北京四中数学高考一轮总复习巩固练习:23平面向量的数量积及应用(提高)

合集下载

人教A版高中数学必修四北京四中同步复习向量巩固练习平面向量的数量积提高,

人教A版高中数学必修四北京四中同步复习向量巩固练习平面向量的数量积提高,

【巩固练习】1.若〈a r ,b r 〉=60°,|b r |=4,(a r +2b r )·(a r ―3b r )=―72,则向量a r 的模是( )A .2B .4C .6D .122.若向量a r =(1,2),b r =(1,―1),则2a r +b r 与a r ―b r 的夹角等于( )A .4π- B .6πC .4πD .34π 3.若|a r |=1,|b r |=2,c r =a r +b r ,且c r ⊥a r ,则a r 与b r 的夹角为( )A .30°B .60°C .120°D .150°4.已知a r =(-3,2),b r =(―1,0),向量λa r +b r 与a r ―2b r 垂直,则实数λ的值为( ) A .17-B .17C .16-D .165.平面向量a r 与b r 的夹角为60°,a r =(2,0),|b r |=1,则|a r +2b r |=( )A B . C .4 D .126.设(sin a α=r ,1(cos ,)3b α=r ,且//a r b ρ,则锐角α为( ) A .030 B .060 C .075 D .045 7.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA u u u r 与OB u u u r 在OC u u u r 方向上的投影相同,则a 与b 满足的关系式为( )A.453a b -=B.543a b -=C.4514a b +=D.5414a b += 8.平面上三点A 、B 、C ,若||3,||4,||5AB BC CA ===u u u r u u u r u u u r ,则AB BC BC CA CA AB ⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r 等于( ).A .25B .25-C .50D .50-9.已知〈a r ,b r 〉=30°,|a r |=2,||b =r ,则向量a r 和向量b r 的数量积a r ·b r =____.10.已知a r ,b r 均为单位向量,〈a r ,b r 〉=60°,那么|a r +3b r |= .11.已知|a r |=4,||1b =r ,|a r -2b r |=4,则cos 〈a r ,b r 〉= .12.设向量a r ,b r ,c r 满足a r +b r +c r =0,( a r -b r )⊥c r , a r ⊥b r ,若|a r |=1,则|a r |2+|b r |2+|c r |2的值是 . 13.以原点和A (5,2)为两个顶点作等腰Rt △OAB ,使∠B=90°,求点B 和向量AB u u u r 的坐标14.设向量 ,a b r r 满足 1a b ==r r 及 32a b -=r r(1)求 ,a b r r 所成角的大小; (2)求 3a b +r r 的值.15.已知O (0,0),A (2,0),B (0,2),C (cos α,sin α),且0<α<π.(1)若||OA OC +=u u u r u u u r ,求OB u u u r 与OC u u u r 的夹角;(2)若AC BC ⊥u u u r u u u r ,求tan α的值.【答案与解析】1.【答案】C【解析】 (a r +2b r )·(a r ―2b r )= a r 2―6b r 2―a r ·b r =―72,即|a r |2―6×42―2|a r |=―72,∴|a r |=6.2.【答案】C【解析】2a r +b r =(3,3),a r -b r =(0,3),则cos <2a r +b r,(2)()|2|||a b a b a b a b a b +⋅-->===+⋅-r r r r r r r r r r , 故夹角为4π,选C .3.【答案】C【解析】 设a r 与b r 的夹角为θ,∵c r ⊥a r ,∴c r ·a r =0.又c r =a r +b r ,∴(a r +b r )·a r =0,即a r 2+a r ·b r =0⇒|a r |2+|a r | |b r |cos θ=0.又|a r |=1,|b r |=2,∴1cos 2θ=-. 又∵θ∈[0°,180°],∴θ=120°.4.【答案】A【解析】向量λa r +b r =(―3λ―1,2λ),a r ―2b r =(―1,2),因为两个向量垂直,故(―3λ-1,2λ)·(―1,2)=0,即3λ+1+4λ=0,解得17λ=-,故选A . 5.【答案】B 【解析】∵a r =(2,0),故|a r |=2,|2|a b +==r r .∵a r ·b r =|a r |·|b r |·cos60°=1,∴|2|a b +==r r .6.【答案】B【解析】Q //a r b ρ,∴1sin 3αα= ,所以60α=o 7. 【答案】A【解析】由OA u u u r 与OB u u u r 在OC u u u r 方向上的投影相同,可得:OA OC OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,(,1)(4,5)(2,)(4,5),a b ⇒⋅=⋅ 即 4585a b +=+,453a b -=.选A.8.【答案】B9.【答案】3【解析】 由题意知||||cos3023a b a b ⋅=︒==r r r r .10. 11. 【答案】14 12. 【答案】4【解析】由a r +b r +c r =0,得c r = -a r -b r ,又(a r -b)⊥c r ,∴(a r -b r )·(-a r -b r )=0, ∴-|a r |2-a r ·b r + a r ·b r +|b r |2=0,∴|b r |=|a r |=1.又c r = -a r -b r ,∴|c r |2=|-a r -b r |2= (-a r -b r )·(-a r -b r )=|a r |2 + 2a r ·b r +|b r |2=2∴|c r综上,|a r |2+|b r |2+|c r |2=213.【解析】设B 点坐标为(x ,y ),则(,)OB x y =u u u r ,(5,2)AB x y =--u u u r ,∵OB AB ⊥u u u r u u u r ,∴x(x ―5)+y(y ―2)=0,即x 2+y 2―5x ―2y=0. ①又||||OB AB =u u u r u u u r ,∴x 2+y 2=(x ―5)2+(y ―2)2,即10x+4y=29. ②联立①②,解得117232x y ⎧=⎪⎪⎨⎪=-⎪⎩或223272x y ⎧=⎪⎪⎨⎪=⎪⎩.∴B 点坐标为73,22⎛⎫- ⎪⎝⎭或37,22⎛⎫ ⎪⎝⎭. ∴37,22AB ⎛⎫=-- ⎪⎝⎭u u u r 或73,22AB ⎛⎫=- ⎪⎝⎭u u u r . 14.【解析】(1)()222327,94127,a b a b a b -=+-⋅=r r r r r r 而1,a b ==r r 则11,cos ,22a b a b a b ⋅=∴⋅=r r r r r r , 故a r 与b r 所成的角为3π (2)()22239693113,3a b a a b b a b +=+⋅+=++=+=r r r r r r r r 15.【解析】(1)因为(2cos ,sin )OA OC αα+=+u u u r u u u r,||OA OC +=u u u r u u u r ,所以(2+cos α)2+sin 2α=7. 所以1cos 2α=.又α∈(0,π),所以3πα=,即3AOC π∠=.又2AOB π∠=,所以OB u u u r 与OC u u u r 的夹角为6π. (2)(cos 2,sin )AC αα=-u u u r ,(cos ,sin 2)BC αα=-u u u r ,因为AC BC ⊥u u u r u u u r ,所以0AC BC ⋅=u u u r u u u r , 即1cos sin 2αα+=①. 所以21(cos sin )4αα+=.所以32sin cos 4αα=-. 因为(0,)απ∈,所以,2παπ⎛⎫∈ ⎪⎝⎭.又27(cos sin )12sin cos 4αααα-=-=, cos sin 0αα-<,所以cos sin αα-= ②.由①②得cos α=sin α=,从而tan α=.。

