【冲刺卷】高考数学一模试卷带答案
2023-2024学年上海市奉贤区高考数学冲刺模拟试题(一模)含答案

2023-2024学年上海市奉贤区高考数学冲刺模拟试题(一模)一、填空题1.已知i 为虚数单位,则复数1i -的虚部是______.【正确答案】1-【分析】根据复数虚部的定义即可求解.【详解】根据复数虚部的定义可知,复数1i -的虚部是1-.故1-2.数据7,4,2,9,1,5,8,6的第70百分位数为______.【正确答案】7【分析】根据百分位数的定义即可求解.【详解】将数据从小到大重新排列为1,2,4,5,6,7,8,9,共8个数据,由于870% 5.6⨯=,所以第70百分位数为7.故73.不等式201x x ≥-的解集是______.【正确答案】(){}1,0+∞ 【分析】把分式不等式转化为()21010x x x ⎧-≥⎨-≠⎩,从而可解不等式.【详解】因为201x x ≥-,所以()21010x x x ⎧-≥⎨-≠⎩,解得1x >或0x =,所以不等式201x x -≥+的解集是(){}1,0+∞ .故(){}1,0+∞ 4.二项式()1012x +展开中,2x 项的系数为______.【正确答案】180【分析】求得二项式()1012x +展开式的通项,进而求得展开式中2x 的系数.【详解】由题意,二项式()1012x +的通项为11010C (2)2C r r r r r r T x x +==⋅,令2r =,可得22223102C 180T x x =⋅=,所以二项式()1012x +展开式中2x 的系数为180.故答案为.1805.已知命题p :任意正数x ,恒有()1e 1x x +>,则命题p 的否定为______.【正确答案】存在正数0x ,使()001e 1x x +≤【分析】含有全称量词的否定,改成特称量词即可.【详解】由全称命题的否定为特称命题知:存在正数0x ,使()001e 1x x +≤.故存在正数0x ,使()001e 1x x +≤6.抛物线24y x =的准线与圆222x y +=相交于A 、B 两点,则AB =______.【正确答案】2【分析】首先求抛物线的准线方程,再根据直线与圆相交的弦长公式,即可求解.【详解】24y x =的准线方程为=1x -,圆心()0,0到直线=1x -的距离为1,所以弦长2AB ==.故27.在平行四边形ABCD 中,12BE BC = ,13AF AE = .若AB mDF nAE =+ ,则m n +=______.【正确答案】43/113【分析】利用平面向量的线性运算求出,m n 即可.【详解】由题意可得()1122AB AE EB AE DA AE DF FA =+=+=++ 11152326AE DF AE DF AE ⎛⎫=+-=+ ⎪⎝⎭ ,所以12m =,56n =,所以43m n +=.故438.已知数列{}n a 满足1212n n n a a a ++⋅⋅=-,12a =-,214a =,则数列{}n a 的前n 项积的最大值为______.【正确答案】1【分析】根据1212n n n a a a ++⋅⋅=-,判断出{}n a 是一个周期数列,从而求前n 项积即可.【详解】1212n n n a a a ++⋅⋅=- ,12312n n n a a a +++∴⋅⋅=-,两式相除得:3 1n na a +=,所以数列{}n a 是以3为周期的周期数列,由12a =-,214a =,得:3121 1.2a a a =-=⋅记数列{}n a 的前n 项积为n T ,结合数列的周期性,,当*N k ∈时,()31231412k k k T a a a ⎛⎫== ⎪⎭≤-⎝,()3112341122122k k k T a a a a +⎛⎫⎛⎫==-⋅-≤-⨯-= ⎪ ⎪⎝⎭⎝⎭,()321234514122kk k T a a a a a +⎛⎫==⋅- ⎪⎭≤-⎝,所以数列{}n a 的前n 项积的最大值为1.故19.两个圆锥的底面是一个球的同一个截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为______.【正确答案】4π【分析】根据球的体积公式,结合球的性质、圆锥的体积公式进行求解即可.【详解】设球的半径为r ,因为球的体积为32π3,所以有34π32π233r r =⇒=,设两个圆锥的高分别为12,h h ,于是有12:1:3h h =且1224h h r +==,所以有121,3h h ==,设圆锥的底面半径为R ,所以有222(21)23R R +-=⇒=,因此这两个圆锥的体积之和为21π(3)(13)4π3+=,故4π10.在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.【正确答案】9【分析】方法一:先根据角平分线性质和三角形面积公式得条件111a c+=,再利用基本不等式即可解出.【详解】[方法一]:【最优解】角平分线定义+三角形面积公式+基本不等式由题意可知,ABC ABD BCD S S S =+△△△,由角平分线定义和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,即111a c +=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅=当且仅当23c a ==时取等号,则4a c +的最小值为9.故答案为.9[方法二]:角平分线性质+向量的数量积+基本不等式由三角形内角平分线性质得向量式a c BD BA BC a c a c=+++ .因为1BD =,所以2222212()a c ac BA BC BA BC a c a c a c ⎛⎫⎛⎫=++⋅ ⎪ ⎪+++⎝⎭⎝⎭,化简得1ac a c =+,即ac a c =+,亦即(1)(1)1a c --=,所以44(1)(1)5524(1)(1)9a c a c a c +=-+-+≥+--=,当且仅当4(1)1a c -=-,即3,32a c ==时取等号.[方法三]:解析法+基本不等式如图5,以B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系.设(,0)C a,11,22D A c ⎛⎛⎫- ⎪⎝⎭⎝⎭.因为A ,D ,C 三点共线,则AD CD k k =,即222111222c a =---,则有a c ac +=,所以111a c +=.下同方法一.[方法四]:角平分线定理+基本不等式在BDC中,CD,同理AD =理知CD BC AD AB =a c=,两边平方,并利用比例性质得2211a a c c -=-,整理得()()0a c a c ac -+-=,当a c =时,可解得2,410a c a c ==+=.当a c ac +=时,下同方法一.[方法五]:正弦定理+基本不等式在ABD △与BCD △中,由正弦定理得11,sin 60sin sin 60sin AD CD A C ==︒︒.在ABC 中,由正弦定理得sin sin sin120sin 60sin 60a b AD CD AD CD A B +===+︒︒︒.所以11sin sin sin a A A C =+,由正弦定理得111a a a c==+,即ac a c =+,下同方法一.[方法六]:相似+基本不等式如图6,作AE BC ∥,交BD 的延长线于E .易得ABE 为正三角形,则,1AE c DE c ==-.由ADE CDB ∽,得AE DE BC BD =,即11c c a -=,从而a c ac +=.下同方法一.【整体点评】方法一:利用角平分线定义和三角形面积公式建立等量关系,再根据基本不等式“1”的代换求出最小值,思路常规也简洁,是本题的最优解;方法二:利用角平分线的性质构建向量的等量关系,再利用数量积得到,a c 的关系,最后利用基本不等式求出最值,关系构建过程运算量较大;方法三:通过建立直角坐标系,由三点共线得等量关系,由基本不等式求最值;方法四:通过解三角形和角平分线定理构建等式关系,再由基本不等式求最值,计算量较大;方法五:多次使用正弦定理构建等量关系,再由基本不等式求最值,中间转换较多;方法六:由平面几何知识中的相似得等量关系,再由基本不等式求最值,求解较为简单.11.设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,O 是坐标原点,过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为_______________________.【分析】由1POF ∠与2POF ∠互补,得到两角的余弦值互为相反数,两次利用余弦定理得到关于,a c 的方程.【详解】如图所示:因为焦点2F 到渐近线的距离为b ,所以2||PF b =,则OP a =,所以1PF =,因为12cos cos POF POF ∠=-∠,所以222222)22a c a c b ac ac+-+-=-,解得.223c a e =⇒求圆锥曲线的离心率主要有几何法和代数法,本题主要通过两次利用余弦定理进行代数运算,找到,a c 关系求得离心率.12.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.【正确答案】()(),40,-∞-+∞【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e x k x a =++,切线方程为:()()()00000e 1e x x y x a x a x x -+=++-,∵切线过原点,∴()()()00000e 1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a <-或0a >,∴a 的取值范围是()(),40,-∞-+∞ ,故()(),40,-∞-+∞ 二、单选题13.记函数()π()sin 04f x x ωω⎛⎫=+ ⎪⎝⎭>的最小正周期为T .若ππ2T <<,且π()3f x f ⎛⎫≤ ⎪⎝⎭,则ω=()A .34B .94C .154D .274【正确答案】C 【分析】由最小正周期ππ2T <<可得24ω<<,再由π()3f x f ⎛⎫≤ ⎪⎝⎭即可得ππππ,Z 342k k ω+=+∈,即可求得154ω=.