单纯形法求解过程

合集下载

运筹学课件1-4单纯形法计算步骤

运筹学课件1-4单纯形法计算步骤

b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题

第四节 单纯形法的计算步骤

第四节 单纯形法的计算步骤

上表中由于所有σ 上表中由于所有 j>0 ,表明已求得最优解 x1=4, x2=2, x3=0, x4=0, x5=0, x6=4, , , , , , , Z=14。 。 当确定x 为换入变量计算θ值时 值时, ◆当确定 6为换入变量计算 值时,有两个相 同的最小值: 同的最小值:2/0.5=4,8/2=4。任选其中一 , 。 个作为换出变量时, 个作为换出变量时,则下面表中另一基变 量的值将等于0,这种现象称为退化 退化。 量的值将等于 ,这种现象称为退化。含有 一个或多个基变量为0的基可行解称为 的基可行解称为退化 一个或多个基变量为 的基可行解称为退化 的基可行解。 的基可行解。
18
迭代
xB
次数
cB
x1
x2
x3
x4
x5 bi
θi
50
x1
100
0
0
0
50 0 100
1 0 0
0
0 0 1
0
1 -2 0
- 50
0 1 0
0
-1 1 1
- 50
50 50 250 -27500
2
x4 x2
σj
2010年8月
管理工程学院
18
《运筹学》 运筹学》
19
所有的检验数 σ j ≤ 0, 此基本可行解: 此基本可行解:
2010年8月
管理工程学院
5
《运筹学》 运筹学》
6
c1 … cl b b1´

c j→ cB c1

… cm … xm …0 …⋮ 0 …1 …

…cj …xj …a1j´ …⋮ a2j´ …⋮ amj´
… ck … cn … xk …xn …0 …⋮ 1 …0

运筹学单纯形法的计算步骤

运筹学单纯形法的计算步骤

b2
0… 0
a2,m+1

a2n
2




cm xm
bm
0… 1
am,m+1

amn
m
-z -z 值 0 … 0
m+1

n
XB 列——基变量, CB 列——基变量的价值系数(目标函数系数) cj 行——价值系数,b 列——方程组右侧常数 列——确定换入变量时的比率计算值
下面一行——检验数, 中间主要部分——约束方程系数
(4).根据max(j > 0) =k,拟定xk为换入变量,按 规则计算 =min{bi/aik\aik>0}
可拟定第l行旳基变量为换出变量。转入下一步。
(5).以 alk 为主元素进行迭代(即用高斯消去法或称为旋转变 换),把 xk 所对应的列向量变换为(0,0,…,1,…,0)T,将
XB 列中的第 l 个基变量换为 xk,得到新的单纯形表,返回(2)。
b
x1
x2
x3
x4
x5
2 x1 2 0 x4 8 3 x2 3
1
0
1
0 -1/2 -
0 0 -4 1 (2 ) 4
0 1 0 0 1/4 12
-z
-13
0
0 -2
0 1/4
X(2)=(2,3,0,8,0)T, z2 =13
cj
2 30 0 0
CB XB
b
x1
x2
x3
x4
x5
2 x1 4 0 x5 4 3 x2 2
量,给出第一阶段的数学模型为:
min = x6+x7
x1-2x2+x3+x4

单纯形法的计算步骤

单纯形法的计算步骤

变量作为换出变量。
L
min
bi
aik
a ik
0
单纯形法旳计算环节
Page 4
③ 用换入变量xk替代基变量中旳换出变量,得到一种新旳基。 相应新旳基能够找出一种新旳基可行解,并相应地能够画出 一种新旳单纯形表。
④ 5)反复3)、4)步直到计算结束为止。
单纯形法旳计算环节
将3化为1
换入列
j

,
x2
,
x3
,
x4
0
Page 1
单纯形法旳计算环节
Page 2
2)求出线性规划旳初始基可行解,列出初始单纯形表。
j
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法旳计算环节
Page 3
3)进行最优性检验
假如表中全部检验数 止。不然继续下一步。
,j 则表0中旳基可行解就是问题旳最优解,计算停
单纯形法旳计算环节
例1.8 用单纯形法求下列线性规划旳最优解
max Z 3 x1 4 x2
2 x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为原则型,加入松驰变量x3、x4则原则型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
x1
3x2
x4
30
x1

1/3 后
j


j
30 5/3 0 10 1/3 1
5/3 0
18 1
0
40
1
0
0
Page 5
bi /ai2,ai2>0

运筹学第5章 单纯形法

运筹学第5章 单纯形法

0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法

单纯形法(第三章线性规划2)

单纯形法(第三章线性规划2)

-f 3 –6M -1+M -1+3M 0
0 -M -M x5 x6 x7 B-1b
0 0 0 11 -1 1 0 3 001 1 -M 0 0 4M
3 -1 -1 0 0 -M -M
xj x1 x2 x3 x4 x5 x6 x7 B-1b
0 x4 -M x6 -1 x3
3 -2 0 1 0100 -2 0 1 0
0 1 0 0 0.5 12
40 0 0 0 -25 -600
6/1=6 36/3=12 __
第二步迭代
40 50 0 0 0
xj
基变量
x1 x2
x3 x4 x5
b
40 x1
1 0 1 0 -1 6
0 x4 0 0 -3 1 2 18
50 x2
0 1 0 0 0.5 12
0 0 -40 0 15 -840
f 428 1.36 x4 0.52 x5
X 3 (20 24 84 0 0)T 目标函数值 f 3 = 428。
X3为最优解
即当A产品生产20kg,B产品生产24kg,工厂才能获得最大利 润428百元。x3=84代表煤的剩余量为84t,x4 = x5 = 0表示电力 和劳动日完全利用,没有剩余。
2.单纯形法的主要步骤
Step1. 标准化,找初始基可行解,建立初始的单纯形表;
对于(max , ),松弛变量对应的列构成一个单位阵 Step2.检验当前基可行解是否为最优解
所有检验数 λj 0,则得到最优解(若存在λk >0,且pk 0,则该问题
无最优解,停止计算) 否则进行下一步。
Step3.换基迭代(改进基可行解)
例2 用单纯形法求解下列LP问题

