最新中南大学2002-研究生入学考试数学分析试题
中南大学研究生入学考试试题高等代数

中南大学2002年研究生入学考试试题考试科目:高等代数注:以下2R 表示n 维实列向量空间,n n R ⨯表示n 阶实矩阵的全体,T A 表示矩阵A 的转置,()Tr A 表示矩阵A 的迹。
一、(20分)设0x 是n 维欧氏空间V 中非零向量,,0k R k ∈≠,定义变换00(,),Tx x k x x x x V =+∈1.验证T 是线性变换; 2.设0x 在V 的标准正交基12,,,n e e e 下的坐标为()12,,,n ξξξ,求在该基下的矩阵;3.证明T 为对称变换,即(,)(,)Tx y x Ty =,,x y V ∀∈; 4.证明:T 为正交变换的充要条件是22k x =-。
二、(16分)设n n A R ⨯∈,记(){:,}.n n C A B AB BA B R ⨯==∈1.证明:()C A 是n n R ⨯的子空间; 2.当A I =时,求()C A ; 3.当100002000A n ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭时,求()C A 的维数和一组基。
三、(16分)设12(,,,)T n b b b b =为n 维非零列向量,求矩阵00H b A b ⎡⎤=⎢⎥⎣⎦的特征值和特征向量,其中H b 表示列向量b 的共轭转置。
四、(14分)设,,n n n A R b x R ⨯∈∈,证明线性方程组T T A Ax A b =必有解。
五、(12分)设,A B 为n 阶实矩阵,证明0.A B BA≥-六、(12分)求证:A 为幂零阵(即存在正整数m ,使得0m A =)的充要条件是:对任一自然数r ,有()0.r Tr A =七、(10分)设,A B 是n 阶实对称矩阵,0A ≠,证明:A 为正定矩阵的充要条件是,对所有正定矩阵B ,恒有()0.Tr AB >中南大学2003年研究生入学考试试题考试科目:高等代数一、填空题:(每小题6分,共30分)1、设四阶方阵1234(,,,)A αααα=,1234(,,,)B βααα=,其中1234,,,,ααααβ为4维列向量,若||1,||2A B ==,则||()A B +=。
2002全国研究生考研数学二真题及解析

线性表出矛盾.故向量组
,
线性无关,选
1, 2, 3
2
(A) 方法 2:用排除法
B 选项:取 k
0 ,向量组
,k
1, 2, 3
1
1, 2, 3 k
1
2
即 1, 2 , 3 ,
2
2
线性相关不成
立,否则因为
, 线性相关,又
1, 2, 3
线性无关,故 可由
1, 2 , 3
线性表出.即存在常数
2
,使得
1, 2 , 3
2.
(2)【答案】 1 【详解】面积
S xe dx
xde
x
x
0
0
xe e dx
x
x
0
b
xe e
xe e
x
x
x
x
lim
0
b
0b
b
1
其中
.
lim be b lim
lim 0
洛
b
b
b
e
e
b
b
lim be b e b
11
(3)【答案】 y
x1
【详解】方法 1:这是属于缺 x 的 y
f ( y, y ) 类型.
命
dp dp dy . dp
y p, y
p
dx dy dx
dy
原方程 yy
y 2 0 化为 yp dp p2 0 ,得
dy
p
y dp p 0
0
或
dy
p
dy 0
'
0
y
,即
,不满足初始条件
x0
dx
1
2002考研数四真题及解析

2002年全国硕士研究生入学统一考试数学四试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2) 已知f (x )的一个原函数为2ln x ,则()xf x dx '=⎰.(3) 设矩阵1123-⎛⎫ ⎪⎝⎭,232B A A E =-+,则1B -=.(4) 设向量组123(,0,),(,,0), (0,,)a c b c a b ααα===,线性无关,则,,a b c 必须满足关系式.(5) 设随机变量,X Y 的联合概率密度分布为则,X Y 的相关系数ρ=.二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设函数()f x 连续,则在下列变上限定积分定义的函数中,必为偶函数的是 ( )(A)0[()()]xt f t f t dt +-⎰ (B)0[()()]xt f t f t dt --⎰(C)2()xf t dt ⎰(D)20()xf t dt ⎰(3) 设,A B 为n 阶矩阵, ,A B **分别为,A B 对应的伴随矩阵,分块矩阵00A C B ⎛⎫= ⎪⎝⎭,则C 的伴随矩阵C *= ( )(A)00A A B B **⎛⎫⎪ ⎪⎝⎭, (B)00B B A A **⎛⎫⎪ ⎪⎝⎭, (C)00A B B A **⎛⎫⎪ ⎪⎝⎭, (D)00B A A B **⎛⎫⎪ ⎪⎝⎭(4) 设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则 ( )(A)12()()f x f x +必为某一随机变量的概率密度. (B)12()()F x F x 必为某一随机变量的分布函数. (C)12()()F x F x +必为某一随机变量的分布函数. (D)12()()f x f x 必为某一随机变量的概率密度. (5) 设随机变量12,,,n X X X 相互独立,12n n S X X X =+++则根据列维—林德柏格()LevyLindberg 中心极限定理, 当n 充分大时,n S 近似服从正态分布, 只要12,,,n X X X ( )(A) 有相同的数学期望. (B) 有相同的方差.(C) 服从同一指数分布. (D) 服从同一离散型分布.三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y zxe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设闭区域22:,0.D x y y x +≤≥(,)f x y 为D 上的连续函数,且8(,)(,).Df x y f u v dudvπ=⎰⎰求(,)f x y.七、(本题满分7分)设某商品需求量Q是价格p的单调减少函数:()Q Q p=,其需求弹性2220.192ppη=>-(1) 设R为总收益函数,证明(1).dRQdpη=-(2) 求6p=时,总收益对价格的弹性,并说明其经济意义.八、(本题满分6分)设函数(),()f xg x在[,]a b上连续,且()0g x>.利用闭区间上连续函数性质,证明存在一点[,]a bξ∈,使()()()()b ba af xg x dx f g x dxξ=⎰⎰.九、(本题满分8分)设四元齐次方程组()I为1231234230,20,x x xx x x x+- =⎧⎨++-=⎩且已知另一四元齐次线性方程组()II的一个基础解系为12(2,1,2,1),(1,2,4,8)T Ta aαα=-+=-+.(1) 求方程组()I的一个基础解系;(2)当a为何值时,方程组()I与()II有非零公共解?在有非零公共解时,求出全部非零公共解.十、(本题满分8分)设实对称矩阵111111aA aa⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 求可逆矩阵P,使1P A P-为对角形矩阵,并计算行列式A E-的值.十一、(本题满分8分)设A, B 是任意二事件,其中A 的概率不等于0和1,证明:(|)(|)P B A P B A=是事件A与B独立的充分必要条件.十二、(本题满分8分)假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2002年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限,1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】22ln ln x x C -+ 【详解】用分部积分法()()()()xf x dx xdf x xf x f x dx '==-⎰⎰⎰由题设知22ln ()(ln )xf x x x '==, 所以212ln ()2ln ln ln ,xf x dx dx xd x x C x===+⎰⎰⎰所以 2()()()2ln ln xf x dx xf x f x dx x x C '=-=-+⎰⎰.(3)【答案】01211⎛⎫⎪--⎝⎭【详解】1123A -⎛⎫=⎪⎝⎭,故11221A E --⎛⎫-= ⎪⎝⎭,0122A E -⎛⎫-= ⎪⎝⎭, 所以 232(2)()B A A E A E A E =-+=--110121212220-----⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因为0B ≠,故B 可逆,()()1B E E B -→初等行变换(B 经过初等行变换化为单位矩阵的同时,单位矩阵化为1B -)[]21102001B E --⎡⎤= ⎢⎥⎣⎦2001122110⎡⎤⎢⎥--⎣⎦交换,行的顺序 2001210111⎡⎤+ ⎢⎥-⎣⎦行行1121001201112(1)⨯⎡⎤⎢⎥--⨯-⎣⎦行行故 1B -=01211⎛⎫⎪--⎝⎭.(4)【答案】0abc ≠【详解】方法1:由题设条件三个三维向量123,,ααα线性无关,则以123,,ααα为列向量的三阶矩阵的秩为3123,,0,ααα⇔≠(n 阶矩阵A 的秩等于n 的充要条件是0A ≠)1230,,00a b c a c bααα=222000000abc abc c a b =++⨯⨯-⨯-⨯-⨯2abc =故0abc ≠.方法2:123,,ααα线性无关则以123,,ααα为列向量的三阶矩阵的秩为3⇔齐次线性方程组有非零解的充要条件是系数矩阵的秩小于未知数的个数,故线性齐次方程组[]112233123,,0x x x x αααααα++==只有零解.⇔当齐次方程组对应矩阵为方阵时,有123,,0(())m n A r A n ααα⨯≠=时,故 1230,,00a b c a c bααα=222000000a b c a b c c a b=++⨯⨯-⨯-⨯-⨯20abc =≠(5) 【答案】0.02-.【详解】2X 、2Y 和2X 2Y 都是01-分布,而01-分布的期望值恰为取1时的概率p .