3.不等式的解集
初二数学不等式解集表示方法

初二数学不等式解集表示方法不等式是数学中常见的一种表示关系的方式。
在初二数学中,学生将学习如何解不等式,并且要使用特定的方法来表示不等式的解集。
本文将介绍初二数学中常用的不等式解集表示方法。
一、不等式的解集表示方法解不等式时,需要找到使不等式成立的变量取值范围。
这个取值范围称为不等式的解集。
在表示不等式的解集时,常用以下几种方法:1. 图形表示法:对于简单的不等式,可以将其转化为图形,用图形表示不等式的解集。
例如,不等式x > 2表示x在2的右边,可以用一条竖直线表示,然后在这条竖直线的右边标上一个开圈,表示不包括2。
这样,表示了不等式x > 2的解集。
2. 区间表示法:对于一些特定的不等式,可以使用区间表示法来表示解集。
区间表示法使用中括号和圆括号来表示开闭区间。
例如,不等式3 ≤ x ≤ 7可以用区间表示法表示为[3, 7]。
3. 不等式符号表示法:对于简单的不等式,可以直接使用不等式符号表示解集。
例如,不等式x > 5可以表示为x > 5。
4. 集合表示法:对于一些复杂的不等式,可以使用集合表示法来表示解集。
集合表示法使用大括号来表示集合。
例如,不等式x^2 - 4 < 0的解集可以表示为{x | -2 < x < 2}。
二、解不等式的方法解不等式的方法主要有以下几种:1. 图像法:对于一些简单的不等式,可以绘制图像来解不等式。
首先,将不等式转化为等式,然后绘制等式的图像。
接着,根据不等式的符号确定图像的左右区间,并标出解集。
例如,对于不等式x + 2 > 0,可以将其转化为等式x + 2 = 0,得出x = -2。
将x = -2绘制在数轴上,并在-2的右边标上箭头,表示解集为x > -2。
2. 正负数法:适用于一些关于不等式的基本问题。
根据不等式的正负号和绝对值的性质,可以确定不等式的解集。
例如,对于不等式2x - 3 < 7,可以将其转化为等式2x - 3 = 7,得出x = 5。
不等式的特殊解集与性质

不等式的特殊解集与性质不等式是数学中常见的一种表达式,用于表示数之间的大小关系。
在解不等式时,有时会出现一些特殊的解集及其性质。
本文将探讨不等式的特殊解集,并分析其性质。
一、绝对值绝对值不等式是一类常见的不等式,其解集具有一些特殊的性质。
考虑以下形式的绝对值不等式:|ax + b| ≤ c (其中 a、b、c 均为实数,且a ≠ 0)1. 当c ≥ 0 时,绝对值不等式恒成立,即其解集为全体实数。
2. 当 c < 0 时,绝对值不等式无解,因为绝对值的值不可能小于负数。
二、分式分式不等式是另一类常见的不等式,其解集也具有一些特殊的性质。
考虑以下形式的分式不等式:f(x)/g(x) ≤ 0 (其中 f(x) 和 g(x) 均为多项式函数,且g(x) ≠ 0)1. 若 f(x) 和 g(x) 异号(即一个为正,一个为负),则不等式的解集为不等式的所有解。
2. 若 f(x) 和 g(x) 同号(即两者都为正或负),则需进一步考虑 g(x) ≠ 0 的条件,即分母不为零的情况。
a) 若 g(x) > 0,则不等式的解集为满足f(x) ≤ 0 的所有解。
b) 若 g(x) < 0,则不等式的解集为满足f(x) ≥ 0 的所有解。
三、复合复合不等式是多个不等式同时存在的情况,其解集和性质需要综合考虑。
考虑以下形式的复合不等式:f(x) < g(x) < h(x) (其中 f(x)、g(x)、h(x) 均为函数)1. 首先解决 f(x) < g(x) 不等式,得到解集 A。
2. 然后解决 g(x) < h(x) 不等式,得到解集 B。
3. 最终复合不等式的解集为 A 与 B 的交集。
四、二次二次不等式是具有二次项的不等式,其解集和性质与一次不等式不同。
考虑以下形式的二次不等式:ax^2 + bx + c < 0 (其中 a、b、c 均为实数,且a ≠ 0)1. 若 a > 0,则二次不等式的解集为开口朝下的抛物线在 x 轴下方。
高二数学分式不等式试题答案及解析

