等腰三角形(第4课时)
人教版八年级上册数学第13章 轴对称 含30°角的直角三角形的性质

C
5.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过 点E作EF⊥DE,交Bห้องสมุดไป่ตู้的延长线于点F.若CD=2,则DF的长为( )
A.1B.2C.3D.4
D
6.如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于
点E,垂足为D.若BE=6cm,则AC等于( )
【点拨】由题意知∠BAD=30°,∠BCD=∠BDC=∠CBD=60°,∠ABD=90°,
∴△BCD为等边三角形,BD= AD.
∵BC=20 n mile,
1
∴CD=BD=20 n mile.
2
∴AD=40 n mile.
又∵CD=20 n mile,
∴AC=20 n mile.
∴轮船从 A 处到 C 处所用的时间为2100=2(h),从 A 处到 D 处所 用的时间为4100=4(h). ∴轮船到达 C 处的时间为 13 时 30 分,到达 D 处的时间为 15 时 30 分.
(1)若AD=2,求AF的长.
解:由题意知 AB=BC=AC=8,∠B=∠A=∠C=60°. ∴BD=AB-AD=8-2=6. ∵DE⊥BC,∴∠BDE=90°-60°=30°. ∴BE=12BD=3. ∴EC=8-3=5. ∵EF⊥AC,∴∠FEC=90°-60°=30°. ∴FC=5×12=52. ∴AF=8-52=121.
∠BED=∠CFD, ∴∠△BBE=D≌∠△CC,FD(AAS). ∴BDDE==DCF.D,
(2)若∠A=60°,BE=1,求△ABC的周长.
解:∵AB=AC,∠A=60°,∴△ABC为等边三角形. ∴∠B=60°. ∵∠BED=90°,∴∠BDE=30°. ∴BE= BD. ∵BE=1,∴BD=2.
北师大版八年级数学下册教案1.1 第4课时 等边三角形的判定及含30°角的直角三角形的性质附教学反思

第4课时等边三角形的判定及含30°角的直角三角形的性质1.学习并掌握等边三角形的判定方法,能够运用等边三角形的性质和判定解决问题;(重点、难点) 2.理解并掌握含30°角直角三角形的性质,能灵活运用其解决有关问题.(难点)一、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.二、合作探究探究点一:等边三角形的判定【类型一】三边都相等的三角形是等边三角形已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.解析:把已知的关系式化为两个完全平方的和等于0的形式求解.解:移项得a2+c2-2ab-2bc+2b2=0,∴a2+b2-2ab+c2-2bc+b2=0,∴(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.方法总结:(1)几个非负数的和为零,那么每一个非负数都等于零;(2)有两边相等的三角形是等腰三角形,三边都相等的三角形是等边三角形,等边三角形是特殊的等腰三角形.【类型二】三个角都是60°的三角形是等边三角形如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O ,且OD ∥AB ,OE ∥AC .试判定△ODE 的形状,并说明你的理由.解析:根据平行线的性质及等边三角形的性质可得∠ODE =∠OED =60°,再根据三角形内角和定理得∠DOE =60°,从而可得△ODE 是等边三角形.解:△ODE 是等边三角形,理由如下:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°.∵OD ∥AB ,OE ∥AC ,∴∠ODE =∠ABC =60°,∠OED =∠ACB =60°.∴∠DOE =180°-∠ODE -∠OED =180°-60°-60°=60°.∴∠DOE =∠ODE =∠OED =60°.∴△ODE 是等边三角形.方法总结:证明一个三角形是等边三角形时,如果较易求出角的度数,那么就可以分别求出这个三角形的三个角都等于60°,从而判定这个三角形是等边三角形.【类型三】 有一个角是60°的等腰三角形是等边三角形如图,在△EBD 中,EB =ED ,点C 在BD 上,CE =CD ,BE ⊥CE ,A 是CE 延长线上一点,AB =BC .试判断△ABC 的形状,并证明你的结论.解析:由于EB =ED ,CE =CD ,根据等边对等角及三角形外角性质,可求得∠CBE =12∠ECB .再由BE ⊥CE ,根据三角形内角和定理,可求得∠ECB =60°.又∵AB =BC ,从而得出△ABC 是等边三角形.解:△ABC 是等边三角形.理由如下:∵CE =CD ,∴∠CED =∠D .又∵∠ECB =∠CED +∠D .∴∠ECB =2∠D .∵BE =DE ,∴∠CBE =∠D .∴∠ECB =2∠CBE .∴∠CBE =12∠ECB .∵BE ⊥CE ,∴∠CEB =90°.又∵∠ECB +∠CBE +∠CEB =180°,∴∠ECB +12∠ECB +90°=180°,∴∠ECB =60°.又∵AB =BC ,∴△ABC 是等边三角形.方法总结:(1)已知一个三角形中两边相等,要证明这个三角形是等边三角形,有两种思考方法:①证明另一边也与这两边相等;②证明这个三角形中有一个角等于60°.(2)已知一个三角形中有一个角等于60°,要证明这个三角形是等边三角形,有两种思考方法:①证明另外两个角也等于60°;②证明这个三角形中有两边相等.探究点二:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B=30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求。
2021中考数学一轮复习第四章几何初步与三角形第四节等腰三角形(含答案)

