职高第五章三角函数导学案
优秀的中职数学高三三角函数基本概念导学案

三角函数基本概念导学案课题:三角函数基本概念执课时间: 学习小组:学习目标高考要求:1. 理解正弦、余弦、正切函数的定义,了解余切、正割、余割函数的定义;2. 熟记三角函数在各象限的符号,牢记特殊角的三角函数值.重点难 点预测重点 难点学习过程 疑难梳理、方法总结三角函数基本概念一、高考要求:3. 理解正弦、余弦、正切函数的定义,了解余切、正割、余割函数的定义;4. 熟记三角函数在各象限的符号,牢记特殊角的三角函数值. 二、知识要点:1. 终边相同的角:两个角的始边重合,终边也重合时,称两个角为终边相同的角.所有与角α终边相同的角,连同角α在内,可构成一个集合: {360,}S k k Z ββα==+⋅∈.2. 弧度制:长度等于半径长的弧所对的圆心角叫做1弧度的角,用“弧度”作单位来度量角的制度叫做弧度制,用“度”作单位来度量角的制度叫做角度制.任一已知角α的弧度数的绝对值rα=,其中为以角α作为圆心角时所对圆弧的长,r 为圆的半径. 3. 弧度与角度的换算:180180,10.01745,1()571857.30.180rad rad rad rad πππ'==≈=≈=1. 任意角三角函数的定义:直角坐标系中任意大小的角α终边上一点P(x,y),它到原点的距离是22r x y =+,那么sin ,cos ,tan ,cot ,sec ,csc y x y x r rr r x y x yααααα======分别是α的正弦、余弦、正切、余切、正割和余割函数,这六个函数统称三角函数.2. 三角函数在各象限的符号:一全正,二正弦,三正切,四余弦.3. 特殊角三角函数值:α6π4π 3π 2π π32π 2π sin α cos αtan α 4.同角三角函数的两个基本关系式:22sin cos 1αα+=,sin tan cos ααα=. 1. 下列四个命题中正确的是( )A.第一象限角必是锐角B.锐角必是第一象限角C.终边相同的角必相等D.第二象限角必大于第一象限角2. 若α、β的终边相同,则αβ-的终边在( )A.x 轴的正半轴上B. y 轴的正半轴上C. x 轴的负半轴上D. y 轴的负半轴上3. 若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为( ) A.3π B.23π C.3D.21. 已知4sin 5α=,并且α是第二象限的角,则tan α的值等于( ) A.43- B.34- C.34D.431. 已知58πα=,则点P(sin α,tan α)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2. 若sin α=2-m ,则实数m 的取值范围是( )A.1≤m≤9B.0≤m≤9C.0≤m≤1D.m=1或m=9 3. 函数cos cot sin tan sin cos tan cot x xx x y x x x x=+++的值域是( ) A.{-2,4} B.{-2,0,4} C.{-2,0,2,4} D.{-4,-2,0,4} 4. 已知23cos 4a aθ-=-,θ为第二、三象限的角,则a 的取值范围是 .5. 已知:1tan 3α=,求221cos 2sin cos 5sin αααα-+的值.6. 已知5sin 12cos 0αα+=,求:sin 9cos 23sin ααα+-的值.学 后 反 思我学到的知识我学到的方法与思想 我今后还需努力做好。
高中数学第五章三角函数5.7三角函数的应用教案第一册

第五章 三角函数5。
7 三角函数的应用本节课选自《普通高中课程标准实验教科书数学必修1》5.7节 三角函数的应用,在于加强用三角函数模型刻画周期变化现象的学习。
本节教材通过例题,循序渐进地介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.培养他们综合应用数学和其他学科的知识解决问题的能力。
培养学生的建模、分析问题、数形结合、抽象概括等能力.发展学生数学建模、数据分析、数学直观、数学抽象、逻辑推理的核心素养。
复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题。
3.身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用及数学和日常生活和其它学科的联系.建立对应的函数模型;f。
数据分析:有采集的数据分析获得函数模型教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.多媒体请你查阅资料,了解振子的运动原由数据表和散点图可知,振子振动时位移的最大值为20mm,因此振子振动的周期为0.6s,即2π= 0由交变电流的产生原理可知,电流i 随时间t的变化规律可用i=Asin(ωt+φ )来刻4.33A,可得sin φ =0。
866,因此 φ 约为π3. 所以电流i 随时间t 变化的函数解析式是: i=5sin(100πt+π3),t ∈[100,+∞).当t=1600时,π=5; 当t=1150时,π=0;当t=7600时,π=−5; 当t=160时,π=0; 三、当堂达标1.如图所示的是一质点做简谐运动的图象,则下列结论正确的是( )A .该质点的运动周期为0.7 sB .该质点的振幅为5 cmC .该质点在0。
