考研高数讲义高数经济应用上课资料
高数课件3-6导数在经济上的应用举例

边际收益:增 加一单位产量 所增加的收益
边际利润:边 际收益减去边
际成本
边际分析在经 济决策中的应 用:通过比较 边际成本和边 际收益,确定 最优产量和价
格
弹性分析
需求弹性:衡量消费者对价格变化的敏感程度 供给弹性:衡量生产者对价格变化的敏感程度 交叉弹性:衡量两种商品之间的替代关系 收入弹性:衡量消费者收入变化对消费需求的影响
公司
导数在经济上的应 用举例
单击此处添加副标题汇报人:源自目录单击添加目录项标题
01
导数在经济分析中的应用
02
导数在金融领域的应用
03
导数在市场分析中的应用
04
导数在生产决策中的应用
05
导数在资源分配中的应用
06
01
添加章节标题
01
导数在经济分析中的应用
边际分析
边际成本:增 加一单位产量 所增加的成本
导数在风险评估中的局限性:导数只能预测短期趋势,不能预测长期趋势,因此需要结合其他方 法进行风险评估。
风险评估的实际应用:在金融领域,风险评估被广泛应用于股票、债券、期货等投资产品的风险 评估。
投资组合优化
导数在投资组合优化中的应 用:通过计算导数,找到最 优的投资组合
投资组合:将资金分散到不 同的资产中,以降低风险
资源利用和环境保护的平衡
导数在经济学中的应用:通过导数分析资源分配的优化问题
资源利用和环境保护的关系:资源利用过度会导致环境破坏,而保护环境 需要限制资源利用 导数在资源分配中的应用:通过导数分析,找到资源利用和环境保护的平 衡点
案例分析:某地区如何通过导数分析,实现资源利用和环境保护的平衡
资源分配的效率和公平性
考研数学(数学三)必备资料

考研数学(数学三)必备资料高等数学:同济五版线性代数:同济六版概率论与数理统计:浙大三版推荐资料:1、李永乐考研数学3--数学复习全书+习题全解(经济类)2、李永乐《经典400题》3、《李永乐考研数学历年试题解析(数学三)真题》方案2《基础过关660》李永乐。
(做过三遍)这本书很好,别看有基础二字你就觉得简单,所谓基础是说里面的题都是填空选择,他基本上穷尽了填空选择所有能见到的题型,做好了考研时填空选择不会出什么问题的。
这本书我做了三遍,不过当然不是每一遍都是从头到尾做,一会我会告诉你怎么做。
《考研数学焦点概念与性质》徐兵(做过两遍)这本书大家可能听的比较少,这本书是我在看过之后觉得确实不错才买的(我一般很少买这种大家没有公认的书),我觉得可能是因为大部分人不是很在意基础,所以这本书才没有想其他书一样流行,它的高数部分相当的好,会把高数里面大家容易弄错的概念性质以判断的形式给出,后面给出详细的解释,并且举一反三,如果你想打下坚实的基础,强烈建议你看看,里面最精华的属高数部分,如果没时间线代和概率部分就别看了。
《复习全书》李永乐(做过三遍)关于复习全书和复习指南那本好的争论一直就没有停过,不过我觉得如果是数三,全书要胜过指南一筹,而且很多第一年用复习指南没考上,第二年换复习全书的人都会这么说,全书整体上要好一点。
至于数一数二用哪本,我没经历过,也不敢妄下结论。
关于陈文灯的《复习指南》我在后期的时候简单选读过,这本书里面有两部分大家一定要看:分部积分的表格法和微分方程的算子法,太牛了,以至于我用过之后就爱不释手,哈哈!《概率论与数理统计讲义》(基础篇) 姚孟臣(做过两遍)关于概率论的试题用书大家推荐过几本,我在图书大厦都翻阅过,强烈建议大家用这本,你用过后就知道了,它穷尽了你能见到的所有概率题型,相信做完后你的概率会有质的飞跃!这本书有个提高篇,千万别买哈,里面的东西考研都不考,基础篇才是真正的考研用书,呵呵!考研数学规划:课本+复习指导书+习题集+模拟题+真题=KO复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。
考研陈文灯考研数学讲义【绝密版】

e2
三、补充习题(作业)
1. f (x) ln 1 x ,求y''(0) 3
1 x2
2
2.曲线
x y
et et
sin 2t 在(0,1)处切线为y cos 2t
2x
1
0
考研资料——免费提供
微信公众:机械考研汇
- 8 -1
3. y x ln(e 1 )(x 0)的渐进线方程为y x 1
证: Lagrange : f (b) f (a) f '( ) ba
械考研汇
令 f (x) ln 2 x, ln 2 b ln 2 a 2 ln
ba
:机
号
众 令(t) ln t ,'(t) 1 ln t 0( ) (e2 ) ln 2
公 t
t2
e2
信
微 ln 2 b ln 2 a 4 (b a) (关键:构造函数)
证: f (x) f (0) f '(0)x 1 f ''(0)x2 1 f '''()x3
2!
3!
其中 (0, x), x [1,1]
考研资料——免费提供
微信公众:机械考研汇
- 7 -1
0
将 x=1,x=-1 代入有
f (1)
f (0)
1 2
f ''(0) 1 6
f '''(1 )
lim b
b1 ( 1x
x 1 x2
)dx
4
1 ln 2 2
考 5. f (x) 连续,(x) 1 f (xt)dt ,且 lim f (x) A ,求(x) 并讨论'(x) 在 x 0 的连
经济应用数学课件1-1

以上列举的案例, 虽是来自不同的领域, 而且具有不 同的表示形式, 有表格、图形、公式,但它们的共性是: 都反映了在同一过程中有着两个相互依赖的变量, 当其 中一个量在某数集内取值时, 按一定的规则, 另一个量 有唯一确定的值与之对应. 变量之间的这种数量关系就 是函数关系.
一.函数的概念
x y 定义1.1 设 和 是两个变量, D是一个给定的非空数集.
(ⅵ)余割函数
形式: ycsxcs1inx.
定义域: xnπ, n0,1,2,.
值域: y(,).
今后要用到的三角公式
si2nxco2xs1; 1ta2nxse2cx; 1co2xtcs2cx;
偶函数的图形
关于 y轴对称.
(1,1) 1
(1,1)
o1 x
(2)函数的 设函数 f (x)在区间 I上有定义,若对于 I中的
单调性 任意两点 x 1 和 x 2 ,当 x1 x2 f(x1)f(x2), 则称f (x)在 I上单调增加.
y
单调增函数 的图形
y f(x)
f (x1) f (x2)
定义域: x( , ).
含义: 自变量取任意值,函数值都为常数C .
x 图像: 过点(0, C) ,是一条平行于 轴的直线.
y
C
yC
o
x
(2)幂函数
形式: y x ( 为实数).