第四节 等腰三角形姓名:________ 班级:________ 用时:______分钟1.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于D ,连结AD.若AD =AC ,∠B=25°,则∠C=( )A .70° B.60° C.50° D.40°2.如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(3,1)C .(3,3)D .(1,3)3.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有( ) A .4个 B .3个 C .2个D .1个4. 如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE =2,AD =6,则两个三角形重叠部分的面积为( )A. 2B .3- 2 C.3-1D .3- 35.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF=BE +CF ; ②∠BOC=90°+12∠A;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①③④6.已知等腰三角形的一个外角为130°,则它的顶角的度数为__________________.7.如图,△ABC 中,AB =AC ,AD⊥BC 于点D ,DE⊥AB 于点E ,BF⊥AC 于点F ,DE =3 cm ,则BF =______cm .8.已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE⊥AB,DF⊥BC,垂足分别为点E ,F ,且DE =DF.求证:△ABC 是等边三角形.9. 如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为( )A.2 B.2 3C. 3 D.311.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°12.在一张长为8 cm,宽为6 cm的矩形纸片上,要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有( )A.1种B.2种C.3种D.4种13.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.14.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1的右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM,ON于点B2,A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM,ON于点B3,A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为__________________.(用含正整数n的代数式表示)15.数学课上,张老师举了下面的例题:例1. 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2. 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.16. 请认真阅读下面的数学小探究系列,完成所提出的问题.(1)探究1:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.求证:△BCD 的面积为12a 2;(提示:过点D 作BC 边上的高DE ,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt △ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.请用含a 的式子表示△BCD 的面积,并说明理由;(3)探究3:如图3,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.试探究用含a 的式子表示△BCD 的面积,要有探究过程.17.如图,已知AG⊥BD,AF⊥CE,BD ,CE 分别是∠ABC 和∠ACB 的平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为________.参考答案【基础训练】1.C 2.D 3.B 4.D 5.A 6.50°或80° 7.68.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC ,∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形.9.(1)证明:∵AB=AC ,∴∠B=∠ACF. 在△ABE 和△ACF 中,∵⎩⎪⎨⎪⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)75 【拔高训练】 10.C 11.D 12.C 13.72° 14.(32)2n -2×3315.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x2≠x, 即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数. 16.(1)证明:过点D 作DE⊥CB 交CB 的延长线于点E , ∴∠BED=∠ACB=90°.由旋转知AB =BD ,∠ABD=90°, ∴∠ABC+∠DBE=90°.又∵∠A+∠ABC=90°, ∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD , ∴△ABC≌△BDE(AAS), ∴DE=a =BC , ∴S △BCD =12BC·DE=12a 2.