由离散型随机变量X 和Y 的联合概率分布表可得2X 的可能取值为0和1,且2Y 的可能取值也为0和1,且X 和Y 的边缘分布为{}00.070.180.150.4P X ==++=;{}10.080.320.200.6P X ==++=; {}10.070.080.15P Y =-=+=;{}00.180.320.5P Y ==+=; {}10.150.200.35P Y ==+=;故有{}{}220,00,00.18,P X Y P X Y ======{}{}{}220,10,10,10.070.150.22,P X Y P X Y P X Y =====-+===+= {}{}221,01,00.32,P X Y P X Y ======{}{}{}221,11,11,10.080.200.28,P X Y P X Y P X Y =====-+===+=而边缘分布律:{}{}2000.4P X P X ====,{}{}2110.6P X P X ====, {}{}2000.5P Y P Y ====,{}{}{}21110.150.350.5P Y P Y P Y ===-+==+=所以,22(,)X Y 的联合分布及其边缘分布为X0 10.4 0.6 Y1- 0 10.15 0.5 0.35由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】对与(D),令0()[()()]xF x t f t f t dt =+-⎰,则0()[()()]xF x t f t f t dt --=+-⎰,令t u =-,则dt du =-,所以()[()()]()[()()]xxF x t f t f t dt u f u f u du --=+-=--+-⎰⎰[()()](),xu f u f u du F x =-+=⎰所以(D)为偶函数.同理证得(A)、(C)为奇函数,而(B)不确定,如()1f t t =+.故应选(D).(3)【答案】(D)【详解】方法1:直接算出C *因为准对角矩阵12n A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭可逆的充要条件是(1,2,,)iA i n =均可逆,且有111121n A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭,故,A B 均可逆. 又1212n n A A A A A A A ==⋅,故1111000000A A A C C C A B B B B --*--⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭110000A B A B A A B B A B -*-*⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦故应选(D).方法2:对四个选项逐个验算,选使2n CC C E *=(C 为22n n ⨯矩阵,故这里的单位矩阵为2n 阶方阵)成立的C *即可.对(D)有000000A B A B AA CC B A B A BB *****⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(矩阵的乘法) 00nn A B E A B E ⎡⎤=⎢⎥⎣⎦(AA A E *=,BB B E *=)nn E A B E ⎡⎤=⎢⎥⎣⎦(提取公因子) 2n C E =(因为12nA A A 12n A A A =⋅,故C AB =)(4) 【答案】D【分析】函数()f x 成为概率密度的充要条件为:(1)()0;f x ≥ (2)() 1.f x dx +∞-∞=⎰函数()F x 成为分布函数的充要条件为:(1)()F x 单调不减;(2)lim ()0,lim ()1;x x F x F x →-∞→+∞==(3)()F x 右连续.我们可以用以上的充要条件去判断各个选项,也可以用随机变量的定义直接推导. 【详解】方法1:(A)选项不可能,因为1212[()()]()()1121f x f x dx f x dx f x dx +∞+∞+∞-∞-∞-∞+=+=+=≠⎰⎰⎰也不能选(B),因为可取反例,令121,101,01()()0,0,x x f x f x -<<<<⎧⎧==⎨⎨⎩⎩其他其他显然12()()f x f x ,均是均匀分布的概率密度. 而12()()0f x f x =,不满足12()()1f x f x dx +∞-∞=⎰条件.(C)当然也不正确,因为12lim [()()]1121x F x F x →+∞+=+=≠根据排除法,答案应选(D).方法2:令12max(,)X X X =,显然X 也是一个随机变量. X 的分布函数为{}{}{}1212()max(,),F x P X x P X X x P X x X x =≤=≤=≤≤{}{}1212()()P X x P X x F x F x =≤≤=.(5)【答案】C .【分析】列维—林德柏格()LevyLindberg 中心极限定理要求随机变量12,,,n X X X 相互独立、同分布且方差存在.当n 充分大时,12n n S X X X =+++才近似服从正态分布,故本题只要求验证满足同分布和方差存在的条件.【详解】方法1:当条件(C)成立时,同分布满足,方差存在也满足,因为指数分布的随机变量方差存在的,答案应选(C). 方法2:条件(A)、(B)均不能保证12,,,n X X X 具有相同的分布.条件(D)不能保证方差的存在,根据排除法,唯一的正确选项只能是(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等价无穷小202arctan(1)lim32x x t dt x →+⎰洛必达法则洛必达法则20arctan(1)2lim 3x x xx→+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-= x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y ze x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y ze x dx e y dyf dx f dy f e z +-+'''++⨯+ 1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,zy∂∂.由x y z xe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x x z z z xe e x ze e ∂+=∂+,(10)z +≠设.类似可得,y yz zz ye e y ze e∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz z z z u xe e u ye e f f f f x ze ey ze e∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得 du 1323(1)(1)(1)(1)x y z ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x . 命2sin u x =,则有sin x =x =()f u =(通过换元求出函数的表达式)arcsin ()x f x dxx == sin 2sin cos cos ttt tdt t⎰(换元积分法) sin t tdt =2⎰[]2cos sin t t tC =-++(分部积分法)2C ⎡=+⎣.六【详解】令(,),Df u v dudv A =⎰⎰于是8(,).f x y A π=把8(,)f u v A π=代入(,),Df u v dudv A =⎰⎰得8DA A dudv π⎫=⎪⎭⎰⎰8D D A dudv π=-⎰⎰. 而区域D 是以(0,12)为圆心,以12为半径的半圆面(如图所示),所以 211228Ddudv D ππ⎛⎫=== ⎪⎝⎭⎰⎰的面积sin 20Dd πθθ ⎰⎰极坐标3sin 22201(1)3d d r πθθ⎡⎤=--⎢⎥⎣⎦⎰⎰sin 322201(1)3r d θπθ⎡⎤=--⎢⎥⎣⎦⎰3201(1cos )3d πθθ=-⎰32011cos 323d ππθθ=⨯-⎰22011(1sin )sin 323d ππθθ=⨯--⎰32200111sin |sin |3239πππθθ=⨯-+12(),323π=- 得到 12(),323A A π=--解得 12()623A π=- 所以42(,)().323f x y ππ=-七【分析】弹性公式:||()p dQQ p dpη=【详解】(1) 总收益()(),R p pQ p = 两端对p 求导得()()1()dR dQ p dQ Q p p Q p dp dp Q p dp ⎛⎫=+=+ ⎪⎝⎭(1) 又因为()Q p 是p 的单调减函数,故0dQ dp<,按弹性公式有()p dQQ p dp η=-,即()p dQQ p dpη=-,代入(1),得()(1).dRQ p dpη=- (2) 总收益R 对价格p 的弹性(1)1ER p dR pQ Ep R dp R ηη==-=-2222219231192192p p p p -=-=-- 所以670.54.13p ER Ep==≈ 经济意义:当6p =时,若价格上涨1%,则总收益将增加0.54%.八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()b abaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x d x⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】(1)对方程组(I)的系数矩阵作初等行变换,有:23101211A -⎡⎤=⎢⎥-⎣⎦1212112310-⎡⎤→⎢⎥-⎣⎦交换,行的顺序21212110132-⨯-⎡⎤→⎢⎥--⎣⎦行行 系数矩阵的秩为2,故基础解系由4-2个线性无关解向量组成,选34,x x 为自由未知量,分别取3410x x ==,及3401x x ==,,求得方程组的两个线性无关解12(5,3,1,0)(3,2,0,1)T T ββ=-=-,由此可得方程组(I)的基础解系为12(5,3,1,0)(3,2,0,1)TTββ=-=-,.(2)方法1:由题设条件,根据齐次线性方程组的解的结构,方程组(II)的通解为11221221122418k k k k a a αα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+=+⎢⎥⎢⎥+⎢⎥⎢⎥+⎣⎦⎣⎦1212121222(2)4(8)k k k k a k k k a k -⎡⎤⎢⎥-+⎢⎥=⎢⎥++⎢⎥++⎣⎦ (数乘运算,数与向量的每个元素相乘); (对应元素相加)方程组(I)与(II)有非零公共解,即方程组(II)的有些解也是(I)的解,把(II)的通解表达式代入方程组(I),整理后得112(1)0()(1)(1)0a k a k a k +=⎧*⎨+-+=⎩要使方程组(I)(II)有非零公共解,只需关于12,k k 的方程组()*有非零解.