分均相系统在发生状态变化时所能做出的最大有效功。
(4)在不做其他功的条件下,(),0T p dG <是能够进行的过程;(),0T p dG =,过程即达平衡。
3、理想气体化学势表达式:lnpRT p θθμμ=+4、对于理想气体混合物来说,其中某种气体的行为与该气体单独占有混合气体总体积时的行为相同。