(2)解:过点D 作DE⊥CB,交CB 的延长线于点E ,由(1)得∠BED=∠ACB=90°. ∵线段AB 绕点B 顺时针旋转90°得到线段BD , ∴AB=BD ,∠ABD=90°. ∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD , ∴△ABC≌△BDE(AAS), ∴BC=DE =a.∵S △BCD =12BC·DE,∴S △BCD =12a 2.(3)解:如图,过点A 作AF⊥BC 于点F ,过点D 作DE⊥CB,交CB 的延长线于点E ,∴∠AFB=∠E=90°,BF =12BC =12a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD. ∵线段BD 是由线段AB 旋转得到的, ∴AB=BD.在△AFB 和△BED 中,∵⎩⎪⎨⎪⎧∠AFB=∠E,∠FAB=∠EBD,AB =BD ,∴△AFB≌△BED,∴BF=DE =12a.∵S △BCD =12BC·DE,∴S △BCD =12a·12a =14a 2.∴△BCD 的面积为14a 2.【培优训练】 17.30。
八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
第4课时三角形的面积(教案)-2023-2024学年五年级上册数学人教版

解决办法:采用分步引导法,逐步引导学生推导出三角形面积计算公式,帮助学生克服思维障碍。
3. 重点:三角形面积计算公式的运用。
解决办法:设计丰富的练习题,让学生在实际操作中运用三角形面积计算公式,提高学生的应用能力。
4. 难点:解决实际问题中的三角形面积计算。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的面积的基本概念。三角形的面积是……(详细解释概念)。它是……(解释其重要性或应用)。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了三角形的面积在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调三角形面积的计算方法和三角形面积的推导过程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
教学资源拓展
1. 拓展资源:介绍与本节课教学内容相关内容,不要写网址网站。
- 几何画板:几何画板是一款功能强大的数学绘图软件,可以帮助学生直观地理解和掌握三角形的面积计算方法,同时也可以用于绘制各种几何图形,提高学生的空间想象能力。
- 数学视频教程:通过观看数学视频教程,学生可以学习到更多的数学知识和技巧,提高自己的数学能力。
3. 例题三:三角形面积的实际应用。
题目:一个三角形的面积为8平方厘米,底边长为3厘米,求该三角形的高。
答案:三角形面积 = (底边长 × 高) / 2 = 8平方厘米,代入公式解得高 = (8平方厘米 × 2) / 3厘米 = 4厘米。
4. 例题四:三角形面积的推导。
题目:已知一个三角形的底边长为6厘米,高为5厘米,求该三角形的面积。
3. 实验器材:如果涉及实验,确保实验器材的完整性和安全性。实验器材主要包括直尺、三角板、剪刀等,用于帮助学生进行实际操作和练习,加深对三角形面积计算方法的理解和应用。
中考数学同步练习第4单元 课时4等腰三角形与直角三角形

课时4 等腰三角形与直角三角形一、基础巩固1.(2019·山西)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是(C)A .30°B .35°C .40°D .45°第1题图 第2题图 2.在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是(C)A .BC =ECB .EC =BE C .BC =BED .AE =EC3.若等腰△ABC 的周长是50 cm ,一腰长为x cm ,底边长为y cm ,则y 与x 的函数关系式及自变量x 的取值范围是(C)A .y =50-2x (0<x <50)B .y =12(50-2x )(0<x <50)C .y =50-2x ⎝ ⎛⎭⎪⎫252<x <25 D .y =12(50-2x )⎝ ⎛⎭⎪⎫252<x <254.(2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC 上,∠BAD=∠CAE,若BD=9,则CE的长为__9__.第4题图第5题图5.(2019·攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.二、能力提升6.若(a -1)2+|b -2|=0,则以a 、b 为边长的等腰三角形的周长为(A)A .5B .4C .3D .4或57.(2019·台湾)如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系正确的是(C)A .∠1<∠2B .∠1=∠2C .∠A +∠2<180°D .∠A +∠1>180°第7题图 第8题图 8.(2019·大连)如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .若AB =2,则AD 的长为 23 .【笔记】∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°, ∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,∴∠BAD =90°,∴AD =AB tan 30°=233=2 3. 9.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC ;(2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系. 解:(1)∵CD =CB ,E 为BD 的中点;∴CE ⊥BD ,∴∠AEC =90°.