1 s 和0。
5 s 时运动速度最大D .该质点在0。
3 s 和0.7 s 时运动速度为零【解析】 由题图可知,该质点的振幅为5 cm 。
《三角函数的概念》教案与导学案

《第五章三角函数》《5.2.1三角函数的概念》教案【教材分析】三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。
三角函数的概念是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。
三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。
紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。
三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。
三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
【教学目标与核心素养】1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.数学学科素养1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.【教学重难点】重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。
【教学过程】一、情景导入在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?若以单位圆的圆心O为原点,你能用角的终边与单位圆的交点来表示锐角三角函数吗?那么,角的概念推广之后,三角函数的概念又该怎样定义呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
《正切函数的图像与性质》教案与导学案

《第五章三角函数》《5.4.3正切函数的图像与性质》教案【教材分析】本节课是三角函数的继续,三角函数包含正弦函数、余弦函数、正切函数.而本课内容是正切函数的性质与图像.首先根据单位圆中正切函数的定义探究其图像,然后通过图像研究正切函数的性质.【教学目标与核心素养】课程目标1、掌握利用单位圆中正切函数定义得到图象的方法;2、能够利用正切函数图象准确归纳其性质并能简单地应用.数学学科素养1.数学抽象:借助单位圆理解正切函数的图像;2.逻辑推理:求正切函数的单调区间;3.数学运算:利用性质求周期、比较大小及判断奇偶性.4.直观想象:正切函数的图像;5.数学建模:让学生借助数形结合的思想,通过图像探究正切函数的性质.【教学重难点】重点:能够利用正切函数图象准确归纳其性质并能简单地应用;难点:掌握利用单位圆中正切函数定义得到其图象.【教学方法】:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
【教学过程】一、情景导入三角函数包含正弦函数、余弦函数、正切函数.我们已经学过正弦函数、余弦函数的图像与性质,那么根据正弦函数、余弦函数的图像与性质的由来,能否得到正切函数的图像与性质.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本209-212页,思考并完成以下问题1.正切函数图像是怎样的?2.类比正弦、余弦函数性质,通过观察正切函数图像可以得到正切函数有什么性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.正切函数,且图象:2.观察正切曲线,回答正切函数的性质: 定义域:值域:R (-∞,+∞)最值:无最值渐近线:x =π2+k π(k ∈Z)周期性:最小正周期是奇偶性:奇函数单调性:增区间图像特征:无对称轴,对称中心:(k π2,0)k ∈Z四、典例分析、举一反三 题型一正切函数的性质例1求函数f (x )=tan 的定义域、周期和单调递增区间.【答案】定义域:{x |x ≠2k +13,k ∈Z };最小正周期为2;R x x y ∈=tan ()z k k x ∈+≠ππ2()z k k x ∈+≠2πππ,,22k k k z ππππ⎛⎫-++∈ ⎪⎝⎭23x ππ⎛⎫+ ⎪⎝⎭单调递增区间是⎝ ⎛⎭⎪⎫-53+2k ,13+2k ,k ∈Z .【解析】由π2x +π3≠k π+π2,得x ≠2k +13(k ∈Z ). 所以函数f (x )的定义域是{x |x ≠2k +13,k ∈Z };由于ππ2=2,因此函数f (x )的最小正周期为2. 由-π2+k π<π2x +π3<π2+k π,k ∈Z ,解得-53+2k <x <13+2k ,k ∈Z . 因此,函数的单调递增区间是⎝ ⎛⎭⎪⎫-53+2k ,13+2k ,k ∈Z . 解题技巧:(求单调区间的步骤)用“基本函数法”求函数y =A tan(ωx +φ)(A >0,ω>0)的单调区间、定义域及对称中心的步骤:第一步:写出基本函数y =tan x 的相应单调区间、定义域及对称中心; 第二步:将“ωx +φ”视为整体替换基本函数的单调区间(用不等式表示)中的“x ”;第三步:解关于x 的不等式. 跟踪训练一 1.