定义域、图像及性质依 不同而不同.
y
y x
y x2
y x
(1,1)
y 1 x
o1
x
(3)指数函数
分析
由于乘车里程不超过3 km、超过3 km而不超过 15km及超过15 km的收费标准不同,乘客乘车的费
应用高等数学(经管类) 配套课件

(经管类)
应用型高等数学
第1章 函数 第2章 极限与连续 第3章 经济分析的基础工具—导数、微分 第4章 导数在经济中的作用 第5章 积分的概念与计算 第6章 定积分的应用 第7章 Mathematica数学实训 第8章 综合实训
实践导向型高职教育系列教材
(经管类)
应用型高等数学
的函数
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代 定义形式,随着以数学为基础的其他学科的发展,函数的概念还会继 续扩展.
第1章 函数
1.函数的定义
1.1.2 函数的概念
在某一过程中始终保持固定数值的 量称为常量,常用a、b、c 等符号表示;而 在过程进行中可以取不同数值的量称为 变量,常用x、y、z 等符号表示.
第1章 函数
1.2.1 需求量、供给量和价格之间的关系
引例1-2的分析和求解
分析 设需求量为Q,供给量为S,市场价格为p.由“单价每提高100 元,则需求量减少200个”和“单价每提高100元,生产厂家可以多提供 50个”,可知需求量Q 与价格p之间、供给量S 与价格p 之间都是线性 函数关系.
解 ①设需求量Q 与价格p 之间的单调递减关系为:Q=a-bp,由题 意可得:
f(x+T)=f(x),则称f(x)为周期函数. 若T 为函数f(x)的周期,则±nT(n 为正整数)都是f(x)的周期.
通常所说的周期是指函数的最小正周期.
第1章 函数
1.1.3 反函数
定义1-6 设函数y=f(x),且变量x,y 是一一对应的.如果把y 当作自变量,x 当 作 因 变 量 , 则 关 系 式 x=φ(y) 称 为 函 数 y=f(x) 的 反 函 数 , 通 常 我 们 更 习 惯 记 作 y=f-1(x).
高数上3.7一元函数在经济上的应用(边际与弹性)

饱和期
时,其图形如图所示
初始期
发展期
饱和期
由图可见戈珀兹曲线当 t > 0 且无限增大时,其无限与直线 y = k 接近,且始终位于该直线下方。在产品销售预测中,当预测销售量充分接近到 k 的值时,表示该产品在商业流通中将达到市场饱和。
二、边际与弹性
1. 边际概念
如果函数
在
处可导,则在
内的平均变化率为
成本由固定成本和可变成本组成。固定成本是指支付固定生产要素的费用。包括厂房、设备折旧以及管理人员工资等;可变成本是指支付可变生产要素的费用,包括原材料、燃料的支付以及生产工人的的工资,它随着产量的变动而变动。
例4. 设某厂的生产函数
,其中 L 表示
劳动力数量,求劳动力价格为1152时的可变成本函数
一般说来,商品的市场价格越高,生产者愿意而且能够向市场提供的商品量也就越多。因此一般的供给函数都是单调增加的。
人们根据统计数据,常使用下面简单的供给函数
线性函数:
,其中
幂函数:
,其中
指数函数:
,其中
使一种商品的市场需求量与供给量相等的价格(记为P0),称为均衡价格。
例2. 已知某商品的需求函数和供给函数分别为
如果除价格外,收入等其他因素在一定时期内变化很少,即可认为其他因素对需求量无影响,则需求量 Q 便是价格 P 的函数,记
称 f 为需求函数,同时 f(P)的反函数 也称为需求函数。
一般说来,商品价格的上涨会使需求量减少。因此,需求函数是单调减少的。
人们根据统计数据,常使用下面简单的需求函数
线性函数:
的关系;
(2)试分别解出关于价格
的边际收益
,关于需求
的边际收益
高教五版高数(经济类)热力学复习大纲(新教材)随堂讲义
答:因为理想气体的热力学能和焓为温度的单值函数,只 要温度变化相同,不论经历任何过程其热力学能和焓的变 化都会相同,因此,所给第一组公式对理想气体的任何过 程都是适用的;但是第二组公式是分别由热力学第一定律 的第一和第二表达式在可逆定容和定压条件下导出,因而 仅分别适用于可逆的定容或定压过程。就该组中的两个公 式的前一段而言适用于任何工质,但对两公式后一段所表 达的关系而言则仅适用于理想气体。
状态的判断、喷管形状的确定,出口流速和流 量的确定)
绝热节流
– 理想气体和实际气体的节流过程有什么区别。
– 绝热节流的特征(不可逆、节流过程前后,气 体的参数变化)
– 节流的几种功能
第十章 气体动力循环
概念:
– 各种循环的构成; – P-v图和T-s图; – 提高循环热效率的基本方法,回热的基本思路
答:可以。熵是状态参数,只要初、终 状态相同,不论经历何种过程工质的熵 变应相同,因此以上4式对理想气体的任 何过程都适用。
第4章 对于理想气体的任何一种过程,下列两组公式是否都适用:
u cv (t2 t1) h cp (t2 t1)
q u cv (t2 t1 ) q h cp (t2 t1 )
损失) –特别注意非理想气体的熵变计算问题,例如习题5-15
、5-16、 5-17
可用能(火用):
–热流火用、热力学火用、物流火用和焓火用的计算。
特别注意几点:
– 遇到判断过程的方向性、过程的可逆与否、 过程(循环)的可能性、参数的可能性等等 都用热力学第二定律的表达式来判断。
– 遇到求可用能损失,就求孤立系熵增或过程 熵产,然后乘上环境温度。
蒸气制冷循环(图、分析)
考研高数数学讲义
第一篇 高等数学第一章 函数、极限与连续一、大纲内容与要求【大纲内容】函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 【大纲要求】1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、知识网络Nε-”定义X-”定义δ-”定义数列整体有界函数局部有界两个重要的极限(数一、三)∞∞型、型∞-∞型、0∞⋅1∞、0∞、00型初等函数的连续性分段函数连续性的判定闭区间上连续函数的性质——左右极限都存在第二类——左右极限中至少有一个不存在跳跃间断点可去间断点关系极限连续性函数零点定理最值定理有界性、单调性、奇偶性、周期性1lim1nnen→∞⎛⎫+=⎪⎝⎭sinlim1xxx→=单调有界数列有极限夹逼定理三、基本内容(一)函数1.定义 设x 与y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作()y f x =.数集D 称为函数的定义域,由函数对应法则或实际问题的要求来确定,相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素. 2.几种特性(1)有界性 设函数()y f x =在数集X 上有定义,若存在正数M ,使得对于每一个x X ∈,都有()f x M ≤成立,称()y f x =在X 上有界,否则,即这样的M 不存在,称()f x 在X 上无界.所以函数在X 上无界,是对任何0M >,总存在0x X ∈,使0()f x M >.(2)单调性 设函数()y f x =在区间I 上有定义,若对于I 上任意两点1x 与2x ,当12x x <时,均有12()()f x f x < [或12()()f x f x >],称函数()f x 在区间I 上单调增加(或单调减少).如果其中的“<”(或“>”)改为“≤”(或“≥”),称函数()f x 在I 上单调不减(或单调不增). (3)奇偶性 设函数()y f x =的定义域为(,)(0)a a a ->,若对于任一x ∈(,)a a -,都有()()f x f x -=,称()f x 为偶函数,如常数2,,cos C x x 等,其图像关于y 轴对称;若对于任一(,),x a a ∈-都有()()f x f x -=-,称()f x 为奇函数,如3,,sin x x x 等,其图像关于坐标原点对称.(4)周期性 对函数()y f x =,若存在常数0T >,使得对于定义域内的每一个,x x T +仍在定义域内,且有()()f x T f x +=,称函数()y f x =为周期函数,T 称为()f x 的周期. 3.复合函数、反函数、隐函数与分段函数(1)基本初等函数与初等函数基本初等函数 常数函数;幂函数;指数函数;对数函数;三角函数;反三角函数.初等函数 由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个解析式表示的函数.