又∵F 为AC 的中点,∴EF =12AC .(2)∵∠BAC =45°,∠AEC =90°,∴∠ACE =∠BAC =45°,∴AE =CE .又∵F 为AC 的中点,∴EF ⊥AC ,∴EF 为AC 的垂直平分线,∴AM =CM ,∴AM +DM =CM +DM =CD .又∵CD =CB ,∴AM +DM =BC .三、应用拓展10.(2019·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__2或2.5__.【笔记】如图∵AB =2,AD =7,∴BD =BC +CD =5,∵BC 作为腰的等腰三角形,∴BC =AB 或BC =CD ,∴BC =2或2.5.11.(2019·武汉模拟)如图,△ABC 中,AB =AC ,D 为BC 上一点,AD =BD ,BE ⊥AD 于点E ,则AE BC 的值为12.解图解:过A 作AN ⊥BC 于N ,则BN =CN ,∵AD =BD ,∴∠DAB =∠DBA ,∵BE ⊥AD ,∴∠E =∠ANB =90°,在△ABN 与△BAE 中,⎩⎪⎨⎪⎧ ∠E=∠ANB ∠BAE =∠ABNAB =BA ,∴△ABN ≌△BAE (AAS),∴AE =BN ,∴AE =BN =12BC ,∴AE BC =12.12.如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α,D 是△ABC 外一点,且△BOC ≌△ADC ,连接OD .(1)△COD 是什么三角形?说明理由;(2)当α为多少度时,△AOD 是直角三角形?(3)当α为多少度时,△AOD 是等腰三角形?解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO =CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°-110°-90°-60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,∴200°-α=α-60°,∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°-α,∠ADO=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)=40°,∴α-60°=40°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°-α=40°,∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,100°,150°或160°时,△AOD是等腰三角形.四、权威预测13.(2019·邢台二模)我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是__130°__.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为180°7.【笔记】(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=180°7.。
等腰三角形性质说课稿
等腰三角形性质说课稿等腰三角形性质说课稿1各位领导、老师:大家好!我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。
一、说教材分析1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。
并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。
2、教学目标:要求学生掌握等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。
二、说教学方法:“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
三、说学生学法。
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
四、说教学程序1、等腰三角形的有关概念,轴对称图形的有关概念。
提问:等腰三角形是不是轴对称图形?什么是它的对称轴?2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。
3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。
[精品]2019届中考数学一轮复习第四章几何初步第4节等腰三角形试题7
第四节等腰三角形课标呈现指引方向1.了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。
探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。
2.探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。
3.探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。
4.理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。