【详解】根据最小正周期ππ2T <<,可得π2ππ2ω<<,解得24ω<<;又π()3f x f ⎛⎫≤ ⎪⎝⎭,即π3x =是函数()f x 的一条对称轴,所以ππππ,Z 342k k ω+=+∈,解得33,Z 4k k ω=+∈.又24ω<<,当1k =时,154ω=.故选:C14.从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、L 、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是()A .20B .40C .64D .80【正确答案】D 【分析】利用频率分布直方图可计算出评分在区间[)82,86内的影视作品数量.【详解】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=.故选:D.15.上海入夏的标准为:立夏之后,连续五天日平均气温不低于22℃.立夏之后,测得连续五天的平均气温数据满足如下条件,其中能断定上海入夏的是()A .总体均值为25℃,中位数为23℃B .总体均值为25℃,总体方差大于0℃C .总体中位数为23℃,众数为25℃D .总体均值为25℃,总体方差为1℃【正确答案】D【分析】对于AB ,取连续五天的平均气温为21C,22C,23C,29C,30C ︒︒︒︒︒可判断;对于C ,取连续五天的平均气温为21C,22C,23C,25C,25C ︒︒︒︒︒可判断;对于D ,用反证法可验证.【详解】对于A ,如连续五天的平均气温为21C,22C,23C,29C,30C ︒︒︒︒︒,满足总体均值为25C ︒,中位数为23C ︒,故A 不正确;对于B ,如连续五天的平均气温为21C,22C,23C,29C,30C ︒︒︒︒︒,满足总体均值为25℃,总体方差大于0℃,故B 不正确;对于C ,如连续五天的平均气温为21C,22C,23C,25C,25C ︒︒︒︒︒,满足总体中位数为23℃,众数为25℃,故C 不正确;对于D ,当总体均值为25C ︒,总体方差为1C ︒,若存在有一天气温低于22C ︒,不妨令122C x ︒<,根据方差公式()()()()()2222221234515s x x x x x x x x x x ⎡⎤=-+-+-+-+-⎣⎦,可得()22192225155s ⨯=>->,因为方差为1,所以不可能存在有一天气温低于22C ︒,故D 正确.故选:D16.记函数11(),y f x x D =∈,函数22(),y f x x D =∈,若对任意的x D ∈,总有21()()f x f x ≤成立,则称函数1()f x 包裹函数2()f x .判断如下两个命题真假:①函数1()f x kx =包裹函数2()cos f x x x =的充要条件是1k ≥;②若对于任意120,()()p f x f x p >-<对任意x D ∈都成立,则函数1()f x 包裹函数2()f x .则下列选项正确的是()A .①真②假B .①假②真C .①②全假D .①②全真【正确答案】D 【分析】①根据包裹函数的定义可以得到cos x k ≤,由cos 1x ≤,可得1k ≥,即①正确;②利用反证法证明可得12()()0f x f x -=,即12()()f x f x =,则函数1()f x 包裹函数2()f x ,即②正确.【详解】①因为函数1()f x kx =包裹函数2()cos f x x x =,所以cos cos cos x x kx x x k x x k ≤⇔≤⇔≤,又因为cos 1x ≤,所以1k ≥,所以函数1()f x kx =包裹函数2()cos f x x x =的充要条件是1k ≥,故①正确;②假设12()()0f x f x ->,令12()()0f x f x m -=>,则当2m p =时,12()()2m f x f x m p -=>=,与题意中12()()f x f x p -<矛盾,故假设不成立.所以12()()0f x f x -=,即12()()f x f x =,所以函数1()f x 包裹函数2()f x ,故②正确.故选:D.三、解答题17.如图所示,正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F .(1)求证:平面BDE ∥平面B 1D 1F ;(2)连结B 1D ,求直线B 1D 与平面BDE 所成的角的大小.【正确答案】(1)证明见解析(2)arcsin 9.【分析】(1)以A 为原点,AB ,AD ,AA 1所在直线为坐标轴,建立空间直角坐标系,如图利用向量法证DE ∥FB 1,进而//DE 平面11B D F ,同理//BD 平面11B D F ,可证平面BDE ∥平面B 1D 1F ;(2)利用向量法可求直线B 1D 与平面BDE 所成的角的大小.【详解】(1)以A 为原点,AB ,AD ,AA 1所在直线为坐标轴,建立空间直角坐标系,如图则B (1,0,0),D (0,1,0),E (0,0,2),B 1(1,0,4),D 1(0,1,4),F (1,1,2),∵()10,1,2DE FB ==- ,∴DE ∥FB 1,1//,DE FB DE ⊄ 平面11B D F ,1FB ⊂平面11B D F ,//DE ∴平面11B D F ,同理//BD 平面11B D F ,∵BD ⊂平面BDE ,DE ⊂平面BDE ,BD DE D ⋂=平面BDE ,∴平面//BDE 平面11B D F .(2)同(1)建系,()()1,1,0,1,0,2BD BE =-=-设平面BDE 的一个法向量为(),,n x y z =,则020n BD x y n BE x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,得2x y x z =⎧⎨=⎩,不妨取z =1,则()2,2,1n =r,又()11,1,4DB =-,设直线B 1D 与平面BDE 所成的角为θ,故11sin 9n DB n DB θ⋅===⋅ ,直线B 1D 与平面BDE所成的角为arcsin9.18.已知数列{}n a ,n S 是其前n 项的和,且满足()*32n n a S n n =+∈N (1)求证:数列12n a ⎫⎧+⎨⎬⎩⎭为等比数列;(2)记12n n T S S S =++⋯+,求n T 的表达式.【正确答案】(1)见解析;(2)2239884n n n +---.【分析】(1)2n ≥时,由32n n a S n =+,得11321n n a S n --=+-,然后利用1n n n S S a --=,可得到131n n a a -=+,进而得到1113,22n n a a -⎛⎫+=+ ⎪⎝⎭从而可以证明数列12n a ⎫⎧+⎨⎬⎩⎭为等比数列;(2)由(1)可以得到n a 的通项公式,代入32n n a S n =+可得到n S 的表达式,进而利用分组求和即可求出n T 的表达式.【详解】(1)1n =时,11132121a S a =+=+,所以11a =,当2n ≥时,由32n n a S n =+,得11321n n a S n --=+-,则()111332212121n n n n n n n a a S n S n S S a ----=+--+=-+=+,即131n n a a -=+,所以11111313,222n n n a a a --⎛⎫+=++=+ ⎪⎝⎭又113022a +=≠,故12n a ⎫⎧+⎨⎬⎩⎭就是首项为32,公比为3的等比数列,则1133,22n n a -+=⋅即131322n n a -=⋅-.(2)将131322n n a -=⋅-代入32n n a S n =+得()3132344n n S n =⋅-+,所以()()2312313333572344n n n T S S S n =++⋯+=+++⋯+-++⋯++=()()()()2231344393931413484884n n n n n n n n n +-++⋅-=--=----.分组求和与并项求和法:把数列的每一项拆分成两项或者多项,或者把数列的项重新组合,或者把整个数列分成两部分等等,使其转化成等差数列或者等比数列等可求和的数列分别进行求和,例如对通项公式为22n n a n =+的数列求和.19.我国风云系列卫星可以监测气象和国土资源情况.某地区水文研究人员为了了解汛期人工测雨量x (单位:dm )与遥测雨量y (单位:dm )的关系,统计得到该地区10组雨量数据如表:样本号i 12345678910人工测雨量i x 5.387.996.376.717.535.534.184.046.024.23遥测雨量iy 5.438.07 6.57 6.147.95 5.56 4.27 4.15 6.04 4.49i ix y -0.050.080.20.570.420.030.090.110.020.26并计算得1021353.6ii x ==∑,1021361.7ii y ==∑,101357.3i i i x y ==∑,233.62x =,234.42y =,34.02xy =,(1)求该地区汛期遥测雨量y 与人工测雨量x 的样本相关系数(精确到0.01),并判断它们是否具有线性相关关系;(2)规定:数组(),i i x y 满足0.1i i x y -<为“Ⅰ类误差”;满足0.10.3i i x y ≤-<为“Ⅱ类误差”;满足0.3i i x y -≥为“Ⅲ类误差”.为进一步研究,该地区水文研究人员从“Ⅰ类误差”、“Ⅱ类误差”中随机抽取3组数据与“Ⅲ类误差”数据进行对比,记抽到“Ⅰ类误差”的数据的组数为X ,求X 的概率分布与数学期望.附:相关系数()()10iix x y y r --=∑17.4≈【正确答案】(1)0.98r ≈,正相关性,相关性很强;(2)分布列见解析;期望()158E X =【分析】(1)根据参考公式和数据,代入求相关系数,即可判断相关性强或弱;(2)根据条件可知,0,1,2,3X =,再根据超几何分别求分布列和数学期望.【详解】(1)因为()()101010iii ix x y y x y xyr---=∑∑=17.10.9817.4=≈,由于样本相关系数0.98r ≈非常接近于1,可以推断该地区汛期遥测雨量y 与人工测雨量x ,两个变量正线性相关,且相关程度很强.