所以,当1a ≠-时,由()*知120k k ==,方程组(I)与(II)无非零公共解;当1a =-时,无论12,k k 为何值,()*恒成立,(II)的通解满足方程组(I),即方程组(II)的全部解都是(I)的解,故1a =-时,11221221121417k k k k αα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦是方程组(I)、(II)的全部非零公共解(12,k k 为不全为零的任意常数).方法2:方程组(I)的通解为1122λβλβ+,(II)的通解为1122k k αα+,则方程组(I)(II)的公共解应满足11221122k k ααλβλβ+=+,即112211220k k λβλβαα+--=方程组(I)与(II)有非零公共解,即存在不全为零的1212,,,k k λλ使得上式成立,把1212,,,k k λλ看作未知数,问题转化为上式存在非零解,写成矩阵的形式11221212112253213212[,,,]0()10240118k k a k k a λλλλββαα--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥==*⎢⎥⎢⎥⎢⎥--+⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦对系数矩阵做初等变换5321321210240118a a --⎡⎤⎢⎥--⎢⎥⎢⎥+⎢⎥+⎣⎦122111321210240118a a +-⎡⎤⎢⎥--⎢⎥→⎢⎥+⎢⎥+⎣⎦行行212111110310240118a a +-⎡⎤⎢⎥-⎢⎥→⎢⎥+⎢⎥+⎣⎦行行 121103************a a -⎡⎤⎢⎥-⎢⎥→⎢⎥+⎢⎥+⎣⎦交换,的顺序212311103011701270118a a +⨯+-⎡⎤⎢⎥⎢⎥→⎢⎥+⎢⎥+⎣⎦行行行行32421103011700100001a a ---⎡⎤⎢⎥⎢⎥→⎢⎥+⎢⎥+⎣⎦行行行行 当1a ≠-时,系数矩阵的秩为4,()*只有零解,方程组(I)与(II)无非零公共解. 若1a =-时,系数矩阵的秩为2(小于未知量的个数),故上述方程组()*有无穷多解,一定有非零解,即方程组(I)(II)有非零公共解,其同解方程组为1222123070k k k λλλ-+-=⎧⎨--=⎩,取12,k k --为自由未知量, 分别取1122,k c k c -=-=,解得2127,c c λ=--122122373k c c c λλ=-=--+124c c =--此时11221122k k ααλβλβ+=+,故1122c c αα--(或1122λβλβ+),其中12,c c 是不同时为零的任意常数,为方程组(I)(II)的非零公共解.十【详解】矩阵A 的特征多项式111111aE A aaλλλλ----=----101131111a a aaλλλλ----+----行行 13112111a aa λλλ-------+列列112(1)(1)11aa a λλλ+-=----+(按第1行展开,其中11(1)+-中的两个1分别指(1)a λ--所在的行数和列数)(1)[()(1)2]a a a λλλ=----+-2(1)[()()2]a a a λλλ=---+-- (1)(1)(2)a a a λλλ=-----+2(1)(2)a a λλ=---+令0E A λ-=,得矩阵A 的特征值1231, 2.a a λλλ==+=-对于特征值121,a λλ==+ 由[(1))]0a E A X +-=,即1231111110111x x x --⎛⎫⎛⎫ ⎪⎪-= ⎪⎪ ⎪⎪-⎝⎭⎝⎭, 系数矩阵进行初等行变换2131111111111000111000++----⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭行行行行,故1111111110001111000r r ----⎛⎫⎛⎫ ⎪ ⎪-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 基础解系中含有2个(未知量的个数-系数矩阵的秩)线性无关的解向量,同解方程组为1230x x x --=,选23,x x 为自由未知量,取231,0x x ==和230,1x x ==,可得对应的两个线性无关的特征向量T T 12(1,1,0),(1,0,1)ξξ==对于特征值32a λ=-,由[(2))]0a E A X --=,即1232111210112x x x ---⎛⎫⎛⎫⎪⎪--= ⎪⎪ ⎪⎪--⎝⎭⎝⎭,系数矩阵做初等行变换211121112---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭12112211112--⎛⎫ ⎪--- ⎪ ⎪--⎝⎭交换,行的顺序12121203331033--⎛⎫-⨯ ⎪- ⎪ ⎪-⎝⎭行行行-行 1213-2033000--⎛⎫ ⎪- ⎪ ⎪⎝⎭行行121130113000--⎛⎫⎪⨯- ⎪ ⎪⎝⎭行,故2111211210112112000r r -----⎛⎫⎛⎫⎪ ⎪--=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,基础解系中含有1个(未知量的个数-系数矩阵的秩)线性无关的解向量,同解方程组为12323200x x x x x --+=⎧⎨-=⎩,选3x 为自由未知量,取31x =,可得对应的特征向量T 3(1,1,1)ξ=-令矩阵123111()101,011P ξξξ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦有1112a P AP a a -+⎡⎤⎢⎥=Λ=+⎢⎥⎢⎥-⎣⎦由A 的特征值为1,1,2a a a ++-,可得A E -的特征值为,,3a a a -. n 阶矩阵的行列式等于它的n 个特征值的乘积,所以2(3).A E a a -=-十一【详解】本题涉及条件概率及独立性.应熟记有关的公式()(|)()P AB P B A P A = 及()()()P AB P A P B =; 方法1:由(|) (|)P B A P B A =()()()()()1()()P AB P AB P B P AB P A P A P A -⇔==- [][]()1()()()()P AB P A P A P B P AB ⇔-=-()()()P AB P A P B ⇔=所以,(|) (|)P B A P B A =是A 与B 独立的充分必要条件. 方法2:A 与B 独立,等价于A 与B 也独立, 由A 与B 独立有()()()(|) =().()()P AB P A P B P B A P B P A P A == 同理,,A B 独立有 (|) ()P B A P B =.总之,A 与B 独立,等价于A 与B 也独立,又等价于 ()(|)P B A P B A =.十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为: 1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y y yX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。
2002考研数一真题及解析

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1)2eln dxx x+∞=⎰(2) 已知函数()y y x =由方程2610ye xy x ++-=确定,则''(0)y = . (3) 微分方程2'''0yy y +=满足初始条件11,'2yy x x ====的特解是 . (4) 已知实二次型222123123121323(,,)()444f x x x a x x x x x x x x x =+++++经正交变换x Py =可化成标准型216f y =,则a = .(5) 设随机变量X 服从正态分布2(,)(0),N μσσ>且二次方程240y y X ++=无实根的概 率为12,则μ=二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 考虑二元函数(,)f x y 的下面4条性质:①(,)f x y 在点00(,)x y 处连续, ②(,)f x y 在点00(,)x y 处的两个偏导数连续, ③(,)f x y 在点00(,)x y 处可微, ④(,)f x y 在点00(,)x y 处的两个偏导数存在. 若用""P Q ⇒表示可由性质P 推出Q ,则有 ( ) (A) ②⇒③⇒①. (B)③⇒②⇒①. (C) ③⇒④⇒①. (D)③⇒①⇒④.(2) 设0(1,2,3,...),n u n ≠=且lim1,n nnu →∞=则级数11111(1)()n n n n u u ∞+=+-+∑ ( ) (A) 发散. (B)绝对收敛.(C)条件收敛. (D)收敛性根据所给条件不能判定.(3) 设函数()y f x =在(0,)+∞内有界且可导,则 ( )(A) 当lim ()0x f x →+∞=时,必有lim '()0x f x →+∞=.(B)当lim '()x f x →+∞存在时,必有lim '()0x f x →+∞=.(C) 当0lim ()0x f x +→=时,必有0lim '()0x f x +→=. (D)当0lim '()x f x +→存在时,必有0lim '()0x f x +→=.(4) 设有三张不同平面的方程123,1,2,3,i i i i a x a y a z b i ++==它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为 ( )(5) 设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则 ( )(A)12()()f x f x +必为某一随机变量的概率密度. (B)12()()f x f x 必为某一随机变量的概率密度. (C) 12()()F x F x +必为某一随机变量的分布函数. (D) 12()()F x F x 必为某一随机变量的分布函数.