新教材老高考适用2023高考数学一轮总复习第三节平面向量的数量积与平面向量的应用pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第三节平面向量的数量积与平面向量的应用pptx课件北师大版
b<0,反之不成立(θ为π时不成立).
对点演练
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”.
(1)两向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向
量.(
)
(2)在△ABC 中,向量 , 的夹角为∠ABC.( × )
(3)(a·b)c=a(b·c).( × )
2.已知向量a,b满足a·(b+a)=2,且a=(1,2),与a方向相同的单位向量为e,则向
常用结论
1.平面向量数量积运算的常用公式:
(1)(a+b)·
(a-b)=a2-b2.
(2)(a±b)2=a2±2a·
b+b2.
2.当a与b同向时,a·
b=|a||b|;当a与b反向时,a·
b=-|a||b|.
3.a与b的夹角θ为锐角,则有a·
b>0,反之不成立(θ为0时不成立);a与b的夹角
为钝角,则有a·
余弦值为
.
答案
1
2
解析 由已知,得 a·
b=-4+4=0,(a+c)·
b=a·
b+b·
c=b·
c=-10,
|b|=
42
2
+ (-2) =2 5,所以 cos
·
θ=
||||
=
-10
1
=- .
2 5×2 5 2
考向3.平面向量的垂直
典例突破
例4.(2021全国甲,理14)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则
第七章
第三节 平面向量的数量积与平面向量的应用



近年高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文(202

近年高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文(202

(北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文的全部内容。

第三节平面向量的数量积与平面向量应用举例A组基础题组1。

已知=(2,1),点C(—1,0),D(4,5),则向量在方向上的投影为( )A。

-B。

-3 C. D.32。

(2017北京东城二模)已知向量a=(1,2),b=(x,4),且a⊥b,那么x的值为( )A.—2 B。

-4 C.-8 D.-163.(2015北京通州一模)在正方形ABCD中,已知AB=3,E是CD的中点,则·等于( )A。

B。

6 C。

D。

4。

设向量a,b满足|a|=1,|a-b|=,a·(a—b)=0,则|2a+b|=( )A.2 B。

2C。

4 D.45。

(2018北京海淀期末)在△ABC中,AB=AC=1,D是AC边的中点,则·的取值范围是() A. B.C. D.6.(2017北京东城期末)△ABC的内角A,B,C所对的边分别为a,b,c,若a=5,b=7,c=8,则·等于。

7。

(2015北京朝阳一模)已知平面向量a,b满足|a|=|b|=1,a与b的夹角为60°,则a·(a+b)= .8.(2016北京西城二模)设平面向量a,b满足|a|=|b|=2,a·(a+b)=7,则向量a,b夹角的余弦值为.9。

北京四中高考数学总复习 平面向量的数量积及应用基础巩固练习

北京四中高考数学总复习 平面向量的数量积及应用基础巩固练习

北京四中高考数学总复习 平面向量的数量积及应用基础巩固练习【巩固练习】一、选择题1. 若点12A (,),2,B (3),(2,5)C -,则AB AC ⋅=( )。

A.1-B.0C.1D.22. 在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( )A .2AC AC AB =⋅B .2BC BA BC =⋅ C .2AB AC CD =⋅ D .22()()AC AB BA BC CD AB ⋅⨯⋅=3. 平面向量a 与b 的夹角为60°,a =(2,0),1=b ,则2+=a b ( ) A 3.23. 4 D .124. 已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1B 2C .2D .4 5. 在△OAB 中,已知OA=4,OB=2,点P 是AB 的垂直平分线l 上的任一点,则OP AB ⋅=( )A .6B .―6 C.12 D .―126. 对于非零向量m ,n ,定义运算“*”:*sin θ=⋅⋅m n m n ,其中θ为m ,n 的夹角,有两两不共线的三个向量a 、b 、c ,下列结论正确的是( )A .若**=a b a c ,则=b cB .*()*=-a b a bC .(*)(*)=a b c a b cD .()***+=+a b c a c b c7. 平面上O ,A ,B 三点不共线,设OA a =,OB b =,则△OAB 的面积等于( )A 222||||()a b a b -⋅B 222||||()a b a b +⋅C 2221||||()2a b a b -⋅D 2221||||()2a b a b +⋅ 二、填空题8.已知向量a ,b 满足1==a b ,1-=a b ,则+=a b ________9.已知2==a b ,(2)()2+⋅-=-a b a b ,则a 与b 的夹角为________.10. 若(1,0)a =,(1,1)b =,且a kb a +⊥(),则实数k=________.11. 若平面上三点A 、B 、C 满足||3AB =,||4BC =,||5CA =,则AB BC BC CA CA AB ⋅+⋅+⋅的值等于________三、解答题12. 已知向量()()sin ,cos ,3cos ,cos a x x b x x ==且0b ≠,若a b ⊥,求x 的最小正值.13. 已知1e ,2e 是夹角为23π的两个单位向量,122=-a e e ,12k =+b e e ,若0⋅=a b ,求实数k 的值.14.在平面直角坐标系xOy 中,已知点A (―1,―2),B (2,3),C (―2,―1)。

2024年高一数学真题汇编(北京专用)平面向量的数量积及其应用(含坐标)5种常考题型归类(解析版)

2024年高一数学真题汇编(北京专用)平面向量的数量积及其应用(含坐标)5种常考题型归类(解析版)