(2)10组数据中,“Ⅰ类误差”有5组,“Ⅱ类误差”有3组,“Ⅲ类误差”有2组,从“Ⅰ类误差”,“Ⅱ类误差”中随机抽取3组数据,记抽到“Ⅰ类误差”的数据组数为X ,则X 的可取值为0,1,2,3,由题意可得,()035338C C 10C 56P X ===,()125338C C 151C 56P X ===,()215338C C 30152C 5628P X ====,()305338C C 1053C 5628P X ====,则X 的分布列为X0123P15615561528528所以()115155150123565628288E X =⨯+⨯+⨯+⨯=20.如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =交于点M 、N ,若PQR 和PMN的面积相等,求点P 的横坐标.【正确答案】(1)221164x y +=(2)证明见解析,20(3)点P 横坐标为4【分析】(1)利用椭圆的长轴长以及焦点坐标,求解a 、c ,然后求解b ,得到椭圆方程;(2)设()11,P x y 、()22,Q x y ,通过14OP OQ k k ⋅=-.结合得到坐标满足方程,转化求解22OP OQ +为一定值即可.(3)通过PQR PMN S S =△△,推出PM PQ PRPN=,转化求解点P 的横坐标即可.【详解】(1)由已知条件,设椭圆()2222:10x y a b a b Γ+=>>,则4c a ==,解得2b =,椭圆22:1164x y Γ+=.(2)证明:设()11,P x y 、()22,Q x y ,则121214OP OQ y y k k x x ⋅=-=,整理得121240x x y y +=,由221122224444x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴2222222212121238()4OP OQ x x y y x x +=+++=++,∵222222121212(4)(4)4416x x x x y y =--=,解得221216x x +=,将其代入22221238()204OP OQ x x +=++=,为定值.(3)设()11,P x y 、()22,Q x y ,由椭圆的对称性可知,()22,R x y --,∵PQR PMN S S =△△,∴PM PN PQ PR ⋅=⋅,∴PM PQ PRPN=,∴112x x x =+112x x x -=+222112)x x x -=-(或者222121)x x x =-(.∵221216x x +=,∴211640x +-=或者2113320x -+=(舍),解得:1x =,∴点P横坐标为.易错点点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.已知函数()ln af x ax x x=--.(1)若()f x 是定义域上的严格增函数,求a 的取值范围;(2)若1x >,()0f x >,求实数a 的取值范围;(3)设1x 、2x 是函数()f x 的两个极值点,证明:()()12f x f x -<.【正确答案】(1)1,2⎡⎫+∞⎪⎢⎣⎭;(2)1,2⎡⎫+∞⎪⎢⎣⎭;(3)证明见解析.【分析】(1)先求出函数的导数()f x ',由()f x 是定义域上的严格增函数转化为()0f x '≥在其定义域恒成立,再参变分离,利用基本不等式求得最值,进而求解即可;(2)先求出函数的导数,利用含参函数单调性的讨论中首项系数含参数问题讨论,将a 分为零正负,又通过判别根式对导函数是否有根进行分类求解即可;(3)由题意要证()()12f x f x -,只要证()()1221f x f x x x -<-,涉及到转化的思想,令211x t x =>,()21()ln 1t g t t t -=++,求()g t 的最小值即可求得结果.【详解】(1)依题意,2221()(0)a ax x a f x a x x xx-+'=-+=>.若()f x 是定义域上的严格增函数,则220ax x ax -+≥对于()0,x ∈+∞恒成立,即21x a x ≥+对于()0,x ∈+∞恒成立,而211112x x x x =≤++,当且仅当1x x =,即1x =时,等号成立.所以12a ≥,即a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭;(2)由(1)知2221()(0)a ax x a f x a x x x x -+'=-+=>.①当0a ≤时,在(1,)x ∈+∞上()0f x '<,所以()f x 在()1,+∞上单调递减,所以()(1)0f x f <=,所以0a ≤不符合题设.②当102a <<时,令()0f x '=,得20ax x a -+=,解得()110,12x a=,()21,x ∞=+,所以当()21,x x ∈时()0f x '<,所以()f x 在()21,x 上单调递减,所以()(1)0f x f <=,所以102a <<不符合题设.③当12a ≥时,判别式2140a ∆=-≤,所以()0f x '≥,所以()f x 在()1,+∞上单调递增,所以()(1)0f x f >=.综上,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)由(2)知,当102a <<时,()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()f x 的极小值点.由(2)知,121=x x ,121x x a+=,则21x x a-=.综上,要证()()12f x f x -<()()1221f x f x x x -<-,因为()()()()2212112211121ln x x xx x f x f x a x x a x x x ---+=+--+⋅()()()21222121112122lnln x x x xa x x x x x x x x -=-+--=+()21221121ln 1x x x x x x -=-+,设211x t x =>,()21()ln 1t g t t t -=+-+.所以()()2221414()011g t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,所以()()10g t g >=.所以()()21120x x f x f x --+>,即得()()1221f x f x x x -<-成立.所以原不等式成立.方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
高三数学冲刺试卷及答案

一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4$,则$f'(x)$的零点个数是()。
A. 1个B. 2个C. 3个D. 4个2. 若$a, b, c$是等差数列的连续三项,且$a + b + c = 12$,则$ab + bc +ca$的值是()。
A. 36B. 24C. 18D. 123. 已知复数$z = 2 + 3i$,则$|z|^2$的值是()。
A. 13B. 23C. 5D. 14. 函数$y = \frac{1}{x}$的图像在()象限。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限5. 下列不等式中正确的是()。
A. $x^2 > 4$B. $x^2 < 4$C. $x^2 \leq 4$D. $x^2 \geq 4$6. 在直角坐标系中,点$A(2, 3)$关于直线$x + y = 5$的对称点$B$的坐标是()。
A. $(3, 2)$B. $(1, 4)$C. $(4, 1)$D. $(5, 0)$7. 已知数列$\{a_n\}$的通项公式为$a_n = 2^n - 1$,则数列的前$n$项和$S_n$是()。
A. $2^n - n - 2$B. $2^n - n - 1$C. $2^n - n$D. $2^n - n + 2$8. 若直线$y = kx + b$经过点$(1, 2)$和$(2, 3)$,则$k$的值是()。
A. 1B. 2C. 0.5D. -19. 已知函数$y = \log_2(x - 1)$,则函数的定义域是()。
A. $x > 1$B. $x \geq 1$C. $x < 1$D. $x \leq 1$10. 下列命题中正确的是()。
A. 两个等差数列一定是等比数列B. 两个等比数列一定是等差数列C. 两个等差数列的公差一定相等D. 两个等比数列的公比一定相等二、填空题(每题5分,共50分)1. 函数$f(x) = x^2 - 4x + 3$的对称轴方程是__________。
高三数学模拟冲刺试卷答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的对称中心为()A. (0, -1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A解析:函数f(x) = x^3 - 3x + 2的对称中心可以通过求导找到极值点,然后求出对称中心。
f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = ±1。
由于f(x)在x = 0处取得极小值,故对称中心为(0, -1)。
2. 下列不等式中正确的是()A. a > b 且 c > d 则 ac > bdB. a > b 且 c < d 则 ac > bdC. a > b 且 c > d 则 ac < bdD. a > b 且 c < d 则 ac < bd答案:A解析:由不等式的乘法性质,当a > b且c > d时,两边同时乘以正数,不等号方向不变,故ac > bd。