(2)复合函数 设函数()y f u =的定义域为f D ,函数()u x ϕ=的值域为z ϕ,若集合f D 与z ϕ的交集非空,称函数[()]y f x ϕ=为函数()y f u =与()u x ϕ=复合而成的复合函数,u 为中间变量.对复合函数,重要的是会把它分解,即知道它是由哪些“简单”函数复合而成的.(3)反函数 设函数()y f x =的值域为f z ,定义域为f D ,则对于每一个f y z ∈必存在f x D ∈使()y f x =.若把y 作为自变量,x 作为因变量,便得一个函数()x y ϕ=,且[]()f y ϕ y =,称()x y ϕ=为()y f x =的反函数,但习惯上把()y f x =的反函数记作1()y f x -=.y()f x =与其反函数1()y f x -=的图像是关于直线y x =对称的.(4)隐函数 设有方程(,)0F x y =,若当x 在某区间内取任一值,便总有满足该方程唯一的值y 存在时,称由方程(,)0F x y =在上述区间内确定了一个隐函数()y y x =.(5)分段函数 若一个函数在其定义域的不同部分要用不同的式子表示其对应规律,如(),()(),x a x bf x x c x dϕψ<<⎧=⎨<<⎩称为分段函数. (二)极限 1.概念(1)定义1 设()y f x =在0x 的一个去心邻域010001(,)(,)x x x x δδ-+内有定义,若对于任意给定的0ε>,总存在0δ>,使得当上述去心邻域内任意x 满足00x x δ<-<时,不等式()f x a ε-<恒成立,则称常数a 为函数()f x 在0x x →的极限,记作0lim ().x x f x a →=或()f x a → (当0x x →).直观地说,即当x 无限趋近0x 时,函数()f x 无限趋近常数a .定义2 设()f x 在区域0x E >>内有定义,若对于任意给定的0ε>,存在0M >,使得当x M E >≥时,不等式()f x a ε-<恒成立,则称a 为当x →∞时函数()f x 的极限,记作lim ().x f x a →∞=直观地说,即当x 无限增大时,函数无限趋近常数a .(2)左极限与右极限 在定义1中,若把“00x x δ<-<”改为“00x x x δ-<<”,即自变量x 从0x 的左侧趋近于0x ,则称a 为函数()f x 当0x x →时的左极限,记作0lim ()(0);x x f x a f x a -→=-=或 相应把定义1中的“00x x δ<-<”改为00x x x δ<<+, a 便是函数()f x 当0x x →时的右极限,记作00lim ()(0).x x f x a f x a +→=+=或 极限存在的充分必要条件:当0x x →时,函数()f x 的极限存在的充分必要条件为其左、右极限存在并相等,即00(0)(0)f x f x -=+.在定义2中,把x M >改为x M >,便得到x →+∞时函数()f x 的极限的定义,即lim (),x f x a →+∞=以及把“x M >”改为x M <-,便得到lim ()x f x a →-∞=的定义.注 把数列{}n x 看作整数函数即()n x f n =(1,2,)n =,则数列极限的概念lim n n x a →∞=便是()f x 在x →+∞时极限的特殊情况:自变量x 取正整数.即对于任意给定的0ε>,总存在正整数N ,使当n N >时,不等式n x a ε-<恒成立,则称常数a 为数列{}n x 的极限,也称此数列收敛于a .2.性质(1)唯一性 在自变量的一个变化过程中(0x x →或x →∞),函数的极限存在,则此极限唯一. (2)有界性 若0lim ()[lim ()]x x x f x a f x a →→∞==或,则存在0x 的某去心邻域(或0x M >>),()f x 在此邻域(或0x M >>)内有界.(3)保号性 设0)lim ()x x f x a →→∞=(x ,0()lim ()x x x g x b →→∞=,若在0x 的某去心邻域(或0x M >>)内恒有()()f x g x <(或()()f x g x ≤),则a b ≤.3.极限存在准则夹逼准则:若在x 的某去心邻域(或0x M >>)内恒有()()()g x f x h x ≤≤, 且000()()()lim ()lim ()lim ().x x x x x x x x x g x h x a f x a →→→→∞→∞→∞===,则单调有界准则:单调有界数列必收敛. 4.两个重要极限(1)0sin lim 1.x x x→= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或10lim xx x e →=(1+). 5.极限的运算设在自变量的同一变化过程中(0x x →或x →∞),lim (),lim ()f x a g x b ==,则有(1)和差:[]lim ()()lim ()lim ()f x g x f x g x a b ±=±=±.(2)积:[]lim ()()lim ()lim ()f x g x f x g x a b ⋅=⋅=⋅.特别地,lim ()lim ()cf x c f x =ca = (其中c 为常数),[][]lim ()lim ()k kk f x f x a ==(其中k 为正整数).(3)商:若lim ()0g x b =≠,则()lim ()lim()lim ()f x f x ag x g x b==. (4)复合函数的运算法则:已知00lim (),lim ()u u x x f u A x u ϕ→→==⇒在有意义的情况下,lim [()]x x f x ϕ→.A =6.无穷小量与无穷大量(1)无穷小量的概念 若0()lim ()0x x x x α→→∞=,称()x α为0x x →(x →∞)时的无穷小,即极限为0的变量为无穷小量,以下简称无穷小.常数0也是无穷小.(2)无穷小量的性质 0lim ()x x f x a →→∞=(x )的充分必要条件为()()f x a x α=+,其中()x α为0x x →(x →∞)的无穷小.(3)无穷小量的运算1°加法:有限多个无穷小的和仍为无穷小; 2°乘法:有限多个无穷小的积仍为无穷小; 3°有界变量与无穷小的乘积亦为无穷小. (4)无穷小量的比较设()x α与()x β都是在同一个自变量变化过程中的无穷小,且()lim ()x x αβ也是在此变化过程中的极限:若()lim0()x x αβ=,称()x α是比()x β高阶的无穷小,记作()(())x o x αβ=; 若()lim()x x αβ=∞,称()x α是比()x β低阶的无穷小; 若()lim0()x c x αβ=≠(其中c 为常数),称()x α与()x β是同阶的无穷小;特别()lim1()x x αβ=,称()x α与()x β是等价无穷小,记作()~()x x αβ. 在求极限过程中,有时利用等价无穷小代换可以化简计算,所以应掌握几个常见的等价无穷小:当0x →时,sin ~~tan x x x ,ln(1)~x x +,1~x e x -11~x n ,211cos ~2x x -等等. (5)无穷大量的概念 设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义),如果对于任意给定的正数M (不论它多么大),总存在正数δ (或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >,则称函数()f x 为当0x x →(或x →∞)时的无穷大量,以下简称无穷大.(6)无穷小量与无穷大量之间的关系在自变量的同一变化过程中,若()f x 为无穷大,则其倒数1()f x 必为无穷小;反之,若()f x 为无穷小,且()0f x ≠,则其倒数1()f x 必为无穷大. 7.洛必达(L’Hospital)法则(1)00⎛⎫⎪⎝⎭型 (),()f x g x 在点0x 的某去心邻域内可导,()0g x '≠,若lim ()x x f x →=0lim ()x x g x →0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (2)∞⎛⎫⎪∞⎝⎭型 (),()f x g x在点0x 的某去心邻域内可导,()0g x '≠,若 0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim ()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (三)连续1.