考点梳理夯实基础1.等腰三角形的性质(1)等腰三角形的两底角,简称为“等边对”【答案】相等等角(2)等腰三角形的顶角的平分线、底边的中线、底边上的高线;【答案】三线合一(3)等腰三角形是轴对称图形,它的对称轴是.【答案】底边的垂直平分线2.等腰三角形的判定(1)有两边相等的三角形是等腰三角形;(2)如果一个三角形有相等,那么这个三角形是等腰三角形,简称为“等角对”.【答案】两角等边3.等边三角形的性质(1)等边三角形的三个内角都,且都等于.【答案】相等 60°(2)等边三角形的每条边上都有;【答案】三线合一(3)等边三角形是轴对称图形,它的对称轴有条.【答案】34.等边三角形的判定(1)相等的三角形是等边三角形;【答案】三边(2)有两个角是的三角形是等边三角形;【答案】60°(3)有一个角为的等腰三角形是等边三角形.【答案】60°5.角平分线的性质和判定(1)性质:角平分线上的点到角两边的.【答案】距离相等(2)判定:到角两边距离相等的点在这个角的.【答案】角平分线上6.线段的垂直平分线的性质和判定定理(1)性质:线段的垂直平分线上的点到线段两端点的距离.【答案】相等(2)判定:到线段两端点的距离相等的点在线段的垂直平分线上. 考点精析 专项突破考点一 等腰三角形的性质和判定 【例1】(1)(2016泰安)如图,在△PAB 中,PA =PB ,M 、N 、K 分别是边PA 、PB 、AB 上的点,且AM =BK ,BN =AK ,若∠MKN =44°,则∠P 的度数为( )A .44°B .66°C .88°D .92° 【答案】D解题点拨:通过题中所给的条件AM =BK ,BN =AK ,以及由PA =PB ,可证∠A =∠B 所以△AKM ≌△BNK ,得到对应角相等,再利用外角等于不相邻的两个内角和,便可求出∠A 与∠MKN 相等,最后由三角形的内角和求出∠P 的度数. (2)(2015巴中)如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为 . 【答案】1解题点拨:由全等三角形的知识可证得△AFC 是等腰三角形,所以H 为FC 中点,再由已知条件可得DH 为△CBF 的中位线,利用中位线的性质即可求出线段DH 的长.考点二 等边三角形的性质与判定 【例2】如图,D 是等边△ABC 的边AB 上一点,E 是BC 延长线上一点,CE =DA ,连接DE 交AC 于F ,过D 点作DG ⊥AC 于G 点. (1)证明:AG =21AD ; (2)证明:GF =FC +AG .解题点拨:本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 解:(1)证明:∵△ABC 是等边三角形, ∴∠A =60°, ∵DG ⊥AC ,∴∠AGD =90°,∵∠ADG =30°,∴AG =21AD ;(2)过点D 作DH ∥BC 交AC 于点H ,∴∠ADH =∠B ,∠AHD =∠ACB ,∠FDH =∠E , ∵△ABC 是等边三角形, ∴∠B =∠ACB =∠A =60°, ∴∠A =∠ADH =∠AHD =60°, ∴△ADH 是等边三角形, ∴DH =AD , ∵AD =CE ∴DH =CE在△DHF 和△ECF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE DH EFC DFH E FDH ,∴△DHF ≌△ECF (AAS ), ∴HF =FC , 又∵AG =GH∴GF =GH +HF =AG +FC .课堂训练 当堂检测1.(2016安顺)已知实数x 、y满足|4|0x -=,则以x 、y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上答案均不对 【答案】B2.(2016武汉)平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .5B .6C .7D .8 【答案】A3.(2016达州)如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA =6,PB =8,PC =10,则四边形APBQ 的面积为 .【答案】24+9 34.(2016菏泽)如图,△ACB 和△DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接BE . (1)如图1,若∠CAB =∠CBA =∠CDE =∠CED =50°, ① 求证:AD =BE ;② 求∠AEB 的度数.(2)如图2,若∠ACB =∠DCE =120°,CM 为△DCE 中DE 边上的高,BN 为△ABE 中AE 边上的高,试证明:AE =23CM +332BN .解:(1)①证明:∵△ACB 和△DCE 均为等腰三角形,∴AC =BC ,CD =CE .∵∠CAB =∠CBA =∠CDE =∠CED ,∴∠ACB =∠DCE ,∴∠ACD =∠BCE ,∴△ACD ≌△BCE (SAS ),∴AD =BE . ②解:由①得△ACD ≌△BCE ,∴∠CAD =∠CBE .在△ABE 中,∠AEB =180°―∠EAB ―∠ABE =180°―∠EAB ―∠ABC -∠CBE =180°―∠EAB ―∠ABC -∠CAD =180°―∠CAB -∠ABC =180°-50°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE ,∴∠DCM =21∠DCE =60°,DM =EM . 在Rt △CDM 中,DM =CM ·tan ∠DCM = CM ·tan 60°=3CM ,∴DE =23CM .由(1)中②,得∠AEB =180°―∠CAB -∠ABC =180°―(180°-120°)=120°,∴∠BEN =60°. 在Rt △BEN 中,sin ∠BEN =BEBN,∴BE =BN ÷sin 60°=332BN .由(1)中①知AD =BE ,∴AD =332BN . ∴AE =DE +AD =23CM +332BN ,即AE =23CM +332BN . 中考达标 模拟自测A 组 基础训练一、选择题1.(2016荆门))如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,已知AB =5,AD =3,则BC 的长为( ) A .5 B .6 C .8 D .10【答案】C 2.(2016黄石)如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A =50°,则∠BDC =( )DCBA第1题图ABCDE图1ACDMEN图2A .50°B .100°C .120°D .130°【答案】B .3.