专题02平面向量的数量积及其应用(含坐标)5种常考题型归类向量数量积的运算1.(2023春•西城区校级期中)向量||||2a b == ,a与b 的夹角为34π,则a b ⋅ 等于()A .-B .C .2-D .4【解析】 ||||2a b == ,a与b 的夹角为34π,∴32||||cos 22()42a b a b π⋅==⨯⨯-=-.故选:A .2.(2023春•西城区校级期中)已知向量a,b ,c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c -⋅=;a b ⋅=.【解析】如图建立平面直角坐标系,所以(2,1)a = ,(2,1)b =- ,(0,1)c =,所以(0,2)a b -= ,()2a b c -⋅= ,221(1)3a b ⋅=⨯+⨯-=.故答案为:2;3.3.(2023春•东城区校级期中)已知菱形ABCD 边长为1,60BAD ∠=︒,则(BD DC ⋅=)A B .C .12D .12-【解析】60BAD ∠=︒ ,由菱形的几何性质可得:1AB BD DC ===,,120BD DC 〈〉=︒,故111cos1202BD DC ⋅=⨯⨯︒=- .故选:D .4.(2023春•怀柔区校级期中)已知菱形ABCD 的边长为a ,60ABC ∠=︒,则(DA CD ⋅=)A .212a -B .214a -C .214a D .212a 【解析】已知菱形ABCD 的边长为a ,60ABC ∠=︒,则2211||||cos(180)()22DA CD DA CD ADC a a ⋅=︒-∠=⨯-=- .故选:A .5.(2021秋•西城区校级期中)在ABC ∆中,90C =︒,4AC =,3BC =,点P 是AB 的中点,则(CB CP ⋅= )A .94B .4C .92D .6【解析】在ABC ∆中,90C =︒,则0CB CA ⋅=,因为点P 是AB 的中点,所以1()2CP CB CA =+ ,所以222111119[()]||222222CB CP CB CB CA CB CB CA CB CB ⋅=⋅+=+⋅=== .故选:C .6.(2015秋•北京校级期中)ABC ∆外接圆的半径为1,圆心为O ,且20OA AB AC ++= ,||||OA AB =,则CA CB等于()A .32B C .3D .【解析】 20OA AB AC ++=,∴0OA AB OA AC +++= ,∴OB OC =- .O ∴,B ,C 共线,BC 为圆的直径,如图AB AC ∴⊥. ||||OA AB = ,∴||||1OA AB == ,||2BC =,||AC =,故6ACB π∠=.则||||cos303CA CB CA CB =︒= ,故选:C .7.(2023春•房山区期中)在梯形ABCD 中,//AB CD ,2CD =,4BAD π∠=,若2AB AC AB AD ⋅=⋅ ,则(AD AC ⋅= )A .12B .16C .20D .10【解析】因为2AB AC AB AD ⋅=⋅,所以()AB AC AB AD AB AC AD AB DC AB AD ⋅-⋅=⋅-=⋅=⋅ ,所以2||AB AB AD =⋅ ,可得||cos 24AD π= ,解得||22AD = ,所以22()(22)222cos 124AC AD AD AD DC AD AD DC π⋅=⋅+=+⋅=+⨯= .故选:A .8.(2023秋•大兴区期中)已知等边ABC ∆的边长为4,E ,F 分别是AB ,AC 的中点,则EF EA ⋅=;若M ,N 是线段BC 上的动点,且||1MN =,则EM EN ⋅的最小值为.【解析】以BC 所在直线为x 轴,BC 的中垂线所在直线为y 轴,建立平面直角坐标系,如图所示,因为等边ABC ∆的边长为4,E ,F 分别是AB ,AC 的中点,所以(2,0)B -,(2,0)C ,(0A ,23),(3)E -,3)F ,所以(2,0)EF = ,3)EA =,所以21032EF EA ⋅=⨯+=;不妨设M 在N 的左边,则设(M m ,0)(21)m - ,则(1,0)N m +,所以(1,3)EM m =+ ,(2,3)EN m =+,所以22311(1)(2)335(24EM EN m m m m m ⋅=+++=++=++ ,所以当32m =-时,EM EN ⋅ 有最小值为114.故答案为:2;114.9.(2023春•西城区校级期中)已知正方形ABCD 的边长为2,P 为正方形所在平面上的动点,且||BP =,则DB AP ⋅的最大值是()A .0B .4C .D .8【解析】已知正方形ABCD 的边长为2,P 为正方形所在平面上的动点,且||BP =,建立如图所示的平面直角坐标系,则(0,0)B ,(0,2)A ,(2D ,2(2,2)2))θθ=--⋅-,P θ)θ,[0θ∈,2]π,则(2,2)2)444sin(4DB AP πθθθθθ⋅=--⋅-=--=-+ ,又[0θ∈,2]π,则[0DB AP ⋅∈,8],则DB AP ⋅的最大值是8.故选:D .10.(2023春•顺义区期中)已知P 是ABC ∆所在平面内一点,||3AB = ,||1AP = ,6AC AB ⋅=,则AB CP ⋅的最大值是()A .3B .2C .2-D .3-【解析】||3AB = ,||1AP = ,6AC AB ⋅=,∴()AB CP AB AP AC ⋅=⋅- AB AP AB AC =⋅-⋅ ||||cos 6AB AP BAP =∠-3cos 6BAP =∠-,cos 1BAP ∴∠=时,AB CP ⋅取最大值3-.故选:D .11.(2023秋•通州区期中)在等腰ABC ∆中,2AB AC ==,2BA BC ⋅=,则BC =2;若点P满足122CP CA CB =-,则PA PB ⋅ 的值为.【解析】在等腰ABC ∆中,2AB AC ==,又2BA BC ⋅=,则()2AB AC AB ⋅-=-,则222AB AC AB ⋅=-= ,即||||cos 2AB AC BAC ∠=,即1cos 2BAC ∠=,即3BAC π∠=,即ABC ∆为等边三角形,即2BC =;又点P 满足122CP CA CB =-,则221111111()()(2)(3)664422242242422PA PB CA CP CB CP CB CA CB CA CB CA CB CA ⋅=-⋅-=+⋅-=-+⋅=⨯-⨯+⨯⨯⨯= 故答案为:2;24.向量的模12.(2023秋•东城区校级期中)已知向量a 与向量b 的夹角为120︒,||||1a b == ,则|2|(a b += )A .3B C .2D .1【解析】已知向量a与向量b 的夹角为120︒,||||1a b == ,则1111()22a b ⋅=⨯⨯-=-,则|2|a b +=== .故选:B .13.(2023春•海淀区校级期中)已知平面向量a ,b 满足||2a = ,||1b = ,且a与b 的夹角为23π,则||(a b += )A B C .D .3【解析】 ||2a = ,||1b = ,且a与b 的夹角为23π,∴平面向量的数量积运算可知,221cos 13a b π⋅=⨯⨯=-,∴222222||()222113a b a b a a b b +=+=+⋅+=-⨯+= ,∴||a b +=故选:A .14.(2022春•东城区校级期中)已知a ,b 是单位向量,2c a b =+ ,若a c ⊥,则||(c = )A .3BC D【解析】 a ,b 是单位向量,2c a b =+ ,a c ⊥,∴2(2)20a c a a b a a b ⋅=⋅+=+⋅=,∴21a b ⋅=-,||c = ==.故选:C .15.(2014秋•西城区校级期中)已知向量a与b 的夹角是120︒,||3a = ,||a b + ,则||b =.【解析】向量a与b 的夹角是120︒,||3a = ,||a b += ,则2()13a b +=,即有22213a b a b ++=,即29||23||cos12013b b ++⨯︒=,即2||3||40b b --=,即有||4(1b =-舍去),故答案为:4.16.(2020春•朝阳区校级期中)设向量a ,b 满足||2a = ,||1b = ,a < ,60b >=︒,则|2|a b += .【解析】由||2a = ,||1b = ,a <,60b >=︒ ,则1||||cos ,2112a b a b a b ⋅=<>=⨯⨯=,则|2|a b +==故答案为:.17.(2023春•海淀区校级期中)已知||1a =,||b = 1a b ⋅=,则|2|(a b -= )A .3BC .5D .9【解析】 222222|2|(2)441414(5a b a b a a b b -=-=-⋅+=-⨯+⨯=,∴|2|a b -=.故选:B .18.(2023春•东城区校级期中)若向量,,a b c满足:,||1a b c ≠= ,且()()0a c b c -⋅-= ,则||||a b a b ++-的最小值为()A .52B .2C .1D .12【解析】设a OA =,b OB = ,c OC = ,设M 为AB 的中点,已知向量,,a b c满足:,||1a b c ≠= ,且()()0a c b c -⋅-= ,则||1OC = ,CA CB ⊥ ,则||||2||||2||2||2(||||)2||2a b a b OM BA OM CM OM CM OC ++-=+=+=+=,当且仅当O 在线段CM 上时取等号,即||||a b a b ++-的最小值为2.