函数的连续性(1)连续性的概念 设函数()y f x =在点0x 某邻域内有定义,若当自变量增量x ∆=0x x -0→时,对应的函数值增量00()()0y f x x f x ∆=+∆-→,即0lim 0x y ∆→∆=,或0lim ()()x x f x f x →=,则称函数()f x 在0x 处连续.若00lim ()()x x f x f x -→=,称函数()f x 在0x 处左连续,00lim ()()x x f x f x +→=,称函数()f x 在0x 处右连续. 显然,函数()f x 在0x 处连续的充分必要条件是()f x 在0x 处既左连续又右连续.若函数()f x 在区间(,)a b 内每一处都连续,称()f x 在开区间(,)a b 内连续,也称()f x 是(,)a b 内的连续函数;若()f x 在(,)a b 内连续,又在a 点处右连续,b 点处左连续,则称()f x 在闭区间[,]a b 上连续.(2)运算1°加法 有限多个在同一点连续的函数之和,仍在该点处连续; 2°乘法 有限多个在同一点连续的函数之积,仍在该点处连续; 3°除法 若()f x 与()g x 均在点0x 处连续,且0()0g x ≠,则()()f xg x 在点0x 处连续. (3)复合函数与初等函数的连续性设函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,若函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处连续.一切初等函数在其定义区间上都是连续的. 2.函数的间断点(1)函数间断点的概念 设函数()f x 在点0x 的某去心邻域内有定义.在此前提下,如果函数()f x 有下列三种情形之一:1°在0x x =没有定义;2°虽在0x x =有定义,但()0lim x x f x →不存在;3°虽在0x x =有定义,且()0lim x x f x →存在,但()00lim (),x x f x f x →≠则函数()f x 在点0x 不连续,而点0x 称为()f x 的不连续点或间断点.(2)函数间断点的类型 设0x x =为函数()y f x =的间断点,若0lim ()x x f x -→与0lim ()x x f x +→都存在,称0x 为函数()f x 的第一类间断点,其他均称为第二类间断点.在第一类间断点中,左、右极限相等的称为可去间断点,不相等的称为跳跃间断点;无穷间断点与振荡间断点都是第二类间断点.3.闭区间上连续函数的性质(1)最大值和最小值定理 闭区间上的连续函数一定有最大值与最小值. (2)有界性定理 闭区间上的连续函数在该闭区间上一定有界.(3)介值定理 设函数()f x 在闭区[,]a b 上连续,且()()f a f b ≠,则对于()f a 与()f b 之间的任一常数C ,必在开区间(,)a b 内至少存在一点ξ,使得()f C ξ=.推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.(4)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号,则在开区间(,)a b 内至少存在函数()f x 的一个零点,即至少有一点(,)a b ξ∈使()0f ξ=.四、典型例题[例1.1]设函数11()01x f x x ⎧≤⎪=⎨>⎪⎩,,,,则[()]f f x =.[例1.2]已知2()sin ,[()]1,f x x f x x ϕ==-则()________x ϕ=,其定义域为 .[例1.3]设函数2sin ()(ln )(tan )x f x x x e =,则()f x 是( ).(A)偶函数.(B)无界函数.(C)周期函数.(D)单调函数.[例1.4]设对任意(,)∈-∞+∞x 有(1)()+=-f x f x ,则()f x 一定是( ).(A)奇函数.(B)偶函数.(C)周期函数.(D)单调函数.[例1.5]设函数21tan(3)()(1)(2)(3)x x f x x x x --=---,则()f x 在下列哪个区间内有界().(A)(0,1).(B)(1,2). (C)(2,3). (D)(3,4).[例1.6]设数列n x 与n y ,满足lim 0n n n x y →∞=,则下列叙述正确的是().(A)若n x 发散,则n y 必发散. (B)若n x 无界,则n y 必有界. (C)若n x 有界,则n y 必为无穷小量. (D)若1nx 为无穷小量,则n y 必为无穷小量. [例1.7]下列极限正确的是().(A)sin lim1x xxπ→=.(B)1lim sin1x x x→∞⋅=. (C)11limsin 1x x x→∞=. (D)sin lim1x xx→∞=.[例1.8]设n n x a y ≤≤,且lim()0n n n y x →∞-=,a 为常数,则数列{}n x 和{}n y ( ).(A)都收敛于a .(B)都收敛,但不一定收敛于a . (C)可能收敛,也可能发散.(D)都发散.[例1.9]设n n n x a y ≤≤,且lim()0n n n y x →∞-=,{}n x ,{}n y 和{}n a 均为数列,则lim n n a →∞( ).(A)存在且等于0.(B)存在但不一定等于0. (C)一定不存在. (D)不一定存在.[例1.10]22212lim 12n n n n n n n n n →∞⎛⎫+++=⎪++++++⎝⎭.[例1.11]30arctan sin limx x xx →-=.[例1.12]求极限limx [例1.13]求下列极限:2011lim()tan x x x x→-. [例1.14]设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a =.[例1.15]21ln(1)0lim(cos )+→x x x =.[例1.16]当0x →时,211()sin f x x x=是( ). (A)无穷小量.(B)无穷大量.(C)有界量非无穷小量.(D)无界但非无穷大量.[例1.17]设220ln(1)()lim 2x x ax bx x →+-+=,则().(A)1a =,52b =-. (B)0a =,2b =-. (C)0a =,52b =-. (D)1a =,2b =-. [例1.18]设当0x →时,()()21cos ln 1x x-+是比sin n x x 高阶的无穷小,而sin n x x 是比2(1)x e -高阶的无穷小,则正整数n 等于().(A)1. (B)2. (C)3. (D)4.[例1.19]当0x →时,求常数,c k 使得(I)3sin sin3~;kx x cx -~kcx .[例1.20]设110x =,1n x +=(1,2,n =),试证数列{}n x 极限存在,并求此极限.[例1.21]下列各式中正确的是( ).(A)01lim (1)1xx x+→+=. (B)01lim(1)e xx x+→+=. (C)1lim(1)e xx x→∞-=. (D)1lim(1)e xx x-→∞+=-.[例1.22]求极限21lim ln(1)→∞⎡⎤-+⎢⎥⎣⎦x x x x.[例1.23]()f x 在0x 点连续是()f x 在0x 点连续的( ). (A)充分条件,但不是必要条件. (B)必要条件,但不是充分条件.(C)充分必要条件.(D)既不是充分条件,也不是必要条件.[例1.24]函数1()tan ()x x e e xf x x e e +=⎛⎫- ⎪⎝⎭在[],ππ-上的第一类间断点是x =().(A)0.(B)1.(C)2π-. (D)2π. [例1.25]设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为().(A)不存在间断点. (B)存在间断点1x =. (C)存在间断点0x =. (D)存在间断点1x =-.[例1.26]设2(1)()lim1n n xf x nx →∞-=+,则()f x 的间断点为x =.[例1.27]设函数()tan 21e ,0arcsin 2e ,0xx x x f x a x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则________a =.