三、(本题满分6分)设函数()f x 在0x =的某邻域内具有一阶连续导数,且(0)0,'(0)0,f f ≠≠若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.四、(本题满分7分)已知两曲线()y f x =与2arctan 0xt y e dt -=⎰在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ().n nf n→∞五、(本题满分7分)计算二重积分22max{,},x y De dxdy ⎰⎰其中{(,)|01,01}D x y x y =≤≤≤≤.六、(本题满分8分)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d .记2221[1()][()1],L x I y f xy dx y f xy dy y y=++-⎰ (1)证明曲线积分I 与路径L 无关; (2)当ab cd =时,求I 的值.七、(本题满分7分)(1)验证函数3693()13(3)!nx x x x y x x n =+++++∞<<+∞+(-)!6!9!满足微分方程''';x y y y e ++=(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 坐标面,其底部所占的区域为{}22(,)75D x y x y xy =+-≤,小山的高度函数为22(,)75h x y x y xy =--+.(1)设00(,)M x y 为区域D 上的一点,问(,)h x y 在该点沿平面上什么方向的方向导数最大?若记此反向导数的最大值为00(,)g x y ,试写出00(,)g x y 表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中的(,)g x y 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知4阶方阵1234(,,,),A αααα=1234,,,αααα均为4维列向量,其中234,,ααα线性无关,1232ααα=-.如果1234βαααα=+++,求线性方程组Ax β=的通解.十、(本题满分8分)设,A B 为同阶方阵,(1)如果,A B 相似,试证,A B 的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,试证(1)的逆命题成立.十一、(本题满分8分)设随机变量X 的概率密度为1cos0()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分8分)其中0<<)2θθ(是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩阵估计值和最大似然函数估计值.2002年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】 1【详解】先将其转化为普通定积分,求其极限即得广义积分.222ee e ln 11lim lim lim lim 11ln ln ln ln ln b b b b b b b dx dx d x e x x x x x x b +∞→+∞→+∞→+∞→+∞⎡⎤⎡⎤===-=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰(2)【答案】 -2【详解】y 是由2610ye xy x ++-=确定的x 的函数,两边对x 求导,6620,y e y xy y x ''+++=所以 62,6yy xy e x+'=-+两边再对x 求导,得 2(6)62(62)(6),(6)y y y e x y y x e y y e x ''++++''=-+()- 把0x =代入,得(0)0y =,(0)0y '=,代入y '',得(0)2y ''=-.(3)【答案】y =【详解】方法1:这是属于缺x 的(,)y f y y '''=类型. 命,dp dp dy dp y p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dpypp dy+=,得 0p =或0dpyp dy+= 0p =,即0dy dx =,不满足初始条件1'02y x ==,弃之;所以0p ≠ 所以,0dp yp dy +=,分离变量得dy dp y p =-,解之得1.C p y = 即1.C dy dx y= 由初始条件11,'2yy x x ====,可将1C 先定出来:1111,212C C ==. 于是得12dy dx y=解之得,22,y x C y =+=以01x y ==代入,得1=“+”号且21C =.于是特解是y =方法2:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=. 以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=. 即21yy '=,改写为2()1y '=. 解得2,y x C =+y =再以初值代入,1=""+且21C =. 于是特解y =(4)【答案】2【详解】方法1:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有600T P AP ⎛⎫ ⎪= ⎪⎪⎝⎭,故1600T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭,即 600000000A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦因为矩阵的n 个特征值之和等于它的主对角元素之和,33113iii i i aa λ====∑∑,相似矩阵具有相同的特征值,316006ii λ==++=∑故有36a =,得2a =.方法2:二次型f 的对应矩阵222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫⎪== ⎪ ⎪⎝⎭,即600000000A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似矩阵具有相同的特征值,知0是A 的特征值,根据特征值的定义,有00E A A -==222222a A a a =4222314242a a a a a+++把第,列加到第列 1221(4)1212a a a +提取第列的公因子12221(4)02031002a a a -+---行行行行2(4)(2)0a a =+-=,得 4a =-或2a =, (1) 又6是A 的特征值,根据特征值的定义,有60E A -=,由6226226622262622226a a E A a a a a ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(对应元素相减)两边取行列式,6226262226aE A a a----=------222231262226a a aa a---------把第,列加到第列1221(2)162126a a a -------提取第列的公因子12221(2)08031008a a a -------行行行行2(2)(8)0a a =--=得 2a =或8a = (2)因为(1),(2)需同时成立,取它们的公共部分,得2a =.方法3:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫ ⎪== ⎪ ⎪⎝⎭,即 600000000A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似矩阵具有相同的特征值,知A 的特征值,其中一个单根是6,一个二重根应是0,直接求A 的特征值,即由222222222222a a E A a a a a λλλλλλλ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(对应元素相减)两边取行列式,222222aE A a a λλλλ----=------4222342142a a a a aλλλλλ------------把第,列加到第列1221(4)1212a aa λλλ--------提取第列的公因子12221(4)0(2)03100(2)a a a λλλ----------行行行行2[(4)][(2)]a a λλ=----其中单根为4a +,二重根为2a -,故46a +=,及20a -=,故知2a =.方法4:f 的对应矩阵为222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,经正交变换x Py =,可化成标准型216f y =,故P 为正交矩阵,有1T P P -=,且对实对称矩阵A ,有1600T P AP P AP -⎛⎫⎪== ⎪ ⎪⎝⎭,即 226220220a A a a ⎡⎤⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦故()()1r A r =Λ=,222222a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦22122322a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦交换第和第行的顺序222210223120222a a a a a a ⎡⎤-⎢⎥⎢⎥--⎢⎥-⨯⎢⎥--⎣⎦行行行行222320220042a a a a a⎡⎤⎢⎥⎢⎥+--⎢⎥⎢⎥⎢⎥--⎣⎦行行2223202200(28)a a a a a ⎡⎤⎢⎥⨯--⎢⎥⎢⎥-+-⎣⎦行2202200(2)(4)a a a a a ⎡⎤⎢⎥→--⎢⎥⎢⎥--+⎣⎦因()1r A =,故20a -=,且(2)(4)0a a -+=,故应取2a =.(5)【答案】4.【详解】二次方程无实根,即240y y X ++=的判别式1640X ∆==-<,也就有4X >. 此事发生概率为12,即{}142P X >=, 对于2(,)(0),XN μσσ>{}12P X μ>=,因为正态分布的密度函数为22()()2x f x μσ⎧⎫-=-⎨⎬⎩⎭x -∞<<+∞ 关于x μ=对称;另一方面,由概率的计算公式,()f x 与x 轴所围成的面积是1,所以x μ=将面积平分为两份 {}12P X μ>=,所以4μ=.二、选择题(1)【详解】下述重要因果关系应记住,其中A B ⇒表示由A 可推出B . 无箭头者无因果关系,箭头的逆向不成立.(,)x f x y '与(,)y f x y '连续(,)f x y ⇒可微(,)(,)(,)xy f x y f x y f x y ⎧''⎪⇒⎨⎪⎩与存在连续 其中均指在同一点处. 