3. 已知等差数列{an}的首项为a1,公差为d,则第10项与第15项之和为()A. 10a1 + 14dB. 15a1 + 14dC. 10a1 + 15dD. 15a1 + 15d答案:C解析:等差数列的第n项公式为an = a1 + (n-1)d,所以第10项与第15项之和为a10 + a15 = (a1 + 9d) + (a1 + 14d) = 2a1 + 23d = 10a1 + 15d。
4. 下列函数中,在定义域内单调递增的是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = e^x答案:D解析:函数y = e^x在定义域内是单调递增的,因为其导数y' = e^x始终大于0。
5. 已知等比数列{bn}的首项为b1,公比为q,则第5项与第8项之比为()A. q^4B. q^3C. q^2D. q^5答案:A解析:等比数列的第n项公式为bn = b1 q^(n-1),所以第5项与第8项之比为b5 / b8 = b1 q^4 / (b1 q^7) = q^4。
【冲刺卷】高考数学一模试题带答案

【冲刺卷】高考数学一模试题带答案一、选择题1.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<2.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .173.在ABC ∆中,60A =︒,45B =︒,32BC =,则AC =( ) A .3 B .3 C .23 D .434.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2B .3C .4D .55.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值06.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A .7B .10C .13D .47.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .2 D .28.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .9.对于不等式2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时,211+<1+1,不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .2722011.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v 则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .012.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>二、填空题13.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 14.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .15.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.16.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .17.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.18.已知1OA =u u u r ,3OB =u u u r ,0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB=+u u u r u u u r u u u r ,(,)m n R ∈,则m n=__________. 19.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.23.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值; (2)若212z z =,求m ,n 的值.24.定义在R 的函数()f x 满足对任意x y ÎR 、恒有()()()f xy f x f y =+且()f x 不恒为0.(1)求(1)(1)f f -、的值; (2)判断()f x 的奇偶性并加以证明;(3)若0x ≥时,()f x 是增函数,求满足不等式(1)(2)0f x f x +--≤的x 的集合. 25.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.2.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915-=. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3.C解析:C 【解析】 【分析】在三角形中,利用正弦定理可得结果. 【详解】 解:在ABC ∆中, 可得sin sin BC ACA B=, 32sin 45AC =323222= 解得23AC = 故选C.本题考查了利用正弦定理解三角形的问题,解题的关键是熟练运用正弦定理公式.4.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.5.D解析:D 【解析】 【分析】 【详解】因为()f x 为奇函数,且在[1,3]上为增函数,且有最小值0, 所以()f x 在[3,1]--上为增函数,且有最大值0,选D.6.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .7.C解析:C 【解析】 由题得22(1)111112()()12222222i i i i z i z i -+====+∴=+=+. 故选C. 8.D解析:D 【解析】 【分析】根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】由于1a >,所以1xxa y a-=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合. 故选:D.本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.9.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k =1k <+(1)1k ++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.10.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.11.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12.C解析:C 【解析】 【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例. 【详解】选项A ,当c =0时,由a >b ,不能推出ac 2>bc 2,故错误; 选项B ,当a =﹣1,b =﹣2时,显然有a >b ,但a 2<b 2,故错误; 选项C ,当a >b 时,必有a 3>b 3,故正确;选项D ,当a =﹣2,b =﹣1时,显然有a 2>b 2,但却有a <b ,故错误. 故选:C . 【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.二、填空题13.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个 解析:322+【解析】21a b Q +=,则1111223+322b a a b a b a b a b +=++=+≥+()()11a b+的最小值为322+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.14.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.15.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准 2【解析】依题意可得焦点F 的坐标为04a⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =Q ∶∶ 22KN KM ∴=∶∶又01404FN K a a --==-, 22FN KN K KM==-422a-∴=-2a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到22KN KM =∶∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值16.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积解析:2918【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.17.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2 【解析】 【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC=,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==, 可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC=∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2 【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.18.