单纯形法的计算步骤

单纯形法的计算步骤

运筹学基础及应用
解:化标准型
max
z 2 x1 x2 0 x3 0 x4 0 x5 5 x2 x3 15 6 x 2 x x4 24 1 2 x5 5 x1 x2 x1 , , x5 0
运筹学基础及应用
表1:列初始单纯形表 (单位矩阵对应的变量为基变量)
运筹学基础及应用
单纯形表
- Z x1基变量 x 2 ... xm XB 0 1 1E 0 单位阵 ....... 0 1 1 c c 0... c 1 2 m xm xNn 非基变量 1 .... X a1m 1 ...a1n a 2 m 1N...a 2 n
非基阵 ......
在上一节单纯形法迭代原理中可 知,每一次迭代计算只要表示出当前的约 束方程组及目标函数即可。
a1m 1 xm 1 ..... a1n xn b1 x1 x a2 m 1 xm 1 ..... a2 n xn b2 2 .......... .......... .......... ..... xm amm 1 xm 1 ..... amn xn bm Z c1 x1 ... cm xm cm 1 xm 1 ... cn xn 0
3
0 1 5/4 -15/2 1*3/2 0 0 1/4 -1/2 +0*15/2 检验数<=0 1 0 -1/4 3/2
cj z j
8.5
0
0
-1/4
-1/2
最优解为X=(7/2,3/2,15/2,0,0) 目标函数值Z=8.5
cj
CB
0 0 0
2
1
0最小的值对应 0 0

单纯形法求解原理过程

单纯形法求解原理过程

单纯形法需要解决的问题:如何确定初始基本可行解;如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降;如何判断一个基本可行解是否为最优解。

min f(X)=-60x1-120x2s.t. 9x1+4x2+x3=3603x1+10x2+x4=3004x1+5x2+x5=200x i≥0 (i=1,2,3,4,5)(1) 初始基本可行解的求法。

当用添加松弛变量的方法把不等式约束换成等式约束时,我们往往会发现这些松弛变量就可以作为初始基本可行解中的一部分基本变量。

例如:x1-x2+x3≤5x1+2x2+x3≤10x i≥0引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式x1-x2+x3+x4=5x1+2x2+x3+x5=10x i≥0 (i=1,2,3,4,5)令x1=x2=x3=0,则可立即得到一组基本可行解x1=x2=x3=0,x4=5,x5=10同理在该实例中,从约束方程式的系数矩阵中可以看出其中有个标准基,即与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成X3=360-9x1-4x2x4=300-3x1-10x2x5=200-4x1-5x2若令非基变量x1=x2=0,则可得到一个初始基本可行解X0X0=[0,0,360,300,200] T判别初始基本可行解是否是最优解。

此时可将上式代入到目标函数中,得:F(X)=-60x1-120x2对应的函数值为f(X0)=0。

由于上式中x1,x2系数为负,因而f(X0)=0不是最小值。

因此所得的解不是最优解。

(2) 从初始基本可行解X0迭代出另一个基本可行解X1,并判断X1是否为最优解。

从一个基本可行解迭代出另一个基本可行解可分为两步进行:第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量;第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。

选择进基和离基变量的原则是使目标函数值得到最快的下降和使所有的基本变量值必须是非负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单纯形法求解过程
单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞
士等人在1947年提出的。

该方法的基本思想是,通过在单纯
形空间内不断移动顶点的位置来寻找最优解。

单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。

单纯形法的求解过程包括以下几个步骤:
1. 将线性规划问题转化为标准形式
线性规划问题的标准形式为:
$ \max_{x} \ \ c^T x $
$s.t. \ Ax=b$
$x\geq 0$
其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。

2. 初始化单纯形表
因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。

单纯形表是将原始的约束条件表示为不等式形式时形成的。

例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:
CB | X1 | X2 | X3 | X4 | RHS
----|-----|-----|-----|-----|----
0 | a11| a12| a13| 0 | b1
0 | a21| a22| a23| 0 | b2
0 | a31| a32| a33| 0 | b3
1 | z1 | z
2 | z
3 | 0 | 0
其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。

a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵
b中的元素。

3. 选择进入变量和离开变量
在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。

在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。

这里以X1为例,
X1为进入变量。

接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个
使得添加X1变量后,约束条件不改变且取得约束条件中系数
最小的一个变量离开。

假设选择的离开变量为X3。

4. 更新单纯形表
通过高斯-约旦消元法来更新单纯形表的变量,即通过对第
$X3$行做初等变换来消去X1的系数,然后对其他行做类似的
操作,使得单纯形表重新转化为增广矩阵的形式。

CB | X1 | X2 | X3 | X4 | RHS
----|-----|-----|-----|-----|----
0 | 0 | a12'| a13'|a14' |b1'
0 | a21'| a22'| a23'|a24' |b2'
0 | a31'| a32'| a33'|a34' |b3'
1 | z1' | z2' | z3'| z4' | 0
5. 终止条件的判断
如果单纯形表中所有的CB都是非负数,那么就得到了最优解;如果存在某些CB是负数,则继续回到第3步,直到达到终止
条件。

以上就是单纯形法的求解过程。

通过单纯性表的变换,找到最大化目标函数的最优解。

单纯形法计算速度较快,而且在求解过程中有很好的可视化效果,能够帮助人们更好地理解线性规划问题。

相关文档
最新文档