[例1.28]设)(x f 在(+∞∞-,)内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩,则( ).(A)0=x 必是)(x g 的第一类间断点. (B)0=x 必是)(x g 的第二类间断点.(C)0=x 必是)(x g 的连续点.(D))(x g 在点0=x 处的连续性与a 的取值有关.[例1.29]设函数()f x 在[,]a b 上连续,且12n a x x x b <<<<<,证明:存在(,)a b ξ∈,使得12()()()()n f x f x f x f nξ+++=.[例1.30]设()f x 是[0,1]上非负连续函数,且(0)(1)0.f f ==证明:对任意实数r (01r <<),必存在0[0,1]x ∈,使得0[0,1]x r +∈,且00()()f x f x r =+.[例1.31]设()f x 在[0,1]上连续,(0)(1)f f =且 . (1)证明:存在[0,1],ξ∈使1()()2f f ξξ=+.(2)证明:存在[0,1],η∈使1()()f f nηη=+(2n >且n 为正整数).五、经典习题1.求⎪⎪⎭⎫⎝⎛-+→x x x sin 1)1ln(1lim 0. 【答案】212.求xx e e xx x sin lim tan 0--→.【答案】23.已知()01lim2=--++-∞→b ax x xx ,则___________,==b a .【答案】21,1--. 4.极限()()2lim xx xx a x b →∞⎡⎤=⎢⎥-+⎣⎦( )(A) 1.(B) e . (C) a be-.(D) b ae-.【答案】(C).5.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭. 【答案】43. 6.求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 【答案】1. 7.若()3sin 6lim0x x xf x x →+=,则()26limx f x x →+为( ).(A)0.(B)6.(C)36.(D)∞.【答案】(C).8.1lim1cosn n→∞++=________. 【答案】π.9.设103x <<,1n x +=(n =1,2,…),证明数列{}n x 的极限存在,并求此极限.【答案】证明{}n x 单调增加且有上界,3lim 2n n x →∞=. 10.设函数()f x 在0x =的某邻域内具有一阶连续导数,且()00f ≠,()00f '≠,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.【答案】2,1a b ==-.11.设函数()f x 在(,)-∞+∞内连续,且[()]f f x x =,证明在(,)-∞+∞内至少有一个0x 满足00()f x x =.【答案】利用反证法.第二章 一元函数微分学导数与微分是一元函数微分学中的两个重要概念,在高等数学中占有重要地位,其内涵丰富,应用广泛,是研究生入学考试的主要内容之一,应深入加以理解,同时应熟练掌握导数的各种计算方法.中值定理与导数的应用在高等数学中占有极为重要的位置,内容多,影响深远,是复习的重点也是难点,而且具有承上启下的作用,应熟练掌握.一、大纲内容与要求【大纲内容】导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 (弧微分;曲率的概念;曲率圆与曲率半径,数学三不要求). 【大纲要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,(了解导数的物理意义,会用导数描述一些物理量,数学一、二要求),理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径(数学一、二要求).二、知识网络三、基本内容(一)导数概念1.导数定义 设函数()y f x =在点0x 的某邻域内有定义,若自变量从0x 变到0x x +∆时,导数的定义左、右导数基本初等函数的导数导数的四则运算 复合函数的导数 反函数的导数隐函数的导数参数方程求导(数一、二)2阶导数n 阶导数 高阶导数导数的概念导数的计算罗尔定理拉格朗日中值定理 柯西中值定理 中值定理应用洛必达法则求极限 研究函数性质及几何应用单调性定理、函数的单调区间 函数的极值、最值曲线的凹凸性及拐点 渐近线、函数作图 边际、弹性经济中的最大值和最小值应用经济应用(数学三要求) 微分概念微分的计算 一阶微分形式不变性微分导数泰勒定理 曲率(数学一、二要求) 费马引理 切线、法线方程函数的增量00()()y f x x f x ∆=+∆-与自变量增量x ∆之比的极限0000()()limlim x x f x x f x yx x→∆→+∆-∆=∆∆存在,则称()y f x =在0x 处可导,此极限值称为()f x 在0x 处的导数,记作0()f x ',或00,x x x x dyy dx=='等.令0x x x =+∆,可得导数的等价定义0000()()()limx x f x f x f x x x →-'=-2.左导数 若000()()lim x f x x f x x -∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的左导数,记作0()f x -'.3.右导数 若000()()lim x f x x f x x+∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的右导数,记作0()f x +'.4.若函数()f x 在区间(,)a b 内任意点x 处的导数()f x '都存在,则称()f x 在(,)a b 内可导.5.若函数()f x 在(,)a b 内可导,且()f a +'及()f b -'都存在,称()f x 在闭区间[,]a b 上可导. (二)函数可导的条件1.()f x 在x =0x 处可导的必要(非充分)条件是()f x 在x =0x 处连续.2.()f x 在x =0x 处可导的充分与必要条件是0()f x -'与0()f x +'存在且相等. (三)导数的几何意义与物理意义1.设函数()f x 可导,则0()f x '等于曲线y =()f x 在点00(,())x f x 处切线的斜率.曲线y =()f x 在点00(,())x f x 处的切线与法线方程分别是:000()()()y f x f x x x '--=和0001()(),()y f x x x f x -=--'其中0()0f x '≠. 2.设一质点作变速直线运动,若其位移s 随时间t 的变化规律为函数()s s t =,则导数0()s t '表示该质点在时刻0t 的瞬时速度.注 导数的物理意义有多种,如细棒状物质的线密度,电路中的电流强度,转动物体的角速度等.(四)导数的计算1.基本初等函数的导数公式 (1)()0()c c '=为常数(2)1()()x x μμμμ-'=为实数(3)()ln (01)xxa a a a a '=>≠, (4)();x x e e '=(5) 1(log ||)(0,1);ln a x a a x a '=>≠ (6) 1(ln ||);x x'= (7)(sin )cos ;x x '= (8)(cos )sin ;x x '=- (9)2(tan )sec ;x x '= (10)2(cos )csc x x '=-(11)(sec )sec tan ;x x x '= (12)(csc )csc cot ;x x x '=-(13)(arcsin )x '=(14)(arccos )x '=(15)21(arctan );1x x'=+ (16)21(arccot ).1x x-'=+ 2.导数的四则运算法则 设函数(),()u x v x 都可导,则 (1)();u v u v '''±=±(2)()uv u v uv '''=+,特别()cu cu ''=(c 为常数).(3)2(0).u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭3.复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应的()u x ϕ=处可导,则复合函数[()]y f x ϕ=在x 处可导,且{[]}()(),f x f u x ϕϕ'''=()即d .y dy dudx du dx=⋅ 4.