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3 【解析】因为30AOC ∠=o ,所以3cos cos30OC OA AOC OC OA⋅∠===⋅ou u u r u u u ru u u r u u u r ,从而有2=u u u r u u u r u u u r.因为1,0OA OB OA OB==⋅=u u u r u u u r u u u r u u u r=,化简可得222334mm n=+,整理可得229m n=.因为点C在AOB∠内,所以0,0m n>>,所以3m n=,则3mn= 19.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的解析:18【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x-的最大值,进而得到结果.【详解】Q函数()21lnf x x x a x=-++在()0,∞+上单调递增()210af x xx'∴=-+≥在()0,∞+上恒成立22a x x∴≥-在()0,∞+上恒成立令()22g x x x=-,0x>根据二次函数的性质可知:当14x=时,()max18g x=18a∴≥,故实数a的最小值是18本题正确结果:18【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题. 20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】【分析】由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y yx c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由ce a =,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(1)26cos 2sin 60ρρθρθ--+=(22 【解析】 【分析】(1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离. 【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+= 因为圆心()3,1C 到直线:l 210x y -+=的距离()23111655d ⨯+-⨯+==, 所以曲线C 上的点到直线l 的最大距离为6525d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题. 22.(1) ; (2)36000;(3).【解析】 【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数. 【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000. (Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5 所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 【考点】 频率分布直方图 【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.23.(1(2)0,1.m n =⎧⎨=⎩【解析】 【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长; (2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解.【详解】(1)当1m =,1n =-时112z i =-,21z i =+,所以()()121212i z i z i +=-++=-,所以12z z +==.(2)若212z z =,则()221m i ni -=-,所以()2212m i n ni -=--,所以2122m n n⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围. 24.(1)(1)0f =,(1)0f -=;(2)偶函数,证明见解析;(3)1{|}2x x ≤ 【解析】 试题分析:(1)利用赋值法:令1x y ==得()10f =,令1x y ==-,得()10f -=; (2)令1y =-,结合(1)的结论可得函数()f x 是偶函数;(3)结合函数的奇偶性和函数的单调性脱去f 符号,求解绝对值不等式12x x +≤-可得x 的取值范围是1{|}2x x ≤. 试题解析:(1)令1x y ==得()10f =,令1x y ==-,得()10f -=;(2)令1y =-,对x R ∈得()()()1f x f f x -=-+即()()f x f x -=,而()f x 不恒为0,()f x ∴是偶函数;(3)又()f x 是偶函数,()()f x fx ∴=,当0x >时,()f x 递增,由()()12f x f x +≤-,得()()12,12,f x f x x x x +≤-∴+≤-∴的取值范围是1{|}2x x ≤.25.(Ⅰ)0.55;(Ⅱ)详见解析【解析】 【分析】 【详解】解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F , 则,,D E F 分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件.因为()0.6,()0.5,()0.5===P D P E P F ,()0.4,()0.5,()0.5∴===P D P E P F . 红队至少两人获胜的事件有:,,,DEF DEF DEF DEF ,由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3.又由(I )知,,DEF DEF DEF 是两两互斥事件,且各盘比赛的结果相互独立, 因此(0)()0.40.50.50.1P P DEF ξ===⨯⨯=,(1)()()()ξ==++P P DEF P DEF P DEF(1)0.40.50.50.40.50.50.60.50.50.35ξ==⨯⨯+⨯⨯+⨯⨯=P (3)()0.60.50.50.15P P DEF ξ===⨯⨯=,由对立事件的概率公式得(2)1[(0)(1)(3)]0.4.P P P P ξξξξ==-=+=+== 所以ξ的分布列为:因此。
高考数学全真模拟冲刺试卷及答案

高考数学全真模拟冲刺试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合2{,0},{30,}M a N x x x x Z ==-<∈,若M N φ⋂≠,则a 等于 ( )A . 1 B. 2 C. 1或2 D 82.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为2x y =,值域为{}4,1的“同族函数”共有 ( )A .7个B .8个C .9个D .10个3.数列{}n a 中,32a =,71a =,且数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于 ( )A .25-B .12C .23D .5 4.把函数x x y sin 3cos -=的图象沿向量)0(),(>-=m m m a 的方向平移后,所得的图象关于y 轴对称,则m 的最小值是 ( ) A .6π B .3π C .32π D .65π 5、O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满点[),,0+∞∈++=λλACAB OA OP ,则P点的轨迹一定通过ABC ∆的A .重心B .垂心C .内心D .外心 ( )6.过点)0,4(-作直线l 与圆0204222=--++y x y x 交于A 、B 两点,如果8||=AB ,则( )A .l 的方程为04020125=+=++x y x 或;B .l 的方程为04020125=+=+-x y x 或;C .l 的方程为020125=++y x ;D .l 的方程为020125=+-y x ;7.F 1、F 2是双曲线1201622=-y x 的焦点,点P 在双曲线上,若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离为 ( )A .1B .17C .1或17D .68.已知复数1z =a+i ,z 2=1+a 2 i ,若12z z 是实数,则实数a 的值等于 ( ) A .1 B .-1 C .-2 D .29.如图正六边形ABCDEF 中,AC ∥y 轴.从六个顶点中任取三点,使这三点能确定一条形如y=ax 2+bx+c (a ≠0)的抛物线的概率是 ( )A .51 B .52 C .53 D .5410.条件中能使命题“a//b 且b//c ⇒a//c ”为真命题的条件的个数是 ( )① a ,b ,c 都表示直线; ② a ,b ,c 中有两个表示直线,另一个表示平面; ③ a ,b ,c 都表示平面; ④ a ,b ,c 中有两个表示平面,另一个表示直线; A . 1个 B .2个 C .3个 D .4个11.如图,虚线部分是四个象限的角平分线,实线部分是函数 ()y f x =的部分图像,则()f x 可能是 ( )A .sin x xB .cos x xC .2cos x x D .2sin x x12.一机器猫每秒钟前进或后退一步,程序设计师让机器猫以前进3步,然后再后退2步的规律移动。
2023-2024学年河北高考考前冲刺数学模拟试题(一模)含解析