记住上述关系,不难回答本选择题,故应选(A).(2)【详解】首先要分清绝对收敛和条件收敛的定义,通过定义判定级数的敛散性.考察原级数11111(1)()n n n n u u ∞+=+-+∑的前n 项部分和1122334111111111()()()(1)()n n n n S u u u u u u u u ++=+-+++-+-+11111(1)n n u u ++=+- 由lim10n n n u →∞=>知,当n 充分大时,0n u >且lim n n u →∞=+∞. 所以11lim n n S u →∞=(收敛),另一方面,1111()n n n u u ∞=++∑为正项级数,用比较判别法的极限形式,由题设条件lim1n nnu →∞=的启发,考虑1111111()(1)lim lim lim 1121(21)1(1)n n n n n n n n n n n n n u u u u u u u u n n n u u n n n n n ++++→∞→∞→∞+++++==+++++ 11(1)(1)[](1)lim21n n n n n u u n n n n n n n u u n +→∞+++++=+11(1)(1)lim 1211n nn nn u u n n n nu u n n n n+→∞++++==+⋅⋅+ 而级数1111111()11n n n n n n n ∞∞∞===+=+++∑∑∑是发散的,所以1111()n n n u u ∞=++∑也发散,所以选(C).(3)【详解】方法1:排斥法.令21()sin f x x x =,则()f x 在(0,)+∞有界,2221()sin 2cos f x x x x'=-+, lim ()0x f x →+∞=,但lim ()x f x →+∞'不存在,故(A)不成立;0lim ()0x f x +→=,但 0lim ()10x f x +→'=≠,(C)和(D)不成立,故选(B). 方法2:证明(B)正确. 设lim ()x f x →+∞'存在,记lim ()x f x A →+∞'=,证明0A =.用反证法,若0A >,则对于02Aε=>,存在0X >,使当x X >时,()2A f x A ε'-<=,即3()2222A A A AA f x A '=-<<+=由此可知,()f x '有界且大于2A.在区间[,]x X 上应用拉格朗日中值定理,有()()()()()()2Af x f X f x X f X x X ξ'=+->+-从而lim ()x f x →+∞=+∞,与题设()f x 有界矛盾.类似可证当0A <时亦有矛盾. 故0A =.(4) 【答案】(B)【详解】三张不同平面的方程分别为123,1,2,3,i i i i a x a y a z b i ++==判断三个平面有无公共点即判断方程组111213121222323132333a x a y a z b a x a y a z b a x a y a z b++=⎧⎪++=⎨⎪++=⎩有无公共解,且方程组有多少公共解平面就有多少公共点,由于方程组的系数矩阵与增广矩阵的秩都是23<(未知量的个数),所以方程组有解且有无穷多解,故三个平面有无穷多个公共点,故应排除(A)三平面唯一交点(即方程组只有唯一解)(C)、(D)三平面没有公共交点(即方程组无解).故应选(B),三个平面相交于一条直线,直线上所有的点均是平面的公共点,即有无穷多个公共点.(5)【答案】D【分析】函数()f x 成为概率密度的充要条件为:(1)()0;f x ≥ (2)() 1.f x dx +∞-∞=⎰函数()F x 成为分布函数的充要条件为:(1)()F x 单调不减; (2)lim ()0,lim ()1;x x F x F x →-∞→+∞==(3)()F x 右连续.我们可以用以上的充要条件去判断各个选项,也可以用随机变量的定义直接推导. 【详解】方法1:(A)选项不可能,因为1212[()()]()()1121f x f x dx f x dx f x dx +∞+∞+∞-∞-∞-∞+=+=+=≠⎰⎰⎰也不能选(B),因为可取反例,令121,101,01()()0,0,x x f x f x -<<<<⎧⎧==⎨⎨⎩⎩其他其他显然12()()f x f x ,均是均匀分布的概率密度. 而12()()0f x f x =,不满足12()()1f x f x dx +∞-∞=⎰条件.(C)当然也不正确,因为12lim[()()]1121x F x F x →+∞+=+=≠根据排除法,答案应选(D).方法2:令12max(,)X X X =,显然X 也是一个随机变量. X 的分布函数为{}{}{}1212()max(,),F x P X x P X X x P X x X x =≤=≤=≤≤{}{}1212()()P X x P X x F x F x =≤≤=.三【详解】方法1:由题设条件知有lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 又由洛必达法则,00()(2)(0)limlim(()2(2))(2)(0)h h af h bf h f af h bf h a b f h→→+-'''=+=+由于()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,由高阶无穷小的定义知上式等于0,又由'(0)0,f ≠ 得20a b +=.解1020a b a b +-=⎧⎨+=⎩联立方程组得,2,1a b ==-.方法2:分别将(),(2)f h f h 按佩亚诺余项泰勒公式展开到()o h ,有1()(0)(0)()f h f f h o h '=++,2(2)(0)2(0)()f h f f h o h '=++从而 3()(2)(0)(1)(0)(2)(0)()af h bf h f a b f a b f h o h '+-=+-+++ 由题设条件知,10,20,a b a b +-=+= 所以2,1a b ==-. 方法3:由题设条件,有lim[()(2)(0)](1)(0)0h af h bf h f a b f →+-=+-=由于(0)0f ≠,所以10a b +-=. 再将1a b =-代入01lim [()(2)(0)]h af h bf h f h→+-,并凑成导数定义形式,有000()(2)(0)(1)()(2)(0)0limlim()(0)()(0)(2)(0)lim[2]2(0)(0)2(0)1)(0)h h h af h bf h f b f h bf h f h hf h f f h f f h f b b h h h f bf bf b f →→→+--+-==---=-+''''=-+=+( 从而 2,1a b ==-.四【详解】由2arctan 0xt y e dt -=⎰知(0)0y =,由变上限积分的求导公式得2(arctan )(arctan )x y e x -''=⋅2(arctan )21,1x e x-=+ 所以 2(arctan0)210110y e-'==+() 因此,过点(0,0)的切线方程为.y x = ()y f x =在点(0,0)处与上述曲线有相同的切线方程,于是(0)0,(0)1f f '==.2()(0)2lim ()lim 1n n f f nnf nn→∞→∞-=2()(0)2lim 2n f f n n →∞-=2(0)2f '==五【详解】应先将{}22max ,x y e写成分块表达式. 记{}{}12(,)01,0,(,)01,1D x y x y x D x y x x y =≤≤≤≤=≤≤≤≤于是 {}2222max ,12(,);(,).x x y y ex y D e ex y D ⎧∈⎪=⎨∈⎪⎩从而{}{}{}222222221212max ,max ,max ,x y x y x y x y DD D D D ed ed ed e d e d σσσσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22111xx y dx e dy dy e dx =+⎰⎰⎰⎰2211x y e xdx e ydy =+⎰⎰212x e xdx =⎰212x e dx =⎰21x de =⎰210|x e =(1)e =-六【详解】(1) 记21(,)[1()]P x y y f xy y =+,22(,)[()1]xQ x y y f xy y=- 22([()1])x y f xy Qy xx∂-∂=∂∂2222()([()1])([()1])x x y f xy y y f xy x y x ∂∂-=⨯-+⨯∂∂22221(()([()1])x y f xy y f xy y y x ∂=⨯-+⨯∂21()()()xy f xy x f xy y x∂'=-+⨯∂ 21()()f xy xyf xy y '=+-21([1()])y f xy P yyy ∂+∂=∂∂221()1([1()])([1()])y f xy y y f xy y y y∂∂+=++∂∂222211()1(())([1()])()y f xy y f xy f xy y y y y y y∂∂=-+++⨯⨯∂∂21()()()f xy f xy xyf xy y'=--++ 所以,(0)Q Py x y∂∂=>∂∂当. 故在上半平面(0y >),该曲线积分与路径无关. (2)方法1:由该曲线积分与路径无关而只与端点有关所以用折线把两个端点连接起来. 先从点(,)a b 到点(,),c b 再到点(,)c d . 有2221[1()][()1]cd ab c I b f bx dx y f cy dy by =++-⎰⎰()]()c d a b c a c cbf bx dx cf cy dy b d b-=+++-⎰⎰经积分变量变换后,()cd ab c a I f t dt d b =-+⎰. 当ab cd =时,推得c aI d b=-.方法2:原函数法.2221[1()][()1]L xI y f xy dx y f xy dy y y=++-⎰2()()()()()LL L L ydx xdy xf xy ydx xdy d f xy d xy y y-=++=+⎰⎰⎰⎰ 由原函数法计算第二型曲线积分的公式(与定积分的牛顿—莱布尼茨公式类似),有(,)();(,)L c d x x c ad a b y y d b ==-⎰(,)()()()()()0,(,)Lc d f xy d xy F xy F cd F ab a b ==-=⎰其中()F u 为()f u 的一个原函数,即设()()F u f u '=.由此有c aI d b=-. 方法3:由于与路径无关,又由ab cd =的启发,取路径xy k =,其中k ab =. 