反函数的导数若()x y ϕ=在某区间内单调、可导,且()0y ϕ'≠,则其反函数()y f x =在对应的区间内也可导,且1()()f x y ϕ'='. 5.隐函数的导数设()y f x =是由方程(,)0F x y =所确定的可导函数,注意到x 是自变量,y 是x 的函数,y 的函数是x 的复合函数,在方程的两边同时对x 求导,可得到一个含有y '的方程,从中解出y '即可.注 y '也可由多元函数微分法中的隐函数求导公式x y F dydx F '=-'得到,这里()y x 是由方程(,)0F x y =确定的函数.6.高阶导数(1) 函数()y f x =导数的导数,称为函数()f x 的二阶导数,即(),y y ''''=记作()y f x ''''=,或2(2)2,d y y dx.一般地,函数()y f x =的n 阶导数为()(1)(),n n y y-'=也可写作()()n n n d y fx dx或.(2)设(),()u x v x 具有n 阶导数,则有()()()[()()]()()n n n au x bv x au x bv x +=+(,a b 为常数);()()1(1)()()()[()()]()()()()()()()().n n n k n k k n n n u x v x u x v x C u x v x C u x v x u x v x --'=+++++7.由参数方程所确定的函数的导数(数学一、二要求)设()y y x =是由参数方程()()()x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则()()dy t dx t ψϕ'='. (2)若()()t t ϕψ,二阶可导,且()0t ϕ'≠,则223()1()()()()()()()td y t t t t t dx t t t ψψϕψϕϕϕϕ''''''''⎡⎤-=⋅=⎢⎥'''⎣⎦. (五)微分1.微分定义 设函数()y f x =在点x 的某邻域内有定义,若对应于自变量的增量x ∆,函数的增量y ∆可以表示为()y A x o x ∆=∆+∆,其中A 与x ∆无关, ()o x ∆是x ∆的高阶无穷小,则称函数()y f x =在点x 处可微,并把A x ∆称为()f x 在点x 处的微分,记作dy 或()df x ,即dy =A x ∆.2.函数()y f x =在点x 处可微的充分必要条件是()f x 在x 处可导,此时()A f x '=,即有()dy f x dx '=.3.一阶微分形式的不变性 设()y f u =可微,则微分()dy f u du '=,其中u 不论是自变量还是中间变量,以上微分形式保持不变. (六)微分中值定理1.费马(fermat)引理 若()f x 在0x 的某邻域0()U x 内有定义,且在0x 处可导,如果对任意0()x U x ∈,有0()()f x f x ≤(或0()()f x f x ≥),则0()0f x '=.2.罗尔(Rolle)定理 若函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且f (a )=f (b ),则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3.拉格朗日(Lagrange)中值定理 若函数()f x 在闭区间上连续,在开区间(,)a b 内可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()().f b f a f b a ξ'-=-4.柯西(Cauchy)中值定理 若函数()f x 和()g x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()0g x '≠,则在开区间(,)a b 内至少存在一点ξ,使得()()().()()()f b f a fg b g a g ξξ'-='-5.泰勒(Taylor)定理(1)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶的导数,则()20000000()()()()()()()()(),2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中(1)10()()(),(1)!n n n f R x x x n ξξ++=-+是0x 与x 之间的某个值,此公式称为带有拉格朗日型余项的泰勒公式.(2)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到n 阶的导数,则()200000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x o x x n '''⎡⎤=+-+-++-+-⎣⎦, 此公式称为带有佩亚诺型余项的泰勒公式.注 当00x =时,以下两公式称为麦克劳林(Maclaurin)公式,即()21(0)(0)(1)()()(0)(0)(01)2!!(1)!n n n f f f n x f x f f x x x x n n θθ+''+'=+++++<<+和 ()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x o x n '''=+++++.(七)洛必达(L ’Hospital)法则 1.00⎛⎫⎪⎝⎭型 0()()()0,f x g x x g x '≠设,在点的某去心邻域内可导,若0lim ()lim ()x x x x f x g x →→=0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. 2.∞⎛⎫⎪∞⎝⎭型 设()()f x g x ,在点0x 的某去心邻域内可导,()0g x '≠,若0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (八)利用导数研究函数及平面曲线的性态1.单调性定理 设函数()f x 在[,]a b 上连续,在(,)a b 内可导,若对任一x ∈(,)a b ,有()0(0)f x '><,则()f x 在[,]a b 上单调增加(减少).注 若将上面的不等式()0(0)f x '><,改为()0(0)f x '≥≤,且使()0f x '=的点(驻点)只有有限个,则结论仍成立.2.极值(1)极值的定义 若()f x 在0x 的某邻域0()U x 内有定义,且对该邻域内任意异于0x 的点x 都有0()()f x f x <(或0()()f x f x >),则称0x 的极大(或小)值点,0()f x 称为()f x 的极大(或小)值.(2)判断极值的第一充分条件 设函数()f x 在点0x 的某邻域00(,)x x δδ-+内连续,0x 是()f x 的驻点或不可导点,在00(,)x x δ-及00(,)x x δ+内()f x 均可导.1°若在00(,)x x δ-内()0(0)f x '<>而在00(,)x x δ+内()0(0)f x '><则()f x 在0x 处取21极小值(极大值);2°若在00(,)x x δ-和00(,)x x δ+内()f x '符号相同,则()f x 在0x 处不取得极值. (3)判断极值的第二充分条件 设函数()f x 在x =0x 处 ,一阶导数0()0f x '=,二阶导数0()f x ''存在且不等于零,则当0()0f x ''>时,()f x 在0x 处取得极小值;当0()0f x ''<时,()f x 在0x 处取得极大值.3.取到极值的唯一性定理 若()f x 在区间I 上可导,驻点唯一,且该驻点是极值点,则该驻点一定是最值点.4.曲线凹凸性及拐点(1)凹凸性的定义 设()x f 在区间I 上连续,若对任意不同的两点21,x x ,恒有()()()()12121212112222x x x x f f x f x f f x f x +⎛+⎫⎛⎫⎛⎫>+<+⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭或则称()x f 在I 上是凸(凹)的.(2)凹凸性的判断 若函数()f x 在区间I 上()0(0)f x ''><则曲线()y f x =在I 上凹 (凸)的.(3)拐点的定义 在连续曲线上,凹凸部分的分界点00(,())x f x 称为曲线的拐点.