下列命题中:①函数y =tan(x +φ)在定义域内不存在递减区间;②函数y =tan(x +φ)的最小正周期为π;③函数y =tan ⎝ ⎛⎭⎪⎫x +π4的图像关于点⎝ ⎛⎭⎪⎫π4,0对称;④函数y=tan ⎝⎛⎭⎪⎫x +π4的图像关于直线x =π4对称.其中正确命题的个数是( ) A .0个 B .1个 C .2个D .3个【答案】D .【解析】 :①正确,函数y =tan(x +φ)在定义域内只存在递增区间.②正确.③正确,其对称中心为⎝ ⎛⎭⎪⎫k 2π-π4,0(k ∈Z ).④函数y =tan ⎝ ⎛⎭⎪⎫x +π4不存在对称轴.所以①②③正确,故选D.题型二比较大小 例2与 【答案】. 【解析】 又在上是增函数解题技巧:(比较两个三角函数值的大小)比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.跟踪训练二1.若f (x )=tan ⎝ ⎛⎭⎪⎫x +π4,则( )A .f (0)>f (-1)>f (1)B .f (0)>f (1)>f (-1)C .f (1)>f (0)>f (-1)D .f (-1)>f (0)>f (1)【答案】A【解析】 f (x )=tan ⎝ ⎛⎭⎪⎫x +π4在⎝ ⎛⎭⎪⎫-3π4,π4内是增函数. 又0,-1∈⎝⎛⎭⎪⎫-3π4,π4,0>-1,∴f (0)>f (-1). 又f (x )=tan ⎝⎛⎭⎪⎫x +π4在⎝ ⎛⎭⎪⎫π4,5π4上也是增函数,f (-1)=tan ⎝ ⎛⎭⎪⎫-1+π4=tan ⎝⎛⎭⎪⎫π+π4-1=tan ⎝ ⎛⎭⎪⎫5π4-1. ∵5π4-1,1∈⎝⎛⎭⎪⎫π4,5π4,且5π4-1>1,∴f (-1)>f (1). 从而有f (0)>f (-1)>f (1). 五、课堂小结0tan1670tan17300tan167tan173<000090167173180<<<tan ,y x =00(90,270)00tan167tan173∴<让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本213页习题5.4.【教学反思】正切函数是在学习了正弦函数、余弦函数的图像与性质的基础上学习的,学生相对而言容易掌握,单调性方面学生需要注意是开区间且只有增区间.《5.4.3 正切函数的图像与性质》导学案【学习目标】知识目标1、掌握利用单位圆中正切函数定义得到图象的方法;2、能够利用正切函数图象准确归纳其性质并能简单地应用.核心素养1.数学抽象:借助单位圆理解正切函数的图像;2.逻辑推理:求正切函数的单调区间;3.数学运算:利用性质求周期、比较大小及判断奇偶性.4.直观想象:正切函数的图像;5.数学建模:让学生借助数形结合的思想,通过图像探究正切函数的性质.【重点与难点】重点:能够利用正切函数图象准确归纳其性质并能简单地应用;难点:掌握利用单位圆中正切函数定义得到其图象. 【学习过程】 一、预习导入阅读课本209-212页,填写。
《正弦函数、余弦函数的图像》教案与导学案

《第五章三角函数》《5.4.1正弦函数、余弦函数的图像》教案【教材分析】由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.【教学目标与核心素养】课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系.数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念;2.逻辑推理:正弦曲线与余弦曲线的联系;3.直观想象:正弦函数余弦函数的图像;4.数学运算:五点作图;5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.【教学重难点】重点:正弦函数、余弦函数的图象.难点:正弦函数与余弦函数图象间的关系.【教学方法】:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
【教学过程】一、情景导入遇到一个新的函数,非常自然地是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然地想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?请学生尝试画出当x∈[0,2π]时,y=sinx 的图象.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本196-199页,思考并完成以下问题1.任意角的正弦函数在单位圆中是怎样定义的?2.怎样作出正弦函数y=sinx的图像?3.怎样作出余弦函数y=cosx的图像?4.正弦曲线与余弦曲线的区别与联系.要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三角函数 导学案