点(,)a b 与点(,)c d 都在此路径上. 于是将kx y=代入之后,22221[(1())()(()1)]d a k kI y f k y f k dy y y y=+-+-⎰32()dbk dy y =-⎰2dk by =22k k d b =-22cd ab d b =-.c a d b =-七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为 212[]xy e C x C -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[cossin ]223x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022*********[cos 0sin 0]22331110(20(2022222231123e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-⨯+⎨⎪⎪⎪=-+⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为22133x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211().(3)!33xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】(1)根据方向导数和梯度的定义,知方向导数的最大值是梯度的模长,()00,(,)x y gradh x y {}0000(,)(,)0000|,|2,2.y x y x h hy x x y x y ⎧⎫∂∂==--⎨⎬∂∂⎩⎭()()0000,,max(,)x y x y u gradh x y l∂==∂00(,).x y =(2) 命2(,)(,)f x y g x y ==22558x y xy +-,求f 在约束条件22750x y xy --+=下的最大值点. 为此,构造拉格朗日函数2222(,,)558(75)F x y x y xy x y xy λλ=+-+--+则 108(2)0x F x y y x λ'=-+-令,108(2)0y F y x x y λ'=-+-令,22750F x y xy λ'=--+令.由第1、第2 两式相加可得 ()(2)0x y λ+-=. 从而得y x =-或2λ=,再分别讨论之.若2λ=,则解得1(,)x y = 或 2(,)(x y =-- 若y x =-,则解得3(,)(5,5)x y =- 或 4(,)(5,5)x y =- 于是得到如上4个可能极值点. 将(,)i x y 记为(1,2,3,4)i M i =. 由于1234()()150,()()450f M f M f M f M ====故点34(5555M M =-=-,),(,)可作为攀登起点.九【详解】方法1:记[]1234,,,A αααα=,由234,,ααα线性无关,及123420,αααα=-+即1α可以由234,,ααα线性表出,故1234,,,αααα线性相关,及1234βαααα=+++即β可由1234,,,αααα线性表出,知[][][][]12341234123,,,,,,,(),,3r A r r r A r βααααβααααααα=====系数矩阵的秩与增广矩阵的秩相等,故Ax β=有解.对应齐次方程组0Ax =,其系数矩阵的秩为3,故其基础解系中含有4-3(未知量的个数-系数矩阵的秩)个线性无关的解向量,故其通解可以写成k ξ,η*是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,知Ax β=的通解为k ξη*+,其中k ξ是对应齐次方程组0Ax =的通解,η*是Ax β=的一个特解,因123420,αααα=-+故[]123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥-+-==⎢⎥⎢⎥⎣⎦,故[]1,2,1,0Tξ=-是0Ax =的一个非零解向量,因为0Ax =的基础解系中只含有一个解向量,故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦,即1111A β⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数) 方法2:令[]1234,,,Tx x x x x =,则线性非齐次方程为[]1234,,,Ax x αααα=[]12123434,,,x x x x αααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11223344x x x x ααααβ=+++=已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得23122334423234(2)(2)x x x x αααααααααα-+++=-+++⇒21312233442323424223x x x x x αααααααααααα-+++=-+++=+ ⇒12231334424(2)30x x x x x αααααα+-++--= ⇒12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,根据线性无关的定义,不存在不全为零的常数使得2233440k k k ααα++=,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 其系数矩阵为210010100001⎛⎫⎪- ⎪ ⎪⎝⎭,因为3阶子式10001010001=≠,其秩为3,故其齐次线性方程组的基础解系中存在1个(4-3)线性无关的解向量,取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+故方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)十【详解】(1) 因AB ,由定义知,存在可逆阵P ,使得1P AP B -=,故1111()E B E P AP P P P AP P E A P λλλλ-----=-=-=-1P E A P E A λλ-=-=-故,A B 有相同的特征多项式.(2) 取0001,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,2201,00E A E B λλλλλλλλ--==-==,则有2,,E A E B A B λλλ-==-有相同的特征多项式,但A 不相似于B ,因为对任何的2阶可逆阵P ,均有11P AP P OP O B --==≠,故(1)的逆命题不成立.(3) 即要证如果,A B 的特征多项式相等,则,A B 相似.当,A B 都是实对称矩阵时,,A B 均能相似于对角阵,且该对角阵的对角线元素由,A B 的特征值组成. 若,A B 有相同的特征多项式,则,A B 有相同的特征值(包含重数),故,A B 将相似于同一个对角阵. 设特征值为12,,,n λλλ,则有1122,n n A B λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦由相似的传递性,知A B . (1)的逆命题成立.十一【答案】5.【详解】如果将观察值大于3π这事件理解为试验成功的话,则Y 表示对X 独立地重复试验4次中成功的次数.即是(4,)YB p ,其中{}p P X π=>由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有3311()cos 3222x p P X f x dx dx ππππ+∞⎧⎫=>===⎨⎬⎩⎭⎰⎰,所以,1(4,)2Y B ~.由公式22()[()]()D Y E Y E Y =-以及若(,)Y B n p ~,其数学期望和方差分别为();()E Y np D Y npq ==,其中1.q p =-得 2222111()()[()]()4(4) 5.222E Y D Y E Y npq np =+=+=⨯⨯+⨯=十二【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望)最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数.【详解】矩估计:由离散型随机变量期望的定义1()()niii E X x P X x ===∑,有:22()012(1)23(12)34E X θθθθθθ=⨯+⨯-+⨯+⨯-=-样本均值11n i i X X n ==∑1(31303123)28=⨯+++++++=用样本均值估计期望有 EX X =,即342θ-=. 解得的矩估计值为1.4θ∧=由离散型随机变量似然函数的定义:设 12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:200221 121()(,,,;)(;)nn i i L P x x x P x θθθ===∏由于样本值中0出现一次,故用0的对应概率2θ一次. 样本值中数值1出现二次,故用两个21-θθ()相乘,数值2出现一次,故用2的对应概率2θ一次,数值3出现四次,故用1-2θ4().总之,对于给定的样本值的似然函数为: []2224624()21-(12)4(1)(12)L θθθθθθθθθ=⋅⋅⋅-=--()()0L θ>,等式两边同取自然对数得ln ()ln 46ln 2ln(1)4ln(12),L θθθθ=++-+-ln ()L θ和()L θ在θ的同一点取得最大值,所以2ln ()62862824112(1)(12)d L d θθθθθθθθθθ-+=--=---- 令ln ()0d L d θθ=,解得1,2712θ±=因71122+>与题目中10<<2θ矛盾,不合题意,所以θ的最大似然估计值为θ∧=。
2002年全国硕士研究生入学统一数学考试

r (A) = 3,且 A中任两个平行向量都线性无关.
类似地,(D)中有两个平面平行,故 r (A) = 2 , r (A) = 3 ,且 A中有两个平行向量 共线.
1 n→ +∞
un
n
lim 1 u n→ +∞
n
= 0, 不妨认为 ∀n, un
> 0, 因而所考虑级数是交错级数,但不能保证 1 的单 un
调性. 按定义考察部分和
∑ ∑ ∑ Sn
=
n (−1)k+1 ( 1
k =1
uk
+ 1 )= u k +1
n k =1
(− 1)k+1 1 uk
+
n k =1
方程,并求极限 lim nf ( 2) .