(4)拐点的第一充分条件 设函数()f x 在点0x 的某邻域内连续且在该去心邻域内二阶可导,若()f x 在0x 的左右两边()f x ''的符号相反,则点00(,())x f x 是曲线)(x f y =的拐点.(5)拐点的第二充分条件:设函数()f x 在点0x 的某邻域内连续,0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 是曲线)(x f y =的拐点.5.曲线的渐近线(1)若lim ()x f x C →∞=(或x →+∞或x →-∞)(C 为常数),则y C =是曲线()y f x =的一条水平渐近线;(2)若0lim ()x x f x →∞=(或0x x +→,或0x x -→),则0x x =是曲线()y f x =的一条铅直渐近线; (3)若()lim,0,x f x a a x→∞=≠且lim[()],x f x ax b →∞-=则y ax b +=是曲线()y f x =的斜渐近线.22(九)平面曲线的曲率(数学一、二要求) 1.弧微分设()y f x =是平面内的光滑曲线,则弧微分.ds = 若曲线方程为(),(),x x t y y t =⎧⎨=⎩则弧微分为.ds =2.曲率(1)设M 和N 是曲线上不同的两点,弧MN 的长为s ∆,当M 点沿曲线到达N点时,M点处的切线所转过角为α∆,则称极限0lims K sα∆→∆=∆为该曲线在点M 处的曲率. (2)曲率计算公式若曲线方程为()y f x =,则曲率23/2(1)y K y ''='+. 若曲线由参数方程()()x x t y y t =⎧⎨=⎩给出,则曲率223/2()t t t t t t x y y x K x y ''''''-=''+. (3)曲率半径1(0)R K K=≠. 三、典型题型[例2.1]已知(3)2f '=,则0lim 2h h→=______________.[例2.2]设函数()f x 在0x =处连续,且201lim (1cos )1h f h h→-=,则().(A)(0)1-'=f .(B)(0)2-'=f .(C)(0)1+'=f . (D)(0)2+'=f .[例2.3]设函数()f x 可导,()(sin 2)()xF x e x f x =+,则(0)0f =是()F x 在0x =处可导的( )条件.(A)充要. (B)充分非必要. (C)必要非充分.(D)非充分非必要.[例2.4]设周期函数()f x 在),(+∞-∞内可导,周期为4,0(1)(1)lim2x f f x x→--=1-,则曲线()y f x =在点))5(,5(f 处的法线斜率为(). (A)21. (B)0.(C)1 .(D)2-.[例2.5]设函数()f x 在区间(,)δδ-内有定义,若当x ∈(,)δδ-时,恒有2()f x x ≤,则23x 0=必是()f x 的( ).(A)间断点.(B)连续而不可导的点. (C)可导的点,且(0)0'=f . (D)可导的点,且(0)0'≠f .[例2.6]设()(1)(2)()f x x x x x n =+++,则(0)________.f '=[例2.7]设函数0()y f x x x ==在处可导,0()1f x '=-,则0limx y dydy∆→∆-=_______.[例2.8] 设函数()f x 处处可微,且有()01f '=,且对任何,x y 恒有()()x f x y e f y +=()x e f y +, 求().f x[例2.9]设函数()f x 在(,)-∞+∞上有定义,对任意,x y ,()f x 满足关系式()()[()1]()f x y f x f x y y α+-=-+,其中0()lim0y y yα→=.又已知(0)2,f =则(1)f =.[例2.10]设()()(),()F x g x x x ϕϕ=在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的()条件.(A) 充要. (B) 充分非必要.(C) 必要非充分.(D) 非充分非必要. [例2.11]函数32()2arctan f x x x x x =+-的不可导点的个数是( ). (A)3.(B)2.(C)1.(D)0.[例2.12]设函数11,0()1,0x x f x x e k x ⎧-≠⎪=-⎨⎪=⎩连续,求常数k 的值,并求()f x '.[例2.13] 求下列函数的导数(1)arctanx y e=-(2)2()ln |2a f x x =.24[例2.14]设2sin[()]y f x =,其中f 具有二阶导数,求22,dy d ydx dx . [例2.15]设函数1,()21,x f x x ⎧≥=⎨<⎩,()()y f f x =,则x edy dx ==_____________.[例2.16]设函数()f u 可导,2()y f x =当自变量x 在1=-x 处取得增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)'=f _________________.[例2.17] (数一、二)设()2arctan ,25t x t y y x y ty e =⎧⎪=⎨-+=⎪⎩由所确定,求.dy dx[例2.18]设22411x y x -=-,求(100)y .[例2.19]设函数()y f x =由方程23ln()sin +=+x y x y x 确定,则==x dy dx_________.[例2.20]设()()()nf x x a x ϕ=-,其中()x ϕ在x a =处具有1n -阶连续导数,试求()()n f a (2)n ≥.题型三 利用导数研究函数的性态[例2.21]设当a x b <<时函数()f x ,()g x 是大于零的可导函数,且()()f x g x '-()f x ()0g x '<,则当a x b <<时,有().(A)()()()()f x g b f b g x >.(B)()()()()f x g a f a g x >.(C)()()()()f x g x f b g b >.(D)()()()()f x g x f a g a >.。
《高数的经济应用》课件
THANKS
[ 感谢观看 ]
CHAPTER 04
高数在经济中的未来发展
高数与其他学科的交叉发展
高数与计算机科学的交叉
高数理论在计算机科学中有着广泛的应用,如算法设计、数据结构、离散概率论等。随着科技的发展 ,高数与计算机科学的交叉将更加紧密,为经济发展提供更多可能性。
高数与物理学的交叉
物理学中许多问题需要用到高数的理论和方法,如微积分、线性代数、微分方程等。未来,随着物理 学的进步,高数在经济领域的应用将更加广泛。
03
售策略提供支持。
概率论与数理统计在市场预测中的应用
概率论与数理统计在市场预测中具有重要应用,通过统计分析数据和预测 未来趋势,为企业制定营销策略提供依据。
利用概率论与数理统计,可以分析市场需求的分布和变化规律,预测未来 的市场需求。
概率论与数理统计还可以用于评估市场风险和机会,帮助企业做出更加科 学和合理的决策。
高数在大数据分析中的应用前景
数据建模与分析
高数理论在大数据分析中发挥着重要作 用,如概率论、统计学、线性代数等。 随着大数据技术的不断发展,高数在数 据处理、挖掘和分析方面的应用将更加 深入。
VS
数据预测与决策
通过高数方法对大数据进行建模和预测, 可以为决策者提供更加科学和准确的依据 ,提高决策效率和准确性。
详细描述
高数的概念和方法被广泛应用于金融、保险、物流、管理等领域。例如,微积分学中的导数和积分概念在经济学 中被用于研究边际分析和总量计算;线性代数中的矩阵和线性方程组在金融中被用于风险评估和预测;概率论和 统计学中的随机变量和分布函数在经济研究中被用于预测和决策分析。
CHAPTER 02
高数的经济应用
《高数的经济应用》 ppt课件
考研高数讲义新高等数学上册辅导讲义——第一章上课资料
零,但不一定等于 0。
函数极限与无穷小的关系定理
lim f ( x) A ( A 为 一 常 数 )
x x0 x
lim ( x) 0
x x0 x
f (x) A ( x) , 且
二、无穷大(量)
如果当 x x0 时,对应的函数值 f ( x) 的绝对值
x
x
| f ( x) |无限增大,则称当
x0 时, f ( x)是无穷
【例 2】(91 三)设数列的通项为:
n2 n ,若n为奇数,
xn
n
则当 n ,xn是( )
1, 若n为偶数,
n
(A)无穷大量 . (C)有界变量 . 【答案】( D)
(B)无穷小量 . (D)无界变量 .