故选:B .19.(2023秋•丰台区期中)已知平面向量,a b满足||2a = ,||1b = ,且1a b ⋅= ,则|2|(a b += )A .12B .4C .D .2【解析】已知平面向量,a b满足||2a = ,||1b = ,且1a b ⋅= ,则|2|2a b +=故选:C .20.(2022春•东城区校级期中)已知向量(1,1)a =,(2,3)b =- ,那么|2|(a b -= )A .5B .C .8D【解析】向量(1,1)a =,(2,3)b =- ,那么|2||(5a b -= ,5)|-==.故选:B .21.(2022春•西城区校级期中)已知向量a ,b满足||5a = ,(3,4)b = ,0a b ⋅= .则||a b -= .【解析】因为||5a = ,(3,4)b = ,所以2223425b =+= ,所以||5b = ,又因为0a b ⋅=,所以222()225202550a b a a b b -=-⋅+=-⨯+= ,所以||a b -=.故答案为:.22.(2023秋•西城区校级期中)已知向量,a b满足(2,),(2,1)a b x a b +=-=- ,且22||||1a b -=- ,则(x =)A .3-B .3C .1-D .1【解析】因为(2,),(2,1)a b x a b +=-=-,所以2222||||()()41a b a b a b a b x -=-=+⋅-=-+=-,解得:3x =.故选:B .23.(2017春•东城区校级期中)设x ,y R ∈,向量(,1)a x = ,(1,)b y = ,(2,4)c =- ,且a c ⊥ ,//b c,则||(a b += )A B C .D .10【解析】 (,1),(2,4)a x c ==- ,且a c ⊥,21(4)0x ∴+-= ,解得2x =.又 (1,),(2,4)b y c ==-,且//b c ,1(4)2y ∴-= ,解之得2y =-,由此可得(2,1)a =,(1,2)b =- ,∴(3,1)a b +=-,可得||a b +=.故选:B .向量的垂直问题24.(2023春•大兴区校级期中)已知向量(,2),(1,1)a x b ==- ,若a b ⊥,则(x =)A .1B .1-C .2D .2-【解析】因a b ⊥ ,则20a b x ⋅=-+=,得2x =.故选:C .25.(2023春•昌平区校级期中)向量(,1),(2,4)a t b == ,若a b ⊥,则实数t 的值为()A .1B .1-C .2D .2-【解析】因为(,1),(2,4)a t b == ,且a b ⊥,所以240a b t ⋅=+=,得2t =-.故选:D .26.(2023春•通州区期中)已知向量(2,4)a =,(1,)b m =- ,则“3m =”是“()a b b -⊥ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】根据题意,当3m =时,向量(2,4)a =,(1,3)b =- ,则(3,1)a b -= ,有()330a b b -⋅=-+= ,则有()a b b -⊥,反之,若()a b b -⊥ ,则()3(4)0a b b m m -⋅=-+-=,解可得3m =或1,3m =不一定成立;故“3m =”是“()a b b -⊥”的充分不必要条件.故选:A .27.(2023春•东城区校级期中)已知向量(1,2)a =- ,(,1)b m = .若向量a b + 与a垂直,则(m =)A .6B .3C .7D .14-【解析】已知向量(1,2)a =- ,(,1)b m = ,若向量a b + 与a垂直,则2()5(2)0a b a a a b m +=+=+-+=,求得7m =,故选:C .28.(2023秋•东港区校级期中)已知向量(1,0),(0,1)a b == ,若()()a b a b λμ-⊥+,其中λ,R μ∈,则()A .1λμ+=-B .1λμ+=C .1λμ⋅=-D .1λμ⋅=【解析】(1,0),(0,1)a b ==,则(1,)a b λλ-=- ,(1,)a b μμ+=,()()a b a b λμ-⊥+,则110λμ⨯-⋅=,解得1λμ⋅=.故选:D .29.(2023秋•西城区校级期中)如果平面向量(2,0)a =,(1,1)b = ,那么下列结论中正确的是()A .||||a b = B .a b =C .()a b b -⊥D .//a b【解析】由平面向量(2,0)a =,(1,1)b = ,知:在A 中,||2a =,||b = ||||a b ∴≠ ,故A 错误;在B 中,2a b =,故B 错误;在C 中, (1,1)a b -=- ,()0a b b ∴-= ,()a b b ∴-⊥,故C 正确;在D 中, 2011≠,∴a与b 不平行,故D 错误.故选:C .30.(2023春•海淀区校级期中)已知平面向量11(,),)2222a b =-=-,则下列关系正确的是()A .()a b b +⊥B .()a b a +⊥C .()()a b a b +⊥-D .()//()a b a b +-【解析】平面向量11()22a b =-=-,则a b ⋅=-=,22||1b b == ,22||1a a == ,对于A ,2()0a b b a b b +⋅=⋅+≠,故A 错误;对于B ,2()0a b a a a b +⋅=+⋅≠,故B 错误;对于C ,向量1(,)22a =-,1()22b =- ,则||||1a b == ,则有22()()||||0a b a b a b +⋅-=-= ,即()()a b a b +⋅-,故C 正确;对于D ,12a b += 1)2,1(2a b -=1)2+,易得()a b + 与()a b - 平行不成立,故D 错误.故选:C .31.(2021春•东城区校级期中)已知向量(1,0)a = ,(,1)b m = ,且a与b 的夹角为4π.(1)求m 及|2|a b -;(2)若a b λ+与b 垂直,求实数λ的值.【解析】(1)根据题意,向量(1,0)a =,(,1)b m = ,则a b m ⋅= ,||1a =,||b = ,又由a与b 的夹角为4π,则有||||cos a b a b θ⋅= ,即2m =,解可得:1m =,则2(1,2)a b -=-- ,故|2|a b -==;(2)由(1)的结论,1m =,则(1,1)b =,若a b λ+与b 垂直,则()120a b b λλ+⋅=+= ,解可得:12λ=-.向量的夹角问题32.(2023春•仓山区校级期中)若||1a = ,||b = ,2a b ⋅= ,则a,b 的夹角为()A .0B .4πC .2πD .34π【解析】cos a b a b θ⋅=⨯⨯,将已知代入可得:21cos θ=⨯,解得:2cos 2θ=,[0θ∈ ,]π,故4πθ=,故选:B .33.(2023春•顺义区期中)若1e ,2e 是夹角为3π的两个单位向量,则12a e e =+ 与122b e e =- 的夹角为()A .6πB .3πC .23πD .56π【解析】根据题意,设12a e e =+与122b e e =- 的夹角为θ,[0θ∈,]π,1e ,2e 夹角为3π的两个单位向量,则1212e e ⋅= ,12a e e =+,122b e e =- ,则有221212322a b e e e e ⋅=--⋅=- ;又由2212||()3a e e =+=,2212||(2)3b e e =-= ,则有||a =,||b = ,则1cos 2||||a b a b θ⋅==- ,则23πθ=.故选:C .34.(2023秋•朝阳区期中)已知单位向量a ,b 满足(2)2a a b ⋅+= ,则向量a与b 的夹角为.【解析】因为a,b 是单位向量,且(2)2a a b ⋅+= ,所以222a a b +⋅= ,所以12a b ⋅= ,所以1cos ,2||||a b a b a b ⋅<>==,因为,[0,]a b π<>∈,所以,3a b π<>=.故答案为:3π.35.(2023春•房山区期中)已知向量(3,1)a =,(2,1)b =- .则a b ⋅= ;a <,b >=.【解析】向量(3,1)a =,(2,1)b =- ,所以321(1)5a b ⋅=⨯+⨯-=;计算cos a <,2||||a b b a b ⋅>=== ,又因为a <,[0b >∈ ,]π,所以a <,4b π>= .故答案为:5;4π.36.(2023春•通州区期中)已知向量(1,2)a =- ,(2,4)b = ,则向量a与b 夹角的余弦值为()A .35-B .35C .1-D .1【解析】根据题意,设向量a与b 夹角为θ,向量(1,2)a =-,(2,4)b = ,则||a ==,||b == ,286a b ⋅=-=-,则3cos 5||||a b a b θ⋅===- .故选:A .37.(2023春•海淀区校级期中)已知a ,b 是单位向量,2c a b =+ .