n→∞
n
五、(本题满分 7 分)
∫∫ 计算二重积分 emax{x 2 ,y d 2} xdy ,其中 D = {( x, y) | 0 ≤ x ≤ 1,0 ≤ y ≤ 1} . D
六、(本题满分 8 分) 设函数 f (x) 在 R 上具有一阶连续导数, L 是上半平面( y >0)内的有向分段光
(A)当 lim f (x) = 0 时,必有 lim f ′(x) = 0
x→ +∞
x→ +∞
有 lim f ′(x) = 0 x→ +∞
(C) 当 lim f ( x) = 0 时,必有 lim f ′( x) = 0
x →0+
中南大学2002-2009年数学分析考研试题

博士数学论坛首发制作:剑冷邮箱:zengmingjianjay@ 中南大学2002年研究生入学考试数学分析试题一、(共18分,每小题6分)求下列极限(1)lim ,(0)n n n nn x x x x x −−→+∞−>+;(2)1lim ()1xx x x →+∞+−;(3)01lim sin AA x dx A →∞∫。
二、(共16分,每小题8分)设函数()sin f x x π=,(0,1)x ∈(1)证明()f x 连续;(2)()f x 是否一致连续?(请说明理由)。
三、(共16分,每小题8分)(1)设ax by u e +=,求n 阶全微分n d u ;(2)设cos u x e θ=,sin u y e θ=,变换以下方程22220z zx y ∂∂+=∂∂。
四、(共20分,每小题10分)(1)求积分101ln 1dx x−∫;(2)求曲面22az x y =+(0)a >,和z =所围成的体积。
五、(共12分,每小题6分)设1cos 21p qn n n I nπ∞==+∑,(0)q >(1)求I 的条件收敛域;(2)求I 的绝对收敛域。
六、证明:积分2()0()x a F a e dx+∞−−=∫是参数a 的连续函数。
七、(8分)设定义于(,)−∞+∞上的函数()f x 存在三阶的导函数(3)()f x ,且(1)0f −=,(1)1f =,(1)(0)0f =证明:(3)(1,1)sup ()3x f x ∈−≥。
中南大学2003年研究生入学考试数学分析试题一、(共27分,每小题9分)求下列极限(1)lim n →+∞−;(2)1220lim[3(cos )]xxxx t dt →+∫;(3)设()f x 在[0,1]上可积,且1()1f x dx =∫,求1121lim (2n n k k f n n →+∞=−∑。
二、(共24分,每小题12分)设函数()f x 在[,)a +∞上连续,(1)证明:若lim ()x f x →+∞存在,则()f x 在[,)a +∞上一致连续;(2)上述逆命题是否成立?(请给出证明或举出反例)。
2002年考研数学(三)真题及详细解析

2002 年全国硕士研究生入学统一考试数学三试题及解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) ⑴ 设常数12a ≠,则21lim ln[]________(12)nn n na n a →∞-+=-.【分析】将所求极限转换为1l n [1](12)l i m1n n an→∞+-,利用等价无穷小代换化简求解,或利用重要极限。
【详解】法一:11ln[1]211(12)(12)lim ln[]limlim 11(12)12nn n n n na n a n a n a an n→∞→∞→∞+-+--===-- 法二:11(12)12122111limln[]limln[1]limln (12)(12)12n a n a a n n n n na e n a n a a -⨯--→∞→∞→∞-+=+==--- ⑵ 交换积分次序:111422104(,)(,)________yydy f x y dx dy f x y dx +=⎰⎰⎰.【分析】写出对应的二重积分积分域D 的不等式,画出的草图后D ,便可写出先对y 后对的二次积x 分【详解】对应的积分区域12D D D =+,其中11(,)0,4D x y y y x ⎧=≤≤≤≤⎨⎩2111(,),422D x y y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭画出的草图如D 右图所示,则也可表示为D 21(,)0,2D x y x x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭故211114222104(,)(,)(,)xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⑶ 设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=。
已知与线性相A αα关,则______a =。
【分析】由与线性相关A αα知,存在常数使得k A k αα=,及对应坐标成比例,由此求出a【详解】由于122212123304134a a A a a α-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦由与线性相关A αα可得:233411aa a a ++==,从而1a =-。
考研数学一真题解析 2002

2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.【考点分析】:第一类广义积分的计算 【基础回顾】:第一类:无穷区间上的反常积分第二类:无界函数的反常积分【求解过程】:2211ln 1ln ln ln ee edx d x x x x x +∞+∞+∞⎡⎤==-=⎢⎥⎣⎦⎰⎰ 【方法小结】:对广义积分的计算,可引入定积分的所有有效方法,只是注意积分上下限的代入,实质是极限的运算。
(2)已知2e 610y xy x ++-=,则(0)y ''=_____________.【考点分析】:隐函数求导 【基础回顾】:在假定隐函数存在且可导的前提下,我们可以利用复合函数的求导的链式法则求出它的导数。
若方程(,)0F x y =确定了隐函数()y y x =,则将()y y x =代入原方程,方程成为恒等式(,())0F x y x =,在恒等式的两边对X 求导。
注意到左端是以X 为自变量的复合函数,便可以得到我们所要求的导数。
【求解过程】:注意方程中Y 为关于X 的函数,利用链式法则可以得到方程2610ye xy x ++-=两边对x 求导数,有:6620y y e xy y x ''+++=①再对上式两边求导数得:()212620y y y e y e y xy ''''''++++=②将x=0代入方程得y=0,再将x=y=0代入①得0y '=,再代入②得()02y ''=-,故填-2(3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. 【考点分析】:可降阶的二阶微分方程的特解 【基础回顾】:三类可降解的高阶微分方程1.()()n y f x =型,逐层积分2.(,)y f y y '''=型,不含X 自变量,作代换(),dp dp dy dpy p y y pdx dy dx dy '''==== 3.(,)y f x y '''=型,不含Y 因变量,作代换(),dp y p y y dx'''==【求解过程】:⏹ 方法一:该微分方程属于缺x 的类型,令y p '=,dp dp dy dp y p dxdy dxdy''==⋅=原方程20yy y '''+=化为20dp ypp dy +=,得0p =或0dpy p dy+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南大学2002-2011年研究生入学考试数学分析试题中南大学2002-2011年研究生考试数学分析试题2002年一、求下列极限(1)lim ,(0)n nnnn x x x x x --→+∞->+; (2)1lim ()1xx x x →+∞+-;(3)01lim sin AA xdx A →∞⎰。
二、(共16分,每小题8分)设函数()sinf x xπ=,(0,1)x ∈(1)证明()f x 连续;(2)()f x 是否一致连续?(请说明理由)。
三、(共16分,每小题8分) (1)设ax by u e +=,求n 阶全微分n d u ;(2)设cos u x e θ=,sin u y e θ=,变换以下方程22220z zx y∂∂+=∂∂。
四、(共20分,每小题10分) (1)求积分101ln1dx x-⎰; (2)求曲面22az x y =+ (0)a >,和z =所围成的体积。
五、(共12分,每小题6分)设1cos 21p qn n n I nπ∞==+∑,(0)q > (1)求I 的条件收敛域;(2)求I 的绝对收敛域。
六、证明:积分2()0()x a F a e dx +∞--=⎰是参数a 的连续函数。
七、(8分)设定义于(,)-∞+∞上的函数()f x 存在三阶的导函数(3)()f x ,且(1)0f -=,(1)1f =,(1)(0)0f =证明:(3)(1,1)sup ()3x f x ∈-≥。
2003年一、(共27分,每小题9分)求下列极限 (1)lim n →+∞;(2)1220lim[3(cos )]xxxx t dt →+⎰;(3)设()f x 在[0,1]上可积,且1()1f x dx =⎰,求1121lim ()2n n k k f n n →+∞=-∑。
二、(共24分,每小题12分)设函数()f x 在[,)a +∞上连续, (1)证明:若lim ()x f x →+∞存在,则()f x 在[,)a +∞上一致连续;(2)上述逆命题是否成立?(请给出证明或举出反例)。
三、(共27分,每小题9分)设222222(0,(,)0,0.x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩(1)求偏导数'x f 和'y f ;(2)讨论函数'x f 和'y f 在原点(0,0)的连续性;(3)讨论(,)f x y 在原点(0,0)的可微性。
四、(共30分,每小题15分)(1)求2()ln(2)f x x =+在0x =处的幂级数展开式及其收敛半径;(2)计算三重积分22()VI x y dxdydz =+⎰⎰⎰,其中V 是由曲面22x y z +=与平面4z =所围的区域。