二、无穷小与无穷大的关系
定理: lim f ( x) x x0 x
1 lim
0
x x0 f ( x)
有 限 次的 四 则 运 算 和复合
初等函数
第二节 数列和函数的极限
一、数列极限的定义
数列: un f (n),n N * ,称为整标函数。其函 数值: u1, u2 , , un , 叫做数列(序列)。数列的 每一个数称为项, 第 n项 un称为数列的一般项。 简 记数列为 {un } 数列极限:已给数列 {un }和常数 A,如果对于
三、无穷小的性质 ( 1)有限个无穷小的代数和仍是无穷小。 ( 2)有界函数与无穷小的乘积仍是无穷小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分在经济学中的应用专题
⎧⎨⎩一元函数微积分
在经济上的应用
导数在经济上的应用—边际和弹性积分学在经济上的应用
一、 一元函数微分学中在经济学中的应用
1、 复利和贴现
设0A 是现有本金,r 是年利率,
t A 是t 年末的未来值,按连续复利计算,
则有复利公式:rt t e A A 0=
贴现公式:rt t e A A -=0
说明:(公式的导出)(微元法)
记)(t A A t =,取微小区间],[t t t ∆+,
则有t t rA t A t t A ∆+≈∆+)()()(, 即)()()(t rA t
t A t t A ≈∆-∆+,令0→∆t ,在则有)(t rA dt dA
=,
又因为0)0(A A =,故rt
t e A A 0=
2、“边际”概念:
“边际”:经计量的变化率,即经济函数的导数。
(1)边际成本:产量增加一个单位时所增加的总成本。
)(x C 为总成本函数,其中x 为产品的产量,则
)(x C dx
dC MC '==称为边际成本函数。
)()()1(x C x C x C '≈-+,所以其经济意义是近似于产品为x 时再增加一个单位产品所需增加的成本。
(2)边际收益:多销售一个单位产品时所增加的销售总收益。
)(x R 为总成本函数,其中x 为销售出的产品的总
量,则)(x R dx
dR MR '==称为边际收益函数。
)()()1(x R x R x R '≈-+,所以其经济意义是近似于产品为x 时再销售一个单位产品所增加的收益。
(3)边际利润:多销售一个单位产品时所增加或减少的总利润。
)(x L 为总成本函数,其中x 为销售出的产品的总
量,则)(x L dx
dL ML '==称为边际利润函数。
)()()1(x L x L x L '≈-+,所以其经济意义是近似于产品为x 时再销售一个单位产品所增加或减少的利润。
(4)因为)()()(x C x R x L -=,所以)()()(x C x R x L '-'=',此时x 为产品的销量(产量),所以
MC MR ML -=。
3、弹性
(1)弹性:用于定量地描述一个经济变量对另一个经济变量的反应程度,即当一个经济变量变动百分之一时会使另一个经济变量变动百分之几。
设经计量x 和y 有函数关系)(x f y =,0x x x -=∆,
)()(00x f x x f y -+=∆,则x 的相对变化为0
x x ∆,y 相对变化为0y y ∆,那么称x
y y x x x y y ∆∆⋅=∆∆0000为)(x f y =
的平均弹性。
令0→∆x ,)
(lim lim 000000000x f y x x y y x x x y y x x '⋅=∆∆⋅=∆∆→∆→∆称
为)(x f y =在0x x =处的弹性,称)
()(x f x f x
'⋅为)(x f y =的弹性函数,记为Ex Ey ,dx dy
y x Ex Ey
=。
(2)需求(对价格的)弹性
需求函数)(p Q Q =,Q 为需求量,p 为价格,则需求
对价格的弹性为dp dQ Q p Ep EQ =,记为
dp dQ Q p Ep EQ p
==ε
注:①一般0<p ε,p ε的意义是:当某产品的价格
上涨(下跌)1%时,其需求量将减少(增加)p ε%
②提价或降价对总收益的影响与p E 有关系 p p Q R p ∆-≈∆|)|1)((ε
pdQ Qdp pQ d dR R +==≈∆)(
p p Q p Q dp dp dQ Q p Q p p ∆-=∆+=⎥⎦
⎤⎢⎣⎡+=|)|1)((]1[1εε
(3)收益(对价格的)弹性
dp
dR R p Ep ER =,由于pQ R =,所以 p dp dQ p Q Q dp
pdQ Qdp Q dp dpQ Qp p dp dR R p Ep ER ε+=⎪⎭
⎫ ⎝⎛+=+===111
【例1】(89)某商品的需求量Q与价格P的函数关系为b
Q=,其中a和b为常数,且0
aP
a,则需求
≠
量对价格P的弹性是 .
【答案】b
【例2】(92)设商品的需求函数p
100-
=,其
Q5
中Q、p分别表示需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是 .
【答案】(]20,10
二、一元函数积分学在经济中的应用
1、已知生产某种产品的固定成本为0C ,边际成本
为)(x C MC '=,其中x 为该产品的产量,则生产该产品的总成本函数为⎰'+=x dt t C C x C 00)()(
2、已知销售某种产品的边际收益为)(x R MR '=,
其中x 为该产品的销售量,则销售该商品的总收
益函数为⎰'=x dt t R x R 0)()(
3、已知某产品的总产量Q 的变化率是时间t 的连续
函数)(t f ,即)()(t f t Q =',则从时间a t =到时间b t =,产品产量的变化为⎰=-b a dt t f a Q b Q )()()( 若已知a t =时的产量为0Q ,则总产量函数为
⎰+=t du u f Q t Q 00)()(
【例3】设生产某产品的固定成本为50,产量为x 单
位时的边际成本函数为11114)(2+-='x x x C ,
边际收益函数为x x R 2100)(-=',求总成本函数,总收益函数,总利润函数。
本章强化练习
1、(10)设某商品的收益函数为()
R p,收益弹性为3
1p
+,其中p为价格,且(1)1
R=,则()
R p=______.
答案:
3
1
(1)
3
p pe-
2、(09)设某产品的需求函数为()
=,其对
Q Q P
ξ=,则当需求量为10000件应价格P的弹性0.2
p
时,价格增加1元会使产品收益增加元. 答案:8000
3、(08)设银行存款的年利率为.005
r ,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并能按此规律一直提取下去,问A至少应为多少万元?
答案:3980万元
4、(07)设某商品的需求函数为Q p =-1602,其中Q ,p 分别表示需要量和价格,如果该商品需求弹性的绝对值等于
1,则商品的价格是( ) (A )10 (B )20
(C )30 (D )40 答案:(D )
5、(97)一商家销售某种商品的价格满足关系=-(万元/吨),x为销售量(单位:吨),
70.2
p x
商品的成本函数是31
=+(万元).
C x
(Ⅰ)若每销售一吨商品,政府要征税t(万元),求该商家获最大利润时的销售量;
(Ⅱ)t为何值时,政府税收总额最大.
6、(01)设生产函数为Q AL K αβ=,其中Q 为产出量,L 是劳动投入量,K 是资本投入量,而,,A αβ均为大于0的参数,则当
1Q =时K 关于L 的弹性为 。
答案:βα
-
7、(91)某厂家生产的一种产品同时在两个市场销售,售价分别为1p 和2p ,销售量分别为1q 和2q ,需求函数分别为11240.2q p =-和22100.05q p =-,总成本函数为123540()C q q =++,试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利润为多少?
答案:120,8021==p p 时,其最大总利润为605.。