直角三角形边角关系导学案一、定义二、典型例题例1、如图,在Rt△ABC中,若tan A=,AB=10,则△ABC的面积为()1题2题1、如图,在平面直角坐标系中,第一象限内的点P在射线OA上,OP=13,cosα=,则点P的坐标2、如图,D为平面直角坐标系内一点,OD与x轴构成∠1,那么tan∠1=()3、如图,在平面直角坐标系xOy中,AB=2,连结AB并延长至C,连结OC,若满足OC2=BC•AC,tanα=3,则点C的坐标为()3题4题5题4、如图,△ABC中,∠ACB=90°,CD⊥AB于D,若∠BCD=30°,则sin∠A=.5、如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AD=4,求BC的长.6、如图,△ABC的顶点B,C的坐标分别是(1,0),(0,),且∠ABC=90°,∠A=30°,求点A的坐标.6题7题7、已知△ABC中,∠C=90°,tan A=12,D是AC上一点,∠CBD=∠A,则cos∠CDB的值为()8、如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.23.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.例2、△ABC中∠C=90°,若AB=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.D.1、.Rt△ABC的边长都扩大2倍,则sin A的值()A.不变B.变大C.变小D.无法判断18.如果将Rt△ABC各边的长度都扩大到原来的2倍,那么锐角∠A的正切值()A.扩大到原来的2倍B.扩大到原来的4倍C.没有变化D.缩小到原来的一半19.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.无法确定20.将Rt△ABC的各边长都缩小到原来的,则锐角A的正切值()A.不变B.缩小为原来的C.扩大为原来的2倍D.缩小为原来的5.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.在Rt△ABC中,∠B=90°,如果∠A=α,BC=α.那么AC的长是()A.α•tanαB.α•tanαα•cotαC.D.例3、如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()1、如图,在△ABC中,sin B=,tan C=,AB=4,则AC的长为.1题2题2、如图,在△ABC中,∠A=45°,tan B=,BC=10,则AB的长为.3、在△ABC中,∠B=120°,AB=4,BC=2,求AC的长.3题例3、如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()42题2、如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则∠APD的余弦值为()1.如图所示,△ABC的顶点是正方形网格的格点,则tan B的值为()A.B.C.D.11题4题7题4.如图,△ABC的顶点在正方形网格的格点上,则tan∠ABC的值为()A.B.1C.D.7.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A.B.C.D.8.如图,点A、B、O都在格点上,则∠AOB的正弦值是()B.C.D.A.8题9题10题9.如图,点A,B,C在正方形网格的格点处,sin∠ABC等于()A.B.C.D.10.如图,在网格图形中,点A、O、B均在格点上,则tan∠AOB的值为()A.B.2C.D.11.如图,在正方形方格纸中,每个小正方形的边长都是1,点A,B,C,D都在格点处,AB与CD相交于点O,则sin∠BOD的值是()B.C.D.A.11题12题14题15题12.三角形在正方形网格纸中的位置如图所示,则sinα的值是()A.B.C.D.14.在正方形网格中,△ABC的位置如图所示,则cos A的值是()A.B.C.D.15.如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.B.C.2D.216.如图,点A、B、C均在边长为1的正方形网格的格点上,则sin∠BAC的值为()B.1C.D.A.B.16题17题22题17.如图,网格中小正方形的边长均为1,△ABC的顶点都在格点上,则cos∠BAC等于()A.B.C.D.22.如图,在正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于点P,则sin∠APC的值为()A.B.C.D.23.如图,在正方形方格纸中,每个小的四边形都是相同的正方形,点A,B,C,D都在格点处,AB与CD相交于点O,则tan∠BOD的值是()B.C.D.A.B.22题23题25题24.如图,△ABC的顶点均在正方形网格的格点上,则sin∠ABC的值为()A.B.2C.D.25.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C在格点上,则∠A 正切值是()27.如图所示,在边长相同的小正方形组成的网格中,两条经过格点的线段相交所成的锐角为α,则夹角α的正弦值为()A.B.C.D.128.如图在4×4的正方形方格图形中,小正方形的顶点称为格点△ABC的顶点都在格点上,则∠BAC的正弦值是()A.B.C.D.529.如图,点A、B、C都在边长为1的正方形格点上,连接AB、BC,则cos∠ABC的值为()A.B.C.D.1特殊角三角函数导学案一、推导30O 45O60OSinCostan二、典型例题例1、.在△ABC中,若sin A=,cos B=,∠A,∠B都是锐角,则∠C的度数是()1、已知α为锐角,且2cos(α+10°)=,则α等于2、王明同学遇到了这样一道题,,则锐角α的度数为3、已知,α+45°为锐角,则α=.4、△ABC中,∠A,∠B都是锐角,若cos A=,tan B=1,则∠C=.5、若sin(x﹣20°)=,则x=.