2023-2024学年河北高考考前冲刺数学模拟试题(一模)一、单选题1.设集合U =R ,集合{|24}A x x =-<<,集合{}2|7100B x x x =-+<,则U A B =I ð()A .{|22}x x -<<B .{|22}x x -<≤C .{|25}x x <<D .{|25}x x <≤【正确答案】B【分析】化简集合B ,根据集合的补集和交集的运算性质求U A B ð即可.【详解】不等式27100x x -+<的解集为{|25}x x <<,所以{|25}B x x =<<,故{|2U B x x =≤ð或5}x ³,又{|24}A x x =-<<,所以{|22}U A B x x =-<≤ ð,故选:B .2.已知复数z 满足12i 1z=-,则z 的共轭复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】根据复数运算即可求得复数z ,再得共轭复数z ,根据复数的几何意义即可得答案.【详解】111i 2i 2z -==- ,11i 2z ∴=+,11i 2z ∴=-,故z 在复平面内对应的点11,2⎛⎫- ⎪⎝⎭位于第四象限.故选:D .3.若函数()af x x x=+()R a ∈在点(2,(2))f 处的切线为直线1:2l y x b =+,若直线l 与圆222:(0)C x y r r +=>相切,则r 的值为()A B C D .3【正确答案】A【分析】结合导数的几何意义列方程求a ,由切点坐标与切线的关系求b ,根据直线与圆的位置关系列方程求r .【详解】函数()af x x x =+的导函数2()1a f x x'=-,因为函数()f x 在点(2,(2))f 处的切线为直线1:2l y x b =+,所以1(2)142a f '=-=,解得2a =,2()f x x x∴=+,故(2)3f =,切点(2,3)在直线l 上,1322b ∴=⨯+,解得2b =,直线1:22l y x =+与圆222:(0)C x y r r +=>相切,∴圆心(0,0)到直线lr =,故选:A .4.已知向量(2,6)a = ,(1,)b λ=- .若//a b r r,则λ=()A .3B .3-C .13D .13-【正确答案】B【分析】根据向量平行的坐标表示,列式即可求得答案.【详解】因为向量(2,6)a = ,(1,)b λ=- ,//a b r r,所以26λ=-,解得3λ=-,故选:B .5.已知数列{}n a 的首项11a =,0n a >,前n 项和n S 满足2211120n n n n n n S S S S S S ----+--=,则数列{}n a 的前n 项和n S 为()A .(1)2n n +B .12n -C .221n -D .21n -【正确答案】A【分析】由题可得22n n n S a a =+,进而可得2211n n n n a a a a ++-=+,然后可得11n n a a +-=,利用等差数列的定义及求和公式即得.【详解】由2211120n n n n n n S S S S S S ----+--=得2211122n n n n n n n S S S S S S S ---=-++-,即()()2112n n n n n S S S S S --=-+-,所以22n n n S a a =+,所以21112n n n S a a +++=+,两式作差,得()221112n n n n n a a a a a +++=+-+,即2211n n n n a a a a ++-=+,所以()()1110n n n n a a a a ++--+=,所以11n n a a +-=或10n n a a ++=,又0n a >,故11n n a a +-=,所以数列{}n a 是以1为首项,1为公差的等差数列,所以数列{}n a 的前n 项和(1)(1)22n n n n n S n -+=+=.故选:A.6.如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB ,的夹角为3π,2AB =,则棱1AA ,1CC 的夹角为()A .3πB .4πC .23πD .2π【正确答案】D【分析】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,从而可得2PA PC ==,从而可求出答案.【详解】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为3π,2AB =,所以△PAB 是边长为2的等边三角形,所以2PA PC ==.又在正方形ABCD 中,2AB =,则AC =所以222AC PA PC =+,所以PA PC ⊥,所以棱1AA ,1CC 的夹角为2π,7.已知定点(3,0)B ,点A 在圆22(1)4x y ++=上运动,则线段AB 的中点M 的轨迹方程是()A .22(1)1x y ++=B .22(2)4x y -+=C .22(1)1x y -+=D .22(2)4x y ++=【正确答案】C【分析】设(,)M x y 再表达出A 的坐标代入圆方程22(1)4x y ++=化简即可.【详解】设(,)M x y ,则(),A A A x y 满足3,(,)22A A x y x y +⎛⎫= ⎪⎝⎭.故232A Ax x y y =-⎧⎨=⎩.故23(2),A x y -.又点A 在圆22(1)4x y ++=上.故2222(231)(2)4(1)1x y x y -++=⇒-+=.故选:C本题主要考查了轨迹方程的求法,属于基础题型.8.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为()A .0.78B .0.8C .0.82D .0.84【正确答案】C【分析】设事件A 表示甲正点到达目的地,事件B 表示甲乘火车到达目的地,事件C 表示甲乘汽车到达目的地,由全概率公式求解即可.【详解】设事件A 表示甲正点到达目的地,事件B 表示甲乘动车到达目的地,事件C 表示甲乘汽车到达目的地,由题意知()0.6,()0.4,(|)0.9,(|)0.7P B P C P A B P A C ====.由全概率公式得()()(|)()(|)0.60.90.40.7P A P B P A B P C P A C =+=⨯+⨯0.280.540.82=+=。
【冲刺卷】高考数学一模试卷含答案

【冲刺卷】高考数学一模试卷含答案一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( ) A .B .C .D .3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12y1.5 4.04 7.5 1218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 4.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<5.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .346.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .7.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎤⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦8.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30C .45︒D .15︒9.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确 10.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.1512.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 16.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC=,则AM AN ⋅的取值范围是_________.17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 19.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.20.计算:1726cos()sin 43ππ-+=_____. 三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 22.已知向量()2sin ,1a x =+,()2,2b =-,()sin 3,1c x =-,()1,d k =(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +,求x 的值. (2)若函数()f x a b =⋅,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+?若存在,求出k 的取值范围;若不存在,请说明理由.23.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.24.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.25.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --的余弦值是63,求直线PA 与平面EAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e ,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.C解析:C 【解析】 【分析】根据函数图象理解二分法的定义,函数f (x )在区间[a ,b ]上连续不断,并且有f (a )•f (b )<0.即函数图象连续并且穿过x 轴. 【详解】解:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )•f (b )<0A 、B 中不存在f (x )<0,D 中函数不连续. 故选C . 【点睛】本题考查了二分法的定义,学生的识图能力,是基础题.3.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.4.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.C解析:C 【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.7.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