(2016荆门)已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( )A .7B .10C .11D .10或11 【答案】D 4.(2016扬州)如图,矩形纸片ABCD 中,AB =4,BC =6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C 二、填空题 5.(2016资阳)如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是.【答案】436.(2016乐山)如图,在等腰△ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC = . 【答案】15° 7.(2015南通)如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC = . 【答案】52°三、解答题CDA8.(2016贺州)如图,在△ABC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,求∠AOB 的度数.解:如图:AC 与BD 交于点H . ∵△ACD ,△BCE 都是等边三角形, ∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°, ∴∠DCB =∠ACE ,在△DCB 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=CE CB ACE DCB CACD ,∴△DCB ≌△ACE , ∴∠CAE =∠CDB ,∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA , ∴∠AOH =∠DCH =60°, ∴∠AOB =180°﹣∠AOH =120°.9.如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:BE =CF .解:(1)连接DB 、DC , ∵DG ⊥BC 且平分BC , ∴DB =DC .∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF .∠AED =∠BED =∠ACD =∠DCF =90° 在Rt △DBE 和Rt △DCF 中⎩⎨⎧==DFDE DCDB , Rt △DBE ≌Rt △DCF (HL ),GD BC ∴BE =CF .B 组 提高练习10.(2016内江)已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .2 B . 2 C . 32D.不能确定 【答案】B ..【提示】解:如图,过点A 作AG ⊥BC 于G ,连接PA ,PB ,PC , ∵△ABC 是等边三角形,∴∠ABC =60°, BC =AC =AB . ∴AG =AB ·sin 60°=3×2=2∵S △ABC =12BC ·PD +12AC ·PE +12AB ·PF =12BC ·AG ∴PD +PE +PF =AG=2, 11.(2016江西)如图是一张长方形纸片ABCD ,已知AB =8,AD =7,E 为AB 上一点,AE =5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是 .【答案】52或45或5. 解:如图所示: ①当AP =AE =5时, ∵∠BAD =90°,∴△AEP 是等腰直角三角形, ∴底边PE =2AE =52; ②当PE =AE =5时,∵BE =AB ﹣AE =8﹣5=3,∠B =90°,∴PB =422=-BE PE ,∴底边AP =54482222=+=+PB AB ;③当PA =PE 时,底边AE =5;综上所述:等腰三角形AEP 的对边长为52或45或5;12.(2016沈阳)在△ABC 中,AB =6,AC =BC =5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE ,旋转角为()0180αα<<,点B 的对应点为D ,点C 的对应点为E ,连接BD ,BE .(1)如图,当60α=时,延长BE 交AD 于点F . ①求证:△ABD 是等边三角形; ②求证:BF ⊥AD ,AF =DF ; ③请直接..写出BE 的长; (2)在旋转过程中,过点D 作DG 垂直于直线AB ,垂足为点G ,连接CE ,当∠DAG =∠ACB ,且线段DG 与线段AE 无公共点时,请直接..写出BE +CE 的值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.解:(1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE ∴AB =AD ,∠BAD =60° ∴△ABD 是等边三角形.②证明:由①得△ABD 是等边三角形 ∴AB =BD∵△ABC 绕点A 顺时针方向旋转60°得到△ADE ∴AC =AE ,BC =DE 又∵AC =BC ∴EA =ED∴点B ,E 在AD 的中垂线上 ∴BE 是AD 的中垂线∵点F在BE的延长线上∴BF⊥AD,AF=DF.③4由②知BF⊥AD,AF=DF.∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB·sin∠BAF=6,∴BE=BF-EF=-4;(2)13如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=12 CE,∵AC=BC,∴AH=BH=12AB=3,则DE=2CH=8,BE=5,。
人教版数学四年级下册:第5单元三角形第4课时三角形内角和(一) 课件
第 4 课时
三角形内角和(一)
R 四年级下册
你知道三角尺内角的
度数分别是多少吗?