若a c ⊥ ,则a与b 的夹角为()A .6πB .3πC .23πD .56π【解析】设a与b 的夹角为θ,[0θ∈,]π, 2c a b =+ ,a c ⊥,∴2(2)20a c a a b a a b ⋅=⋅+=+⋅=,a,b 是单位向量,12cos 0θ∴+=,解得1cos 2θ=-,∴23πθ=.故选:C .38.(2023春•东城区校级期中)平面向量||2a = ,||2b = ,()a b a -⊥ ,则a与b 的夹角是()A .512πB .3πC .4πD .6π【解析】()a b a -⊥,()0a b a ∴-⋅= ,即20a a b -⋅=,∴22a b a ⋅==,2cos ,2||||a b a b a b ⋅∴<>==⋅,,[0,]a b π<>∈,∴,a b的夹角是4π.故选:C .39.(2022春•西城区校级期中)已知向量a ,b 在正方形网格中的位置如图所示,那么向量a ,b的夹角为()A .45︒B .60︒C .90︒D .135︒【解析】根据题意,如图,建立坐标系,设小正方形的边长为1,向量a,b 的夹角为θ,则(3,1)a =,(2,4)b = ,则||10a = ||4165b =+ 10a b ⋅=,则102cos 2||||1025a b a b θ⋅===⨯ ,则45θ=︒,故选:A .40.(2023春•海淀区校级期中)已知向量(1,0)a =,(2,a b += ,则向量a与b 的夹角为()A .3π-B .6πC .3πD .23π【解析】向量(1,0)a =,(2,a b +=,所以(1,b = ,所以1,||1,||2a b a b ⋅===,设向量a与b 的夹角为α,则1cos 2||||a b a b α⋅== ,因为[0α∈,]π,故3πα=.故选:C .41.(2013秋•宣武区校级期中)若向量a 、b 满足(2,1)a b +=- ,(1,2)a = ,则向量a与b 的夹角等于()A .135︒B .120︒C .60︒D .45︒【解析】向量a、b 满足(2,1)a b +=- ,(1,2)a = ,则(1,3)b =- ,165a b =-=-,||a =,||b =即有cos ,2||||a b a b a b <>===,由于0,180a b ︒<>︒,则有向量a与b 的夹角等于135︒.故选:A .42.(2023秋•通州区期中)已知向量(2,0)a =- ,(1,2)b =,c =,则下列结论中正确的是()A .//a bB .2a b ⋅= C .||2||b c = D .a 与c的夹角为120︒【解析】已知向量(2,0)a =- ,(1,2)b =,c =,A 选项,因(2)210-⨯≠⨯,则a与b 不平行,故A 错误;B 选项,因202a b ⋅=-+=-,故B 错误;C选项,||b ==又||2c ==,则||2||b c ≠ ,故C 错误;D 选项,21cos ,||||222a c a c a c ⋅-〈〉===-⨯,又,[0,180]a c 〈〉∈︒︒,则,120a c 〈〉=︒,即a 与c的夹角为120︒,故D 正确.故选:D.投影向量问题43.(2023春•通州区期中)已知向量a ,b 满足10a b ⋅= ,且(3,4)b =- ,则a在b 上的投影向量为()A .(6,8)-B .(6,8)-C .6(5-,8)5D .6(5,8)5-【解析】因为10a b ⋅=,且(3,4)b =- ,所以a在b 上的投影向量||cos a a < ,2(3,4)6()10(9165||||b b b a b b b ->=⋅=⨯=-+ ,85.故选:C .44.(2023春•朝阳区校级期中)已知两个单位向量a和b 的夹角为120︒,则向量a b - 在向量b 上的投影向量为()A .12b- B .12bC .32b- D .32b【解析】 单位向量a和b 的夹角为120︒,23()||11cos12012a b b a b b ∴-⋅=⋅-=⨯⨯︒-=- ,向量a b -在向量b 上的投影向量为()32||||a b b b b b b -⋅⋅=- .故选:C .45.(2021春•丰台区期中)已知(1,0)a = ,(5,5)b = ,则向量a在向量b 方向上的投影向量的坐标为.【解析】向量a在向量b方向上的投影为22||a b b ⋅= ,由于向量a在向量b 方向上的投影向量与b 共线,可得所求向量为11(102b = ,1)2,故答案为:1(2,1)2.46.(2023春•房山区期中)已知向量(1,3)a =,(1,1)b =- ,则下列结论正确的是()A .a与b 的夹角是钝角B .()a b b+⊥C .a在bD .a在b 上的投影的数量为105【解析】对于A ,因为1320a b ⋅=-+=> ,所以a与b 的夹角不是钝角,选项A 错误;对于B ,2()2240a b b a b b +⋅=⋅+=+=≠ ,所以()a b b +⊥不成立,选项B 错误;对于C ,a在b上的投影的数量为||a b b ⋅== C 正确;对于D ,由C 知选项D 错误.故选:C .47.(2023春•昌平区校级期中)如图,矩形ABCD 中,2AB =,1BC =,O 为AB 的中点.当点P 在BC 边上时,AB OP ⋅的值为;当点P 沿着BC ,CD 与DA 边运动时,AB OP ⋅的最小值为.【解析】矩形ABCD 中,2AB =,1BC =,O 为AB 的中点.当点P 在BC 边上时,||||cos 212AB OP AB OP POB ⋅=∠=⨯=;当点P 沿着BC ,CD 与DA 边运动时,AB OP ⋅的最小值,||||cos AB OP AB OP POB ⋅=∠ ,P 应该在线段AD 上,此时||||cos 2(1)2AB OP AB OP POB ⋅=∠=⨯-=-;故答案为:2;2-.48.(2023秋•东城区校级期中)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术.图1是一张由卷曲纹和回纹构成的正六边形剪纸窗花.图2中正六边形ABCDEF 的边长为4,圆O 的圆心为该正六边形的中心,圆O 的半径为2,圆O 的直径//MN CD ,点P 在正六边形的边上运动,则PM PN ⋅的最小值为.【解析】如图,连结PO ,显然OM ON =-,则222()()()()4PM PN PO OM PO ON PO OM PO OM PO OM PO ⋅=+⋅+=+⋅-=-=- ,点P 在正六边形ABCDEF 的边上运动,O 是其中心,因此||PO的最小值等于中心O 到正六边形的边的距离,又中心O 到正六边形的边的距离为42⨯=,所以PM PN ⋅的最大值为248-=.故答案为:8.49.(2023春•大兴区期中)已知ABC ∆是边长为2的等边三角形,D 是边BC 上的动点,E 是边AC的中点,则BE AD ⋅ 的取值范围是()A .[-B .C .[3-,0]D .[0,3]【解析】建立如图所示的平面直角坐标系,则(1,0)A -,(1,0)C ,B ,(0,0)E ,设CD CB λ= ,01λ,则(1)OD OC CB λλ=+=- ,则(2)AD λ=- ,又(0,BE = ,所以(2)0(3BE AD λλ⋅=-⨯+⨯=- ,又01λ,所以BE AD ⋅ 的取值范围是[3-,0].故选:C .50.(20210.618≈的矩形叫做黄金矩形.它广泛的出现在艺术、建筑、人体和自然界中,令人赏心悦目.在黄金矩形ABCD 中,1BC =,AB BC >,那么AB AC ⋅ 的值为()A1-B1+C .4D.2+【解析】由黄金矩形的定义,可得2AB =,1BC =-,在矩形ABCD中,cos AB CAB AC ∠==,则||||cos 24AB AC AB AC CAB ⋅=⋅⋅∠=⨯ ,故选:C .51.(2023秋•西城区校级期中)已知OA a = ,OB b = .若||5OA = ,||12OB = ,且90AOB ∠=︒,则||a b -= .【解析】已知OA a = ,OB b = ,90AOB ∠=︒,∴0a b ⋅= ,又||5OA = ,||12OB = ,即||5,||12a b ==,||13a b ∴-= .故答案为:13.52.(2023春•道里区校级期中)若平面向量a 与b 的夹角为60︒,(2,0)a = ,||1b = ,则|2|a b + 等于()AB.C .4D .12【解析】因为平面向量a 与b 的夹角为60︒,(2,0)a = ,||1b = ,所以||2a = ,||||cos 21cos601a b a b θ⋅=⋅=⨯⨯︒= ,所以|2|2a b += .故选:B .53.(2023春•东城区校级期中)已知向量(0,5)a = ,(4,3)b =- ,(2,1)c =-- ,那么下列结论正确的是()A .a b - 与c 为共线向量B .a b - 与c 垂直C .a b - 与a 的夹角为钝角D .a b - 与b 的夹角为锐角【解析】根据题意,向量(0,5)a = ,(4,3)b =- ,(2,1)c =-- ,则(4,8)a b -=- ,又由(2,1)c =-- ,有(4)(1)(2)8-⨯-≠-⨯,则()a b - 与c 不是共线向量,(2,1)c =-- ,则()(4)(2)(1)80a b c -=-⨯-+-⨯= ,则()a b - 与c 垂直;故选:B .。