【冲刺卷】高考数学一模试卷(含答案)

【冲刺卷】高考数学一模试卷(含答案)一、选择题1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与c 所成的角的大小为( )A .120°B .90°C .60°D .30°2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对3.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .355.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 6.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为 A .π6B .π3C .2π3D .5π67.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值08.函数()f x =的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称9.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>10.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( )A .1,0a b <-<B .1,0a b <->C .1,0a b >-<D .1,0a b >->11.渐近线方程为0x y ±=的双曲线的离心率是( ) A .2 B .1 C .2D .212.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O ),若双曲线的离心率为5,AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)二、填空题13.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 14.曲线21y x x =+在点(1,2)处的切线方程为______________. 15.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.16.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 17.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.18.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.19.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.20.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.三、解答题21.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根. 22.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【冲刺卷】高考数学一模试卷带答案一、选择题1.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .2.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计60 50 110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:2()P K k ≥0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 4.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③5.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 6.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .57.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭ C .2sin 23x y π⎛⎫=+⎪⎝⎭ D .2sin 23y x π⎛⎫=-⎪⎝⎭8.已知函数()32cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确10.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =( )A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-11.在△ABC 中,AB=2,AC=3,1AB BC ⋅=则BC=______ A .3B .7C.2D .2312.已知,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥,则a 与b 的夹角是( ) A .6πB .3π C .23π D .56π 二、填空题13.若过点()2,0M 且斜率为3的直线与抛物线()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =,则a =____.14.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________15.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.18.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.22.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 23.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.24.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.25.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x -所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.A解析:A 【解析】 【分析】 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A4.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.5.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6,由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .6.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.7.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值为0,2,3,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.8.B解析:B 【解析】 【分析】 【详解】试题分析:利用辅助角公式化简函数为()3sin 2cos 2f x x x m=+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.9.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k = 21k k k +<+ 2(1)(1)(1)1k k k +++++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.10.A解析:A 【解析】 【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误.11.A解析:A 【解析】【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.12.B解析:B 【解析】 【分析】利用向量垂直求得222a b a b ==⋅,代入夹角公式即可.【详解】设,a b 的夹角为θ;因为(2)a b a -⊥,(2)b a b -⊥, 所以222a ba b ==⋅,则22|2,|2a a b b a b =⋅⋅=,则2212cos ,.23aa b a b aπθθ⋅===∴=故选:B 【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.二、填空题13.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因 解析:8【解析】 【分析】由直线方程为2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为(a 4-, 设A 点坐标为00(,)x y , 因为BM MA =,所以点M 为线段AB 的中点,所以00()4428)402a x a y ⎧+-⎪=⎪⎪⎨+⎪+⎪=⎪⎩,解得(a A 44+,将(a A 44+代入抛物线方程,即))()2a 8aa 444+=+, 因为0a >, 解得8a =. 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.14.