90°
45°
90°
60° 30°
每个三角尺的内角 度数之和都是180°。
45°
1
课堂探究点
(1)三角形的内角和 (2)三角形内角和的应用
2
课时流程
探索 新知
课堂 小结
当堂 检测
课后 作业
探究点 1
三角形的内角和
%E8%B4%A2%E5%8A%A1%E6%8A%A5%E8%A1%A8&orderby=m
3 1
(180-110°)÷2=35°
小试牛刀(选题源于教材P67做一做)
180 ° - 140 ° - 25 °= 15°
2. 把下面这个三角形沿虚线简称两个小三角形, 每个小三角形的内角和是多少度?
三角形内角和(一):
三角形的内角和是180 °。
夯实基础 (选题源于《典中点》)
1.填空。 (1)一个三角形中,其中两个角的度数分别是42°和73°,第三 个角的度数是( 65°)。 (2)如果一个三角形有两个内角的度数之和等于90°,那么这个 三角形一定是( 直角 )三角形。 (3)等边三角形的三个内角都是( 60°)。 50°)。 36°)。
画几个不同类型的三角形。量一量,算一算,三角形3个
内角的和各是多少度,填写在下面表格中。
三角形 锐角三角形 ∠1 ∠2 ∠3 ∠1+∠2+∠3
直角三角形
钝角三角形
通过刚才的量一量,你有什么感受?
除了刚才我们运用的量一量,算一算的方法,你还 能有办法求出三角形3个内角的和是多少度吗?利用 手中的学具试一试吧,有困难的可以在小组内完成。
等腰三角形的教学设计(9篇)
等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。
2.知道等边三角形的性质以及等边三角形的判定定理。
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。
教学重点熟练地掌握等腰三角形的判定定理。
教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。
教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。
本节课我们将继续学习等腰三角形的轴对称性。
一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。
1.学生观察思考,提出猜想。
2.小组交流讨论。
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。
二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。
问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。
1.根据实验要求进行操作。
2.画出图形、观察猜想。
3.小组合作交流、展示学习成果。
演示折叠过程为进一步的说理和推理提供思路。
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。
三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性质运用
例 如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm, ∠A =30°,立柱BC、DE 要多长?
思考 图中BC、DE 分 别是哪个直角三角形的直角 边?它们所对的锐角分别是 多少度? A
B D E C
性质运用
例 如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm, ∠A =30°,立柱BC、DE 要多长?
动手操作,探索性质
另证: 在△ACE 中, ∵ ∠A=30°,∠ACE =30°, ∴ △AEC是等腰三角形. ∴ CE =AE. ∴ BC =BE =CE =AE. ∴
1 BC =BE =AE = AB. 2
A
E
B
C
动手操作,探索性质
在直角三角形中,如果一个锐角等于30°,那么 它所对的直角边等于斜边的一半. A
A
1 BC = AB. 2
B
C
D
活动操作,探索性质
猜想 在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
问题 请说一说你猜想的命题中,条件和结论分别 是什么?并结合图形,用符号语言表述出来. 思考 这个命题是真命题吗?请进行证明.