北京四中高中数学 平面向量的数量积提高知识讲解 新人教A版必修1

北京四中高中数学 平面向量的数量积提高知识讲解 新人教A版必修1

平面向量的数量积【学习目标】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表示,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;【要点梳理】要点一: 平面向量的数量积1. 平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量cos a b θ叫a 与b 的数量积,记作a b ⋅,即有()cos 0a b a b θθπ⋅=≤≤.并规定0与任何向量的数量积为0.2.一向量在另一向量方向上的投影:cos b θ叫做向量b 在a 方向上的投影.要点诠释:1. 两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a b ⋅;今后要学到两个向量的外积a b ⨯,而a b ⋅是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若0a ≠,且0a b ⋅=,则0b =;但是在数量积中,若0a ≠,且0a b ⋅=,不能推出0b =.因为其中cos θ有可能为0.2. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为b ;当θ=180︒时投影为b -. 要点二:平面向量数量积的几何意义数量积a b ⋅表示a 的长度||a 与b 在a 方向上的投影cos b θ的乘积,这是a b ⋅的几何意义。

图所示分别是两向量,a b 夹角为锐角、钝角、直角时向量b 在向量a 方向上的投影的情形,其中1||cos OB b θ=,它的意义是,向量b 在向量a 方向上的投影是向量1OB 的数量,即11||a OB OB a =⋅。

事实上,当θ为锐角时,由于cos 0θ>,所以10OB >;当θ为钝角时,由于cos 0θ<,所以10OB <;当090θ=时,由于cos 0θ=,所以10OB =,此时O 与1B 重合;当00θ=时,由于cos 1θ=,所以1||OB b =;当当0180θ=时,由于cos 1θ=-,所以1||OB b =-。

高三数学一轮复习 平面向量的数量积及平面向量的应用巩固与练习

高三数学一轮复习 平面向量的数量积及平面向量的应用巩固与练习

高三数学一轮复习 平面向量的数量积及平面向量的应用巩固与练习1.已知向量a 与向量b 的夹角为120°,若向量c =a +b ,且a ⊥c ,则|a ||b |的值为( )A.12B.233 C .2 D. 3解析:选A.c ·a =(a +b )·a =|a |2+a ·b =|a |2+|a ||b |·cos120°=|a |2-12|a ||b |=0,∴|a ||b |=12.故选A.2.(2009年高考陕西卷)在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则PA →·(PB →+PC →)等于( )A .-49B .-43C.43D.49 解析:选A.M 是BC 的中点,则 PA →·(PB →+PC →)=PA →·2PM →=PA →·A P →=-(PA →)2=-(23MA →)2=-49.3.(2010年江苏四市调研)已知圆O 的半径为a ,A ,B 是其圆周上的两个三等分点,则OA →·AB →=( )A.32a 2 B .-32a 2 C.32a 2 D .-32a 2 解析:选B.结合图形易知两向量夹角为5π6,且|OA →|=a ,|AB →|=3a ,故OA →·AB →=|OA→|×|AB →|×cos 5π6=-3a 22.4.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 解析:由a =(2,4),b =(-1,2),得a ·b =-2+8=6, ∴c =(2,4)-6(-1,2)=(8,-8),∴|c |=82+(-8)2=8 2. 答案:8 25.(原创题)三角形ABC 中AP 为BC 边上的中线,|AB →|=3,AP →·BC →=-2,则|AC →|=________.解析:AP →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=-2 ∴|AC →|= 5. 答案: 56.已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)计算|4a -2b |;(2)当k 为何值时,(a +2b )⊥(k a -b )?解:由已知,a ·b =4×8×(-12)=-16.(1)∵|4a -2b |2=16a 2-16a ·b +4b 2=16×16-16×(-16)+4×64=3×162∴|4a -2b |=16 3.(2)若(a +2b )⊥(k a -b ),则(a +2b )·(k a -b )=0,∴k a 2+(2k -1)a ·b -2b 2=0. 16k -16(2k -1)-2×64=0, ∴k =-7.练习1.(2009年高考全国卷Ⅰ)设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉=( )A .150°B .120°C .60°D .30° 解析:选B.∵a +b =c ,∴|c |2=|a +b |2=a 2+2a ·b +b 2. 又|a |=|b |=|c |,∴2a ·b =-b 2,即2|a ||b |cos 〈a ,b 〉=-|b |2.∴cos〈a ,b 〉=-12,∴〈a ,b 〉=120°.2.共点力F 1(lg2,lg2),F 2(lg5,lg2)作用在物体M 上,产生位移s =(2lg5,1),则共点力对物体做的功W 为( )A .lg2B .lg5C .1D .2解析:选D.F 1与F 2的合力F =(lg2+lg5,2lg2)=(1,2lg2) 又s =(2lg5,1)所以W =F ·s =2lg5+2lg2=2.3.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( )A .30°或150°B .60°或120°C .120°D .150°解析:选C.由题意容易得出向量a 、b 共线,且向量a 与向量a +b 的夹角为π,可设向量a +b 与向量c 的夹角为α,则(a +b )·c =|a +b |·|c |·cos α=5cos α=52,所以cos α=12,α=60°,则向量a 与向量c 所夹的角应为120°.答案为C.4.若向量a 与b 不共线,a ·b ≠0,且c =a -(a ·aa ·b)b ,则向量a 与c 的夹角为( )A .0 B.π6C.π3D.π2解析:选D.∵a ·c =a ·[a -(a ·a a ·b )b ]=a ·a -(a ·aa ·b)(a ·b )=0. ∴a ⊥c ,故选D.5.设A (a,1),B (2,b ),C (4,5)为坐标平面上三点,O 为坐标原点,若OA →与OB →在OC →方向上的投影相等,则a 与b 满足的关系式为( )A .4a -5b =3B .5a -4b =3C .4a +5b =14D .5a +4b =14解析:选A.由投影计算公式可得:OA →·OC →|OC →|=OB →·OC→|OC →|,即:4a +5=8+5b ,即4a -5b =3,故选A.6.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则三角形ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, ∴AC →·2BA →=0,∴AC →⊥BA →,∴∠A =90°.7.已知向量OA →=(2,2),OB →=(4,1),在x 轴上一点P ,使AP →·BP →有最小值,则P 点的坐标是________.解析:设P (x,0),则AP →=(x -2,-2),BP →=(x -4,-1).因此,AP →·BP →=(x -4)(x -2)+2=x 2-6x +10=(x -3)2+1.∴当x =3时,AP →·BP →取得最小值1,此时P (3,0). 答案:(3,0)8.关于平面向量a ,b ,c ,有下列三个命题: ①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b |;③(b ·c )a -(c ·a )b 不与c 垂直;④非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°. 其中真命题的序号为________(写出所有真命题的序号).解析:平面向量的数量积不满足结合律,故①假;由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,而三角形的两边之差小于第三边,故②是真命题.因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直,故③假.由|a |=|b |=|a -b |,再结合平行四边形法则可得a 与a +b 的夹角为30°,命题④错误.答案:②9.在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为________.解析:如图,渡船速度为OB →,水流速度为OA →,船实际垂直过江的速度为OD →,依题意知,|OA →|=12.5,|OB →|=25,由于四边形OADB 为平行四边形,则|BD →|=|OA →|,又OD ⊥BD ,∴在Rt△OBD 中,∠BOD =30°, ∴航向为北偏西30°. 答案:北偏西30°10.已知|a |=3,|b |=2.(1)若a 与b 的夹角为150°,求|a +2b |; (2)若a -b 与a 垂直,求a 与b 的夹角大小.解:(1)∵|a +2b |2=(a +2b )2=a 2+4a ·b +4b 2=|a |2+4|a ||b|cos150°+4|b |2=(3)2+4×3×2×cos150°+4×22=7, ∴|a +2b |=7. (2)∵(a -b )⊥a ,∴(a -b )·a =|a |2-a ·b =0.∴a·b =|a |2.∴cos〈a ,b 〉=a·b |a ||b |=|a |2|a ||b |=|a ||b |=32.又∵0°≤〈a ,b 〉≤180°, ∴〈a ,b 〉=30°.11.(2009年高考湖北卷)已知向量a =(cos α,sin α),b =(cos β,sin β),c =(-1,0). (1)求向量b +c 的长度的最大值;(2)设α=π4,且a ⊥(b +c ),求cos β的值.解:(1)法一:b +c =(cos β-1,sin β),则|b +c |2=(cos β-1)2+sin 2β=2(1-cos β). ∵-1≤cos β≤1,∴0≤|b +c |2≤4,即0≤|b +c |≤2. 当cos β=-1时,有|b +c |=2, 所以向量b +c 的长度的最大值为2.法二:∵|b |=1,|c |=1,|b +c |≤|b |+|c |=2, 当cos β=-1时,有b +c =(-2,0),即|b +c |=2. 所以向量b +c 的长度的最大值为2.(2)法一:由已知可得b +c =(cos β-1,sin β),a ·(b +c )=cos αcos β+sin αsin β-cos α=cos(α-β)-cos α. ∵a ⊥(b +c ),∴a ·(b +c )=0,即co s(α-β)=cos α.由α=π4,得cos(π4-β)=cos π4,即β-π4=2k π±π4(k ∈Z ),∴β=2k π+π2或β=2k π,k ∈Z ,于是cos β=0或cos β=1.法二:若α=π4,则a =(22,22).又由b =(cos β,sin β),c =(-1,0)得a ·(b +c )=(22,22)·(cos β-1,sin β)=22cos β+22sin β-22. ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos β+sin β=1. ∴sin β=1-cos β,平方后化简得cos β(cos β-1)=0, 解得cos β=0或cos β=1.经检验,cos β=0或cos β=1即为所求. 12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知m =(cos 3A 2,sin 3A2),n =(cos A 2,sin A2),且满足|m +n |= 3.(1)求角A 的大小;(2)若|AC →|+|AB →|=3|BC →|,试判断△ABC 的形状.解:(1)由|m +n |=3,得m 2+n 2+2m ·n =3,即1+1+2(cos 3A 2cos A 2+sin 3A 2sin A2)=3,∴cos A =12,∵0<A <π,∴A =π3.(2)∵|AC →|+|AB →|=3|BC →|,∴b +c =3a , ∴sin B +sin C =3sin A ,∴sin B +sin(2π3-B )=3×32,即32sin B +12cos B =32,∴sin(B +π6)=32.∵0<B <2π3,∴π6<B +π6<5π6,∴B +π6=π3或2π3,故B =π6或π2.当B =π6时,C =π2;当B =π2时,C =π6.故△ABC 是直角三角形.。