高二数学分式不等式试题答案及解析1.不等式的解集是()A.(,+)B.(3,+)C.(﹣,﹣3)∪(4,+)D.(﹣,﹣3)∪(,+)【答案】D【解析】不等式等价于,方程的根为,因此不等式的解集.【考点】一元二次不等式的解法.2.不等式的解集是.【答案】【解析】原不等式可变形为:等价不等式组解得:所以答案填:【考点】分式不等式的解法.3.不等式的解集是 ( )A.B.C.(-2,1)D.∪【答案】C【解析】本题一般等价转化为一元二次不等式,然后直接得出结论.【考点】分式不等式的解法.4.关于的不等式的解集是,则关于的不等式的解为()A.B.C.D.【答案】B【解析】本题要找出参数的关系或它们的值,这里可根据不等式的解集与方程的解的关系得出,不等式的解集是,说明方程的解是1,且.,这样不等式可化为,从而得出结论为B.【考点】解不等式.5.不等式的解集是()A.B.C.D.【答案】B【解析】根据题意,由于等价(x+2)(x-3)<0,可知得到的解集为-2<x<3,故可知不等式的解集为,故选B.【考点】一元二次不等式的解集点评:主要是考查了分式不等式化为二次不等式的求解,属于基础题。
6.关于的不等式的解为或,则的取值为()A.2B.C.-D.-2【答案】D【解析】不等式等价于,而其解为或,所以的取值为-2,选D。
【考点】本题主要考查分式不等式解法。
点评:简单题,分式不等式,往往要转化成整式不等式求解,利用“穿根法”较为直观明确。
7.不等式的解集是 .【答案】【解析】根据题意,对于不等式,等价于不等式,结合二次不等式的求解可知,解集为,故填写。
【考点】本试题考查分式不等式的解集。
点评:解决该试题的关键是能利用一元二次不等式的解集来求解分式不等式,属于中档题。
易错点是对于分母x直接两边相乘约去。
8.不等式的解集是()A.B.C.D.【答案】C【解析】由于分式不等式对于x>1时,则有x>2,当x<1时,则有-2<x<2,故可知不等式的解集为,选C.【考点】本试题考查了分式不等式的求解。
3.不等式的解和解集