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】 【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i , ∴|z |22(1)310=-+=. 故答案为10. 【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为a bi -.15.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单解析:1,22⎡⎤⎢⎥⎣⎦【解析】 【分析】 作出可行域,yx表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解. 【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以yx 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.16.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.17.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间解析:6π-. 【解析】分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.18.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】由条件,得M12,33⎛⎫⎪⎝⎭,N21,33⎛⎫⎪⎝⎭,可得1221,3333αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,即α=lo2313g,β=lo1323g.所以αβ=lo2313g·lo1312233·21333lg lgglg lg==1.【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【解析】【分析】作出立体图利用直角三角形中的三角函数关系求得对应的边长再利用余弦定理求解即可【详解】如图所示在中∵∴在中∵∴在中∴故答案为:【点睛】本题主要考查了解三角形求解实际情景中的角度问题依据解析:30【解析】【分析】作出立体图,利用直角三角形中的三角函数关系求得对应的边长,再利用余弦定理求解cos ACB∠即可.【详解】如图所示,在Rt ACD中,∵10,45AC m DAC=∠=︒,∴10DC m=在Rt DCB△中,∵30DBC∠=︒,∴103BC m=.在ABC中,)22210103103cos210103ACB+-∠==⨯⨯,∴30ACB∠=︒.故答案为:30【点睛】本题主要考查了解三角形求解实际情景中的角度问题,依据题意正确画出立体图形,确定边的关系再利用余弦定理求解即可.属于基础题.20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y y x c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由ce a =,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(Ⅰ)证明见解析;(Ⅱ)26;(Ⅲ)4.【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得113226MNcos DMNDM∠==.则异面直线BC与MD所成角的余弦值为13.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得34CMsin CDMCD∠==.即直线CD与平面ABD所成角的正弦值为34.详解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM22=13AD AM+AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN22=13AD AN+.在等腰三角形DMN中,MN=1,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD13.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM3ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD22AC AD+.在Rt△CMD中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为34.点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.22.(Ⅰ)22413y x +=, 24y x =.(Ⅱ)330x +-=,或330x -=.【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △的面积为m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.(Ⅱ)解:设直线AP 的方程为()10x my m =+≠,与直线l 的方程1x =-联立,可得点21,P m ⎛⎫-- ⎪⎝⎭,故21,Q m ⎛⎫- ⎪⎝⎭.将1x my =+与22413y x +=联立,消去x ,整理得()223460my my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可学*科.网得直线BQ 的方程为()222623*********m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,令0y =,解得222332m x m -=+,故2223,032m D m ⎛⎫- ⎪+⎝⎭.所以222223613232m m AD m m -=-=++.又因为APD 的面积为2,故22162232m m m ⨯⨯=+,整理得2320m -+=,解得m =m =.所以,直线AP 的方程为330x -=,或330x -=. 【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.23.(1)见解析(2)4(3)7【解析】 【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC中,由题设知AO 1CO ==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME中,11EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD中,CA CD 2AD ===,ACD1S2==,由AO =1,知2CDE1S 22==,由此能求出点E 到平面ACD 的距离. 【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(2)解:取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点, 知ME ∥AB ,OE ∥DC ,∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角. 在△OME中,111222EM AB OE DC ====, ∵OM 是直角△AOC 斜边AC 上的中线,∴112OM AC ==,∴1114cos OEM +-∠==, ∴异面直线AB 与CD所成角大小的余弦为4(3)解:设点E 到平面ACD 的距离为h .E ACD A CDE V V --=,1133ACDCDEh S AO S ∴=...,在△ACD 中,22CA CD AD ===,,∴212724222ACDS⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭, ∵AO =1,213322CDES =⨯⨯=, ∴3121272CDE ACDAO S h S ⨯⋅===,∴点E 到平面ACD 的距离为217.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题.24.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】 【详解】(1)依题意,2,2,24d d ++成等比数列, 故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ;当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =. 25.(1)证明见解析;(2)35. 【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥, 由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =,由线面垂直的判定定理可得:BC ⊥平面11A B E , 结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭, 由11AB A B =可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫=⎪⎝⎭ 设平面1A BC 的法向量为(),,m x y z =,则:()()13333,,,,33022223333,,022m A B x y z x y z m BC x y z x y ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()1,3,1m =,333,344EF ⎛⎫= ⎪⎝⎭此时4cos ,53552EF mEF m EF m ⋅===⨯⨯, 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===. 【点睛】 本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。