高考数学《平面向量的数量积》一轮复习练习题(含答案)

高考数学《平面向量的数量积》一轮复习练习题(含答案)

高考数学《平面向量的数量积》一轮复习练习题(含答案)一、单选题1.已知向量()()1,1,2,1a b ==-,则a 在b 上的投影向量为( ) A .42(,)55-B .21(,)55-C .42(,)55-D .21(,)55-2.已知3a =,23b =,3a b ⋅=-,则a 与b 的夹角是( ) A .30°B .60°C .120°D .150°3.已知向量()1,2a =,()2,2b =,则向量a 在向量b 上的投影向量为( ) A .33,22⎛⎫ ⎪⎝⎭B .33,44⎛⎫ ⎪⎝⎭C .()2,2D .22,22⎛⎫ ⎪ ⎪⎝⎭4.设e →为单位向量,||2a →=,当a e →→,的夹角为3π时,a →在e →上的投影向量为( ) A .-12e →B .e →C .12e →D .32e →5.已知直角三角形ABC 中,90A ∠=︒,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB PC ⋅的最大值为( )A 16165+B 1685+ C .165D .5656.在ABC 中,已知5AB =,3BC =,4CA =,则AB BC ⋅=( ) A .16B .9C .-9D .-167.窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP 的取值范围是( )A .[]22-,B .22,22⎡⎤⎣⎦-C .32,32⎡⎤-⎣⎦D .[]4,4-8.如图,AB 为半圆的直径,点C 为AB 的中点,点M 为线段AB 上的一点(含端点A ,B ),若2AB =,则AC MB +的取值范围是( )A .[]1,3B .2,3⎡⎤⎣⎦C .10⎡⎣D .2,10⎡⎣9.已知圆M :()()22114x y -+-=.设P 是直线l :3480x y ++=上的动点,PA 是圆M 的切线,A 为切点,则PA PM ⋅的最小值为( ) A 3B 5C .3D .510.在三棱锥D ABC -中,DA ⊥平面,,ABC AB BC DA AB BC ⊥==;记直线DB 与直线AC 所成的角为α,直线DC 与平面ABD 所成的角为β,二面角D BC A --的平面角为γ,则( ) A .βγα<< B .γβα<< C .βαγ<<D .αγβ<<11.已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为3OA tOB +(t ∈R )的最小值为( ) A 2B 3C .2D 512.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥BD ,△BCD 为边长为23形,点P 为边BD 上一动点,则AP CP ⋅的取值范围为( )A .[]6,0-B .25,04⎡⎤-⎢⎥⎣⎦C .27,04⎡⎤-⎢⎥⎣⎦D .[]7,0-二、填空题13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.14.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______15.已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______. 16.已知,a b 是两个单位向量,2c a b =+,且b c ⊥,则()a ab ⋅+=__________. 三、解答题(17.已知()1,2a =,()2,3b =-,c a b λ=+. (1)当1λ=-时,求a c ⋅的值; (2)若()a b c +⊥,求实数λ的值.18.在①()cos2cos A B C =+,②sin 3cos a C c A =这两个条件中任选一个作为已知条件,然后解答问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,______. (1)求角A ;(2)若2b =,4c =,求ABC 的BC 边上的中线AD 的长.19.已知()1,2,2a m m =-,()3,21,1b n =-. (1)若a b ∥,求m 与n 的值; (2)若()3,,3c m =-且a c ⊥,求a .20.已知2,1a b ==,(3)()3a b a b -⋅+= (1)求a b +的值; (2)求a 与2a b -的夹角.21.已知()1,2a =,(1,1)b =-. (1)若2a b +与ka b -垂直,求k 的值; (2)若θ为2a b +与a b -的夹角,求θ的值.22.已知ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若2a =,且满足2c s 2o c aB b-=. (1)求角A ;(2)求BA BC ⋅的取值范围.23.已知向量()()32,,1,=-=a b x . (1)若()()22a b a b +⊥-,求实数x 的值;(2)若()()8,1,//=--+c a b c ,求向量a 与b 的夹角θ.24.在直角梯形ABCD 中,已知//AB CD ,90DAB ∠=︒,224AB AD CD ===,点F 是BC 边上的中点,点E 是CD 边上一个动点.(1)若12DE DC =,求AC EF ⋅的值; (2)求EA EF ⋅的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】 一、选择题
1. 若(1,0)a = ,(1,1)b =
,且a kb a +⊥ (),则实数k=( )。