数学运算
“粗心者”大都在这倒下的。你能做的,就是严格准守“游戏规则”。 1.搞清楚:运算对象,运算步骤,运算法则。 2.认真:态度决定一切。
情境
问题 1: 若不等式2-m< 1 3 (x-m)的解集为x>2,则m的值为(). 问题 2: 已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的 解,则实数a的取值范围是(). 讨论 (1)解等式2-m< 1 3 (x-m)可得x>6-2m,故6-2m=2,m=2. 【运算-已知解集求字母】已知不等式的解集,求不等式中字母的值时,应先用 字母表示出不等式的解集,再建立方程或不等式进行求解.
知识点 不等式的解和解集
数学抽象ቤተ መጻሕፍቲ ባይዱ
简单讲,数学抽象就是符号,概念,公理,定理,公式。这些就是数学的本质。 当你一直坚持在用学语文的方式“背数学”时,有一天你会背不动的,因为你不知道背后的“所 以然”。 学数学能够化繁为简,靠的就是对数学抽象的全面理解。
情境
在xx卫视上,神秘嘉宾“x-3>1”与它的解和解集隆重亮相.
讨论 (1)我们曾学过“能使方程两边相等的未知数的值就是方程的解”,结合情境想一 想什么是不等式的解? 【概念-解】能使不等式成立的未知数的值叫做不等式的解. (2)根据情境中的“介绍”,想一想什么是不等式的解集? 【概念-解集】不等式所有解的集合叫做不等式的解集. (3)思考不等式的解与不等式的解集一样吗?它们之间存在哪些区别与联系?
2 / 3
(2)x=2是不等式组(x-5)(ax-3a+2)≤0的解,故(2-5)(2a-3a+2)≤0;x=1不 是这个不等式的解,所以(1-5)(a-3a+2)>0,联立两个不等式进行求解,就可以 得出a的取值范围了. 【运算-已知解求字母】已知不等式的解,求不等式中字母的取值情况时,应先 根据不等式的解一定满足该不等式,建立不等式(或不等式组),再求解该不 等式(或不等式组),从而得出答案.注意若给出某一未知数不是题目中不等式 的解,那它一定是与该不等式相对立的那个不等式的解,“<”与“≥”相对 立,“>”与“≤”相对立. 实战演练 (导学号 导学号 S2658440)已知关于x的不等式(k-2)x+3<11-k(3-x)的解都是不等 式4x>3x-2的解,求k的取值范围. 点拨:分析题意,先根据 “不等式 (k-2)x+3< 11-k(3-x)的解都是不等式 4x> 3x-2的解 ”求出不等式 4x> 3x-2的解,再结合【运算 -已知解集求字母】进行解答 即可 .
不等式与不等式组知识点

不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x —a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。
3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。
4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。
6.当x 时,代数式52+x 的值不大于零7。
若x 〈1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x -〉10-a 的解集为x <3,则a10。
若a 〉b 〉c ,则不等式组⎪⎩⎪⎨⎧c x bx a x 的解集是11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x 〈1,则)1)(1(++b a 的值为 12.有解集2<x <3的不等式组是 (写出一个即可)13.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g14。
初中数学《不等式的解集》教案

初中数学《不等式的解集》教案第一章一元一次不等式和一元一次不等式组3.不等式的解集一、学生知识状况分析学生在初一时已经学过数轴,对数轴有一定的了解,掌握了数轴的画法,知道实数与数轴上的点成一一对应关系,并且建立了一定的数形结合思想.以前学生所学的方程的解具有唯一性,而不等式的解的个数有无数个,这对学生来说是全新的开始;在前一课时,学习了不等式的基本性质,学生可利用性质解一些简单的不等式,为本节内容打下了基础。
但对不等式解集的含义及表示方法还全然不知,因而在教学中要作更进一步的探索和学习.二、教学任务分析1、教材分析:通过前面的学习,学生已初步体会到生活中量与量之间的关系,不仅有相等而且有大小之分,为了弄清这种大小关系,教材在此创设了丰富的实际问题情境,引出不等式的解的问题,进一步探索出不等式的解集,同时还要求在数轴上把不等式的解集表示出来,从而渗透了“数形”结合的思想,发展了学生符号表达的能力以及分析问题、解决问题的能力。
教材中设置的“议一议”意在引导学生回忆实数与数轴上的点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,体现了新教材循序渐进,螺旋上升的特点.2、教学目标:(1)知识与技能目标:①能够根据具体情境中的大小关系了解不等式的意义②能够在数轴上表示不等式的解集(2)过程与方法目标:①培养学生从现实情况中探索、发现并提出简单的数学问题的能力。
②经历求不等式的解集的过程,并试着把不等式的解集在数轴上表示出来,发展学生的创新意识。
(3)情感态度与价值观目标:从实际问题中抽象出数学模型,让学生认识数学与人类生活的密切联系及对人类历史的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造。
3、教学重点:(1)理解不等式中的相关概念(2)探索不等式的解集并能在数轴上表示出来4、教学难点:探索不等式的解集并能在数轴上表示出来三、教学过程分析本节课设计了七个环节,第一环节复习旧知识;第二环节情境引入;第三环节课堂探究;第四环节例题讲解;第五环节随堂练习;第六环节课堂小结;第七环节布置作业。
2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.
初二数学不等式的解集知识点总结