活动操作,探索性质
已知:如图,在Rt△ABC 中,∠C =90°,∠A = 1 30°. 求证:BC = AB.
∴
1 1 BC = BD = AB . 2 2
A
追问:你还能用其他方 法证明吗? B C D
动手操作,探索性质
另证:作∠BCE =60°,交AB于E,连接CE, 则∠ACE =90°-60°=30°. A 在△ABC 中, ∵ ∠ACB=90°,∠A =30°, ∴ ∠B =60°. E 在△BCE 中, ∵ ∠BCE=60°,∠B =60°, ∴ △BCE 是等边三角形. C B ∴ BC =BE =CE.
八年级
上册
13.3 等腰三角形 (第4课时)
课件说明
• 本节课在学习了轴对称、等边三角形的性质及判定 的基础上,探究直角三角形的一条特殊性质,它反 映了直角三角形中的边角关系.本节课是等边三角 形性质的简单运用,同时也为九年级学习锐角三角 函数作了一定的知识储备.
课件说明
• 学习目标: 1.探索含30°角的直角三角形的性质. 2.理解含30°角的直角三角形的性质,并会应用它 进行有关的证明和计算. • 学习重点: 探索并理解含30°角的直角三角形的性质.
创设情境,导入新知
问题 已知△ABC 中,∠A =60°,( ). 请你在括号内补充一个条件,使△ABC 能成为等边三角 形. A ∠B =60°(或∠C =60°) AB =BC、AC =BC、AB =BC =AC
B
C
创设情境,导入新知
思考1 等边三角形是轴对称图形,若沿着其中一 条对称轴折叠,能产生什么特殊图形?
解:∵ ∴ ∴
又
DE⊥AC,BC⊥AC,∠A =30°, 1 1 B BC = 2 AB,DE = 2 AD. D BC =3.7(m).
1 AD = AB, 2 A 1 DE = AD =1.85(m) . 2
∴ 答:立柱BC 的长是3.7 m,DE 的长是1.85 m.
E∠C =90°,∠B =2∠A, ∠B 和∠A 各是多少度?边AB 与BC 之间有什么关系?
2
证明:在△ABC 中, ∵ ∠C =90°,∠A =30°, ∴ ∠B =60°. 延长BC 到D,使BD =AB, 连接AD, 则△ABD 是等边三角形. B
A
C
D
活动操作,探索性质
已知:如图,在Rt△ABC 中,∠C =90°,∠A = 1 30°. 求证:BC = AB.
2
证明:由等边三角形的性质可知, AC 也是BD 边上的中线,
课堂小结
(1)本节课学习了哪些内容? (2)在应用含30°角的直角三角形的性质时,能解决 哪些问题?需要注意哪些问题?
布置作业
教科书习题13.3第15题.
符号语言: ∵ 在Rt△ABC 中, ∠C =90°,∠A =30°, ∴
1 BC = AB. 2
B
C
课堂练习
练习1 如图,在△ABC 中,∠C =90°,∠A = 30°,AB =10,则BC 的长为 5 .
C
B
课堂练习
练习2 如图,在△ABC 中,∠ACB =90°,CD 是 高,∠A =30°,AB =4.则BD = 1 . C B D
思考2 这个特殊的直角三角形相比一般的直角三 角形有什么不同之处,它有什么特殊性质?
活动操作,探索性质
活动 用两个全等的含30°角的直角三角尺,你能 拼出怎样的三角形?能拼出等边三角形吗?请说说你的 理由. A A
B B
C
C
D
D
活动操作,探索性质
问题 你能借助这个图形,找到含30°角的直角 △ABC 的直角边BC 与斜边AB 之间有什么数量关系吗?