A.1 B.1- C.1或1- D.非以上答案
2. 平面向量 a 与 b 的夹角为60°, a =(2,0),1= b ,则 2+= a b ( )
A
B
. C .4 D .12
3. 在△OAB 中,已知OA=4,OB=2,点P 是AB 的垂直平分线l 上的任一点,则OP AB ⋅=
( )
A .6
B .―6
C .12
D .―12
4. 设向量 a =(1,sin θ), b =(3sin θ,1)且 a ∥
b ,则cos2θ等于( )
A .13-
B .23-
C .23
D .1
3
5. 对于非零向量 m , n ,定义运算“*”:*sin θ=⋅⋅
m n m n ,其中θ为 m , n 的夹
角,有两两不共线的三个向量 a 、 b 、
c ,下列结论正确的是( )
A .若**= a b a c ,则= b c
B .*()*=- a b a b
C .(*)(*)= a b c a b c
D .()***+=+
a b c a c b c
6. 平面上O ,A ,B 三点不共线,设OA a = ,OB b =
,则△OAB 的面积等于( )
A
B
C
D
7.若向量 a 与 b 不共线,0⋅≠ a b ,且⎛⎫⋅ ⎪⋅⎝⎭
a a c =a -
b a b ,则向量 a 与
c 的夹角为( ) A .0
B .
π
6
C .
π3
D .
π2
二、填空题
8.已知向量,a b 夹角为45︒
,
且1,2a a b =-= ;则_____b =
9.若平面向量,a b
满足:23a b -≤ ;则a b
的最小值是_____ 10. 若平面上三点A 、B 、C 满足||3
AB = ,||4BC = ,||5CA =
,则
AB BC BC CA CA AB ⋅+⋅+⋅
的值等于________
11. 平面上有三个点A (―2,y ),(0,)2
y
B ,
C (x ,y ),若AB BC ⊥ ,则动点C 的轨
迹方程为________
三、解答题
12. 已知|a ||b |=1,a 与b 的夹角为45°
,求使向量(2a +λb )与(λa -3b )的夹角是锐角的λ的取值范围.
13. 已知1 e ,2 e 是夹角为23
π
的两个单位向量,
122=- a e e ,12k =+ b e e ,若0⋅= a b ,求实数k 的值.
14.在平面直角坐标系xOy 中,已知点A (―1,―2),B (2,3),C (―2,―1)。

(1)求以线段AB 、AC 为邻边平行的四边形的两条对角线的长;
(2)设实数t 满足()0AB tOC OC -⋅=
,求t 的值.
15.在△ABC 中,设A 、B 、C 的对边分别为a 、b 、c ,向量
m =(cosA ,sinA ),
,c o s )A A =
n ,若2+= m n ,
(1)求角A 的大小;
(2)若b =c =,求△ABC 的面积.
【参考答案与解析】 1.【答案】B
【解析】∵a kb a +⊥ (),∴0a kb a +⋅=
()即20a kb a +⋅= ,
∴10k +=,故1k =- 2.【答案】B
【解析】∵2=
a ,∴22222+=+⋅+ a
b a a b b =4+4×2×1×cos60°+4×12=12,
∴2+=
a b 3.【答案】B
【解析】B 设AB 的中点为M ,则
1()()()
2
OP AB OM M P AB OM AB OA OB OB OA ⋅=+⋅=⋅=+⋅-
221()62
OB OA =-=-
. 故选B. 4.【答案】D
【解析】由 a ∥ b 知,23sin 1θ=,得21sin 3θ=,∴2
1cos 212sin 3
θθ=-=.故选
D.
5.【答案】B
【解析】根据定义,由**= a b a c 得12sin sin θθ⋅⋅=⋅⋅
a b a c ,显然得不到= b c ;对于B ,()*sin ,sin()sin *πθθ-=-⋅⋅<->=⋅⋅-=⋅⋅= a b a b a b a b a b a b ,
B 正确,容易验证
C 、
D 不正确. 故选B.
6. 【答案】C
【解析】 11||||sin ,||||sin ,22OAB S OA OB OA OB a b a b ∆=+⋅〈〉=〈〉

∵cos ,||||
a b a b a b ⋅〈〉=

∴sin ,a b 〈〉=== ,
∴OAB S ∆= C. 7.【答案】D
【解析】 []0⎛⎫⋅⋅⋅= ⎪⋅⎝⎭
a a a c =a a -
b a b ,故向量 a 与
c 的夹角为π
2.
8.
【答案】 【解析】
222(2)1044cos 4510a b a b b b b ︒
-=⇔-=⇔+-=⇔=
9.【答案】98
- 【解析】
22222349494449448a b a b a b
a b a b a b a b a b a b -≤⇔+≤++≥≥-⇒+≥-⇔≥-
10.【答案】―25
【解析】由0AB BC CA ++= 可得2
()0AB BC CA ++= ,
∴916252()0AB BC BC CA CA AB +++⋅+⋅+⋅=

即25AB BC BC CA CA AB ⋅+⋅+⋅=-
11.【答案】y 2=8x
【解析】由题意得(2,)2y AB =- ,(,)2
y
BC x = ,
又AB BC ⊥ ,0AB BC ⋅=

即2,,022y y x ⎛⎫⎛⎫-
⋅= ⎪ ⎪
⎝⎭⎝⎭
,化简得y 2
=8x. 12.【解析】由|a |
|b |=1,a 与b 的夹角为45°
,则a ·b =|a ||b |cos45°
1×2
=1.
而(2a +λb )·(λa -3b )=2λa 2-6a ·b +λ2a ·b -3λb 2=λ2+λ-6. 设向量(2a +λb )与(λa -3b )的夹角为θ,则cos θ=(2)(3)
023a b a b a b a b
λλλλ+->+-,且
cos θ≠1,
∴(2a +λb )·(λa -3b )>0,∴λ2+λ-6>0,∴λ>2或λ<-3.
假设cos θ=1,则2a +λb =k (λa -3b )(k >0),∴2,3.
k k λλ=⎧⎨=-⎩解得k 2=2
3-.
故使向量2a +λb 和λa -3b 夹角为0°的λ不存在.
所以当λ>2或λ<-3时,向量(2a +λb )与(λa -3b )的夹角是锐角.
13. 【解析】由题意0⋅= a b 即有1212(2)()0k -⋅+=
e e e e ,
∴22
1122(12)20k k +-⋅-= e e e e ,
又121== e e ,122,3π〈〉= e e ,
∴22(12)cos 03
k k π
-+-⋅=, ∴1222k k --=,∴5
4
k =.
14.【解析】(1)由题设知(3,5)AB = ,(1,1)AC =- ,则(2,6)AB AC +=
,(4,4)AB AC -=
,
所以||AB AC +=
,||AB AC -=
故所求的两条对角线长分别为。

(2)由题设知(2,1)OC =-- ,(32,5)AB tOC t t -=++
.
由()0AB tOC OC -⋅=
,得(3+2t ,5+t )·(―2,―1)=0, 所以5t=―11,所以115
t =-
.
15. 【解析】(1)21= m ,2||3A =- n ,A ⋅= m n ,
∴222
||||2||4A A +=+⋅+=+- m n m m n n
4sin )A A =+-。

∵2+=
m n ,∴4sin )4A A +-=,∴tanA=1.
∵0<A <π,∴4
A π
=
.
(2)由余弦定理,222
2cos a b c bc A =+-,又由b =c =,4
A π
=

得223222a a =+-⨯,
即2
320a -+=,解得a =c=8,
∴11sin 8sin 16224
ABC S bc A π
∆==⨯⨯=.。

相关文档
最新文档