五、(12分)计算下列曲面积分333SI x dydz y dzdx z dxdy =++⎰⎰,其中,2222:S x y z a ++=,积分是沿曲面S 的外侧。
六、(共15分,每题5分)设sin qp x I dx x+∞=⎰(0)q > (1) 求I 关于p 的收敛性;(2)在上述收敛域中I 是否一致收敛? (3)讨论I 的条件收敛性和绝对收敛性。
七、(共8分,每题4分)设0n a >,1n n a ∞=∑发散,记1n n s a a =++,证明:(1)1n n n a s ∞=∑发散; (2)21n n nas ∞=∑收敛。
八、(8分)设定义于(,)-∞+∞的实值函数()f x 在0x =右连续,且对任何实数,x y ,都满足()()()f x y f x f y +=+ 证明:()f x ax = (a 为常数)2004年1.证明:若数列{}nx收敛,则它有且只有一个极限。
(20分)2.证明下列结论:(a)12n++>;(10分)(b)序列1nxn=++-(20分)3.设()f x在[,]a b上连续,且2[()]0baf x dx=⎰,证明:在[,]a b上,恒有()0f x=。
(20分)4.在区间1(,)D=-∞+∞和21[,10]10D=上,分别讨论级数2211(1)nnxx∞-=+∑的一致收敛性。
(20分)5.考察函数22220,(,)0,0.x yf x yx y+≠=+=⎩在原点(0,0)处的可微性。
(20分)6.设()f x是闭区间[,]a b上的连续函数,且()f x在开区间(,)a b内没有极值点,则()f x是[,]a b的严格单调函数。
(20分)7.设1()g x和2()g x满足12()(),x xa ag t dt g t dt a x b≤≤<⎰⎰及 12()()b baag t dt g t dt =⎰⎰又设()f x 可微,非增,则12()()()()bbaag t f x dt g t f x dt ≤⎰⎰ (20分)2005年一、(共30分,每小题10分)(1)求极限lim 0);n x ≥(2)求极限];x x →+∞(3)设lim ,n n x a →+∞=证明lim ;n n y b →+∞=其中,0011!,2!()!n n n n n nn k nC x C x C x n y C k n k +++==- 0,1,,k n =二、(共20分,每小题10分)分别讨论函数2()f x x =在下列区间中是否一致连续:(1)(,)l l -,这里l 为随便多大的正数; (2)在区间(,)-∞+∞上。
三、(20分)证明下列拉格朗日定理并叙述其几何意义:“若函数()f x 在[,]a b 上连续,在(,)a b 上可导;则在(,)a b 内至少存在一点0x ,使'()()()f b f a f x b a-=-。
”四、(20分)求半径为R 的球内嵌入有最大体积的圆柱体的体积。
五、(共36分,每小题12分) (1)求积分1,(0)ln b ax x dx b a x->>⎰;(2)求第一类曲面积分22(),Sx y dS +⎰⎰其中S1z ≤≤的边界;(3)分别研究函数项级数1sin n nxn ∞=∑在下列区间上的一致收敛性: (a )在2x επε≤≤-上,其中0ε>(b )在02x π≤≤上。
六、(12分)设{()}n x φ是[0,1]上的非负可积函数序列,且1lim ()nn K x dx φ→+∞=⎰存在。
若(0,1]α∀∈,有1lim()0nn x dx αφ→+∞=⎰;证明对任何一个[0,1]上的连续函数()f x 都有1lim()()(0)nn x f x dx Kf φ→+∞=⎰。
七、(12分)设()f x ,()g x 都是周期函数,且lim[()()]0x f x g x →+∞-=;证明()()f x g x ≡。
2006年一、判断题:(每题5分,共25分)(1) 若级数1n n a ∞=∑收敛,则0().n n a n →→∞ ();(2) 收敛的数列一定有界. ();(3) 开区间(,)a b 内可导的函数一定在闭区间[,]a b 上连续. (); (4) 若函数()f x 在0x x =点附近具有二阶连续导数,且'0()0f x =,"0()0f x >,则()f x 在0x x =处达到极小值. ();(5) 若函数()f x 在[,)a +∞上有定义且是连续的,而且极限lim ()x f x →∞存在且有限,则()f x 在此区间上一致连续. (). 二、求下面数列的极限值:(每小题10分,共30分) (1)1,n x x a ==其中0a >为常数;(2)0,2n x x =(3)001101,1,,1.11nn nx x x x x x x +==+=+++ 三、求下列函数的极值:(每小题10分,共20分) (1)ln(1)y x x =-+; (2).y x =四、(20分)设{}n na 收敛,11()n n n n a a ∞-=-∑收敛,试证明级数0n n a ∞=∑收敛.五、(15分)若非负函数()f x 在(,)-∞+∞上连续,且0()().xf x f t dt =⎰则()0.f x ≡六、(20分)设(),()f x g x 在[,]a b 上连续,证明1lim ()()()()nbi i i ai f g x f x g x dx ξθ→∞==∑⎰其中0111,,n n i i i x a x x x b x x ξ--=≤≤≤≤=≤≤11,,1,,;max{,1}.i i i i i i x x x x x i n x i n θ--≤≤=-==≤≤七、(20分)若函数():f x (1)在区间[,]a b 上有二阶导函数"()f x , (2)''()()0.f a f b ==则在区间(,)a b 内至少存在一点c 使得"4()()().f c f b f a b a≥-- 2007年一、判断题:(正确的打√,错误的打×,每题5分,共25分)(1) 任何定义在(),-∞+∞上的函数都可以表示成一个偶函数和一个奇函数之和。
()(2) 设()()f x g x 、连续且'()()0g x g x ≠,则()''()()lim lim .()x x f x f x g x g x →∞→∞= ()(3) 若序列{}n n x y 收敛,则{}n x 和{}n y 必有一序列收敛。
() (4) 若对任意0ε>,函数()f x 在[,]a b εε+-上连续,则()f x 在(,)a b 内连续。
()(5) 若函数()f x 在(,)a b 内连续且有极大值点ξ,则'()0f ξ=。
() 二、求下列极限值:(每小题10分,共20分) (1)2n n →∞++++;(2)0110,(),0,1,,2n n nax x x n x +>=+=其中0.a >三、(20分)求曲线241y x =-在点1(,0)2处的切线方程和法线方程。
四、(15分)试证明0x >时3sin .6x x x >-五、(20分)试求20ln sin .C xdx π=⎰六、(25分)设()f x 为[0,1][0,1]→的连续函数,(0)0,(1)1,(()).f f f f x x === 证明().f x x ≡七、(25分)设函数()f x 在[,]a b 上可导且非常数函数,()()0f a f b ==,试证明,在[,]a b 中至少存在一点ζ,使得'24()().()baf f x dx b a ζ>-⎰2008年一、判断题(5分,共25分)(1) 若函数)(x f 在闭区间[]b a ,上一致连续,则)(x f 在开区间()b a ,内可导 (2) 设)(x f 在闭区间[]b a ,上连续,在()b a ,内每一点存在有限的左导数,且)()(b f a f =,则至少存在一点),(b a c ∈使得)(x f 在c x =处的左导数等于(3) 若序列{}n n y x +和序列{}n n y x -都收敛,则序列{}n x 和序列{}n y 必收敛 (4) 若函数)(x f 是在区间()b a ,上的连续递增函数,则)(x f 在()b a ,内可导且0)(≥'x f(5) 若序列n x 收敛,则它一定有界 一、 计算题(10分,共20分)(1)求级数∑∞=12!k k k(2)求积分dx e x ⎰∞-02三、(20分)在什么条件下三次抛物线q px x y ++=3与OX 轴相切?并求出其切点四、(15分)设函数)(x f 在区间()b a ,内有有界的导函数)(x f ',证明)(x f 在()b a ,内一致连续五、(20分)若)(x f 在区间),(0+∞x 内可导,且0)(lim ='+∞→x f x ,证明0)(lim=+∞→xx f x 六、(25分)设)(x f :(i )在闭区间[]b a ,上有二阶连续导数;(ii )在区间()b a ,内有三阶导函数;(iii )且下面等式成立:0)()(='=a f a f 及0)()(='=b f b f证明在()b a ,内存在一点c 使得0)(='''c f七、(25分)设k a >0)0(≥k 且∑∞==01k k a ,定义函数∑∞=-=0)(k k k x x a x f证明(i ))(x f 是[]1,0内的下凸函数(ii )0)(=x f 在[)1,0内有根的充要条件是)1(f '>02009年一、 计算题(10分,共60分) 1、计算极限))1(sin 2sin (sin 1limnn n n n L n πππ-++=∞→ 2、已知1≤y ,求⎰--11dx e y x x 3、已知dx x f a⎰+∞)(条件收敛,计算极限[][]⎰⎰-++∞→x ax a x dtt f t f dt t f t f )()()()(lim4、求空间曲线222226,x y z z x y ++==+在0(1,1,2)P 处的法平面方程 5z =被柱面222x y x +≤所截下那一部分的面积6、计算()()()I x z dydz y x dzdx z y dxdy ∑=-+-+-⎰,其中∑是曲面225z x y =--上1z ≥的部分,并取外侧二、(20分)证明sin x 在[)0,+∞上一致连续,但2sin x 不一致连续三、(15分)已知(,)f x y 在000(,)P x y 处取得极小值。