初二数学不等式的解集知识点总结初二数学不等式的解集知识点总结漫长的学习生涯中,大家最不陌生的就是知识点吧!知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?以下是店铺精心整理的初二数学不等式的解集知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
初二数学不等式的解集知识点总结1不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
相信上面的知识同学们已经能很好的掌握了,希望同学们在平时认真学习,很好的把每一个知识点掌握。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 第二节
不等式的解集
文山市坝心乡中心学校 闵堂敏
一、理解不等式的解与解集的意义 二、了解不等式解集的数轴表示
燃放烟花时,为 了确保安全,人在 点燃引火线后要 在燃放前转移到 安全区域。
情境引入
已知引火线的燃烧速度为0.02m/s, 人离开的速度为4m/s,当跑到4米处安全 时,那么引火线的长度应为多少厘米?
x
0.02×100
>
10 4
根据不等式的基本性质,得
答: 引火线的长应大于5cm.
获得新知
解: 设引火线的长应为xcm,根据题意,得
x
0.02×100
>
10 4
x =6
x=6、7、8、9、10能
x =7
使不等式成立吗?
x =8 x =9
能使不等式成立的未知数的值,
x =10 叫做不等式的解。
你还能找出一些上述不等式的解吗? 你认为它的解有几个?
x =6 7 8 9 10 5.5 5.2 6.5 7.8 12
20 32 50 ……
一个含有未知数的不等式的所有 解,组成这个不等式的解集。
求不等式解集的过 程叫做解不等式
看谁快:
1.不等式 x-5<1的解为( C )
A. x=6
B. x=9
C. x=4
D. x=10
2.下列说法正确的是( D )
A.x > 3是2x >1的解集
B.x=3不是2x >1的解
C.x=3是2x >1的唯一解
D.x=3是2x >1的解
议一议
x﹥5
x =6 7 8 9 10 5.5 5.2 6.5 7.8 12
20 32 50 ……
这是表示解集的一种 -3 -方2 -法1 0,1有2没3有4其5他6 方7 8
法,更形象直观?
课堂小结 :
• 本节课我学会了
1.什么叫做不等式的解,不等式的解集?什么 叫做解不等式? 2.在数轴上表示不等式的解集以及要注意哪些 方面? 3.体会数形结合的思想。
必做题:习题2.3 第1题,第2题(1)(2)
选做题: 不等式x-1<2的正整数解是.
议一议
将不等式 x-5≤-1的解集在数轴上 表示出来。 x ≤4
-3 -2 -1 0 1 2 3 4 5 6 7 8
议一议
在数轴上表示不等式解集时,你认 为需要注意些什么? (1)确定空心圆圈或实心圆点 (2)确定方向
空无实有,左小右大
巩固练习
1.将下列不等式的解集在数轴上表示出来。
(1)x<3 (2)x≥﹣4 (3)x≤﹣2 (4)x>1.5
解: 设引火2×100
=
4 4
答: 引火线的长应为2cm.
情境引入
燃放某种烟花时,为了确保安全,人在 点燃引火线后要在燃放前转移到10m以外 的安全区域。已知引火线的燃烧速度为 0.02m/s,燃放者离开的速度为4m/s,那么 引火线的长度应满足什么条件?
解: 设引火线的长应为xcm,根据题意,得
x
0.02×100
>
10 4
如果你是生产商,你 会做多长的引火线?
获得新知
燃放某种烟花时,为了确保安全,人在点燃引火 线后要在燃放前转移到10m以外的安全区域。已知引 火线的燃烧速度为0.02m/s,燃放者离开的速度为4m/s, 那么引火线的长度应满足什么条件?
解: 设引火线的长应为xcm,根据题意,得