例2、在△ABC中,若|sin A﹣|+(cos B﹣)2=0,且∠A、∠B为锐角,则∠C的度数是.7.在△ABC中,若,则∠C=.8.在△ABC中,∠A、∠B为锐角,且|sin A﹣|+(﹣3tan B)2=0,则∠C=度.9.若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是.10、在△ABC中,若,则∠C的度数为.例3、计算:2cos45°+2sin60°﹣tan60°.2sin30°﹣tan45°+cos230°.sin30°﹣tan30°•tan60°+cos245°.2cos60°+2sin30°+3tan45°.sin30°+|sin60°﹣1|﹣(﹣1)2021 2cos45°+(π﹣3.14)0+|1﹣|+()﹣1 (﹣1)0+()﹣2+|﹣2|+tan60°|1﹣|+(2022﹣π)0+(﹣)﹣2﹣tan60°﹣4sin30°+|﹣2| |﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0()﹣1﹣+3tan30°+|﹣2|2cos60°﹣(﹣)﹣2+|2﹣|﹣(π﹣2020)0.﹣(2021﹣π)0+|5﹣|﹣tan60°.2cos30°﹣(﹣3)﹣2+(π﹣)0﹣tan60°.sin45°﹣|2﹣|+(π﹣1)0+(﹣)﹣1.(﹣2)﹣2+3tan30°﹣|﹣2|+(π﹣2022)0.。
人教统编部编版高中数学必修第一册A版第五章《三角函数》全章节教案教学设计(含章末综合复习)

【新教材】人教统编版高中数学必修第一册A版第五章教案教学设计5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
三角函数线导学案

1.2.2三角函数线课前预习学案一、预习目标:了解三角函数线的基本做法.二、预习内容:1、 叫做有向线段。
2、当角的终边上一点(,)P x y 的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
设任意角α的顶点在原点O , 重合,终边与 相交与点P (,)x y 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的 交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====,_______ cos 1x xx OMr α====,________ tan y MP ATATx OM OAα====._________ 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
课内探究学案一、学习目标(1)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(2)掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
二、学习重难点重点: 三角函数线的正确应用 难点:三角函数线的正确理解.(Ⅳ)(Ⅲ)三、学习过程 (一)复习: 1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值_______叫做α的正弦,记作_______,即________ (2)比值_______叫做α的余弦,记作_______,即_________ (3)比值_______叫做α的正切,记作_______,即_________; 2.三角函数的定义域、值域3.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ①正弦值yr对于第一、二象限为_____(0,0y r >>),对于第三、四象限为____(0,0y r <>);②余弦值xr对于第一、四象限为_____(0,0x r >>),对于第二、三象限为____(0,0x r <>);③正切值yx对于第一、三象限为_______(,x y 同号),对于第二、四象限为______(,x y 异号).4.诱导公式由三角函数的定义,就可知道:__________________________即有:_________________________ _________________________ _________________________(二)例题例1、若π4 <θ < π2 ,则下列不等式中成立的是 ( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC . tan θ>sin θ>cos θD .sin θ>tan θ>cos θ例2..利用三角函数线比较下列各组数的大小:1. 32sin π与54sin π2. tan 32π与tan 54π当堂检测1.当2kπ-π4≤α≤2kπ+π4(k ∈Z )时,化简1-2sin αcos α+1+2sin αcos α的结果是________.2.已知sin αcos α=18且π4<α<π2,则cos α-sin α=______.3、若-2π3≤θ≤π6 ,利用三角函数线,可得sin θ的取值范围是 .4、若∣cos α∣<∣sin α∣,则∈α .5、试作出角α= 7π6正弦线、余弦线、正切线.课后练习与提高一、选择题1、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( )A .π4B .3π4C .7π4D .3π4 或 7π42、若0<α<2π,且sin α<23 , cos α> 12 .利用三角函数线,得到α的取值范围是( )A .(-π3 ,π3 )B .(0,π3 )C .(5π3 ,2π)D .(0,π3 )∪(5π3 ,2π)3、依据三角函数线,作出如下四个判断: ①sinπ6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π5 >sin 4π5. 其中判断正确的有 ( )A .1个B .2个C .3个D .4个4、如果,42ππ<θ<那么下列各式中正确的是( ) A. cos tan sin θ<θ<θ B. sin cos tan θ<θ<θ C. tan sin cos θ<θ<θ D. cos sin tan θ<θ<θ5. 已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则α的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1任意角的概念教学目标:(1)引导学生用运动变化的观点了解角的概念的推广(2)明白“任意角”、“象限角”的概念教学重点:“任意角”、“象限角”的概念教学难点:“象限角”的判断预习案:一、复习:问题1:回忆初中我们是如何定义一个角的?______________________________________________________所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、新知:1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3、角的表示(1)常用字母A 、B 、C 等表示(2)用字母αβγϕθ、、、、等表示(3)当角作变量时可用字母x 表示4.象限角、轴线角(非象限角)的概念我们常在 直角坐标系 内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
那么,角的_________(除端点外)落在第几象限,我们就说这个角是__________________。
如果角的终边落在坐标轴上,则称这个角为____________________。
合作探究:1.在直角坐标系中画出下列各角,并说出这个角是第几象限角。
00000030,150,60,390,390,120---2.(1)钟表经过10分钟,时针和分针分别转了多少度?(2)若将钟表拨慢了10分钟,则时针和分针分别转了多少度?课堂练习:练习5.1.15.1.2终边相同的角教学目标:明白“终边相同的角”的表示方法教学重点:终边相同的角的概念教学难点:终边相同的角的表示预习案:正角:负角:零角:象限角:界限角:自主学习:观察:390︒=30︒+1×360︒ )1(=k -330︒=30︒+(-1)×360︒ )1(-=k 30︒=30︒+0×360︒ )0(=k 1470︒=30︒+4×360︒ )4(=k -1770︒=30︒(-5)×360︒ )5(-=k上面的角都可以表示为 与 的整数倍的和。
它们是角的始边绕坐标原点旋转到 的终边位置后,分别按 或 方向旋转K (Z k ∈)周所形成的角。
故:几个角的终边相同的角我们叫做为终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意以下四点:(1)Z k ∈(2) α是任意角;(3)0360⋅k 与α之间是“+”号,如0360⋅k -30°,应0360⋅k +(-30°)(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.【探究案】探究点一:终边相同角的表示1.在0到360度范围内,找出与下列各角终边相同的角(1)120(2)640(3)95012'-︒︒-︒2.求与3900角终边相同的最小正角和最大负角,并指出它们是第几象限的角。
探究点二:象限角的确定1已知0240与α角的终边相同,判断2α是第几象限角。
2已知α是第二象限角,判断2α是第几象限角。
(已知α分别是第一、二、三、四象限角,判断2α依次是是第-------、----------、-----------象限角)课后总结:象限角的集合(1)第一象限角的集合:_______________________________________(2)第二象限角的集合:_______________________________________(3)第三象限角的集合:_______________________________________(4)第四象限角的集合:_______________________________________轴线角的集合(1)终边在x 轴正半轴的角的集合:_______________________________________(2)终边在x 轴负半轴的角的集合:_______________________________________(3)终边在y 轴正半轴的角的集合:_______________________________________(4)终边在y 轴负半轴的角的集合:_______________________________________(5)终边在x 轴上的角的集合:_______________________________________(6)终边在y 轴上的角的集合:_______________________________________(7)终边在坐标轴上的角的集合:_______________________________________5.2.1弧度制班级 姓名 时间教学目标:⑴ 理解弧度制的概念;⑵ 理解角度制与弧度制的换算关系.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.【自主学习】问题1:角是如何度量的?角的单位是什么?问题2:将圆周的1360圆弧所对的圆心角叫做____________,记作1° ,1度等于60分(1°=60′),1分等于60秒(1′=60″).以度为单位来度量角的单位制叫做_________. 计算:23°35′,26″,31°,40′43″角度制下,计算两个角的加、减运算时,经常会带来单位换算上的麻烦.能否重新设计角的单位制,使两角的加、减运算像10进位制数的加、减运算那样简单呢?【合作探究】将等于半径长的圆弧所对的圆心角叫做____________,记作1弧度或1rad .以弧度为单位来度量角的单位制叫做___________若圆的半径为r ,圆心角∠AOB 所对的圆弧长为2r ,那么∠AOB 的大小就是 22r r=弧度弧度. 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.由定义知道,角α的弧度数的绝对值等于圆弧长l 与半径r 的比,即 l rα=(rad ). 半径为r 的圆的周长为2πr ,故周角的弧度数为2π(r a d )2π(r a d )r r=. 由此得到两种单位制之间的换算关系:360°=_______,即 180°=___________.1°=π(r a d ).01745r a d 180≈1801rad ()57.35718π'=︒≈︒≈︒. 1.用弧度制表示角的大小时,在不至于产生误解的情况下,通常可以省略单位“弧度”或“rad ”的书写.例如,1 rad ,2rad ,π2rad ,可以分别写作1,2,π2. 2.采用弧度制以后,每一个角都对应唯一的一个实数;反之,每一个实数都对应唯一的一个角.于是,在角的集合与实数集之间,建立起了一一对应的关系. 试试:完成特殊角的度数与弧度数的对应表:【巩固运用】例1 把下列各角度换算为弧度(精确到0.001):⑴ 15°; ⑵ 8°30′; ⑶−100°.例2 把下列各弧度换算为角度(精确到1′):⑴ 3π5; ⑵ 2.1; ⑶ −3.5. 1. 把下列各角从角度化为弧度(背诵):180°= ; 90°= ; 45°= ; 15°= ;60°= ; 30°= ; 120°= ; 270°= .2. 把下列各角从弧度化为角度(背诵):π= ; π2= ; π4= ; π8= ; 2π3= ; π3= ; π6= ; π12= . 3. 把下列各角从角度化为弧度:⑴ 75°; ⑵−240°; ⑶ 105°; ⑷ 67°30′.4.把下列各角从弧度化为角度:(1)53π (2) 65π- (3)5.3π5、经过一小时,时针和分分针各转过多少度?5.2.2应用举例班级姓名时间教学目标::⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.【自主学习】课堂上考察特殊弧度角的背诵!【合作探究】例3某机械采用带传动,由发动机的主动轴带着工作机的从动轮转动.设主动轮A 的直径为100 mm,从动轮B的直径为280 mm.问:主动轮A旋转360°,从动轮B旋转的角是多少?(精确到1′)例4如下图,求公路弯道部分AB的长l(精确到0.1m.图中长度单位:m).【巩固运用】1.填空:⑴若扇形的半径为10cm,圆心角为60°,则该扇形的弧长l=,扇形面积S=.⑵已知1°的圆心角所对的弧长为1m,那么这个圆的半径是m.2.自行车行进时,车轮在1min内转过了96圈.若车轮的半径为0.33m,则自行车1小时前进了多少米(精确到1m)?3.书上P109页练习。
【反思总结】你用什么方法来区分角度制和弧度制?【作业】5.3.1 任意角的正弦函数、余弦函数、正切函数的概念班级 姓名 时间教学目标: 1.已知角α终边上一点,会求角α的各三角函数值.2.利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来,并能作出三角函数线.教学重点: 1.任意角的正弦、余弦、正切的定义.2.能够学会使用三角函数的定义解题. 教学难点: 1.任意角的三角函数不同的定义方法;2.已知角α终边上一点,会求角α的各三角函数值.预习:锐角的三角函数如何定义?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b,它与原点的距离0r >. 过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b . 则sin MP b OP rα==;cos α= = ; tan MP OMα== . 认真阅读教材对照学习目标,完成导学案,适当总结。