线段的中点(课件)
合集下载
线段的中点坐标公式

的分点C的坐标
2
2 1 (5)
解
x 2 1 1
4ቤተ መጻሕፍቲ ባይዱ (5) 1 21 3
2
y
3 1
1 4 2 1
64 2 1
2 3
2
因此分点C的坐标为(-
1 , 3
2) 3
2、线段的定比分点坐标公式
x x1 x2 , y y1 y2 ( 1)
1
1
练习 1、 设点C分线段AB成定比 ,求分点C的坐标:
设D,E,F分别是边BC,AC,AB的中点,求点D,E,F的坐标
解 点D的坐标为 (2, 3) 2
点E的坐标为 (1 , 1) 2
点F的坐标为 ( 1 , 1 ) 22
1、线段的中点坐标公式: x x1 x2 y y1 y2
2
2
例2 已知线段AB的中点M的坐标为(3, 1 ) ,端点A的坐标为(4,2)
使得 | AC |
1
y1) (x2
| CB |
,
y2 ) ,设C是线段AB上的一点,
试问:点C的坐标是多少?
2
y
.B
A.
C.
e2
o e1
x
思考:
如图,已知线段AB的两个端点A,B的坐标
分别为, (x1,
使得 | AC |
1
y1) (x2
| CB |
,
y2 ) ,设C是线段AB上的一点,
试问:点C的坐标是多少?
2
y
.B
C.
A.
e2
o e1
x
2、线段的定比分点坐标公式
(1)定比分点 在直线AB上任取一点C,使得AC λ CB ,我们称
专训巧用线段中点的有关计算 优质 公开课精品课件

习题课 阶段方法技巧训练(二)
专训1
巧用线段中点的 有关计算
利用线段的中点可以得到线段相等或有倍 数关系的等式来辅助计算,由相等的线段去判
断中点时,点必须在线段上才能成立.
训练角度
类型1
1
线段中点问题
与线段中点有关的计算
1.如图,点C在线段AB上,AC=8 cm,CB=6 cm,
点M,N分别是AC,BC的中点.
(1)求线段MN的长.
解: 因为点M,N分别是AC,BC的中点,
1 1 所以CM= AC= ×8=4(cm), 2 2 1 1 CN= BC= ×6=3(cm), 2 2 所以MN=CM+CN=4+3=7(cm);
(2)若C为线段AB上任一点,满足AC+CB=a cm, 其他条件不变,你能猜想MN的长度吗?并说
类型2
线段分点与方程的结合
4.A,B两点在数轴上的位置如图所示,O为原点, 现A,B两点分别以1个单位长度/秒、4个单位长 度/秒的速度同时向左运动.
(1)几秒后,原点恰好在A,B两点正中间?
解:设x秒后,原点恰好在A,B两点正中间. 依题意得x+3=12-4x,解得x=1.8. 答:1.8秒后,原点恰好在A,B两点正中间.
明理 2 1 1 同(1)可得CM= AC,CN= BC, 2 2 1 1 所以MN=CM+CN= AC+ BC 2 2 1 1 = (AC+BC)= a cm. 2 2
(1)根据“点M,N分别是AC,BC的中点”, 点拨:
先求出MC、CN的长度,再利用MN=CM+ CN即可求出MN的长度;(2)与(1)同理,先用 AC、BC表示出MC、CN,MN的长度就等于 AC与BC长度和的一半.
(2)几秒后,恰好有OA∶OB=1∶2? 解: 设t秒后,恰好有OA∶OB=1∶2. ①B与A相遇前:12-4t=2(t+3),即t=1; ②B与A相遇后:4t-12=2(t+3),即t=9. 答:1秒或9秒后,恰好有OA∶OB=1∶2.
专训1
巧用线段中点的 有关计算
利用线段的中点可以得到线段相等或有倍 数关系的等式来辅助计算,由相等的线段去判
断中点时,点必须在线段上才能成立.
训练角度
类型1
1
线段中点问题
与线段中点有关的计算
1.如图,点C在线段AB上,AC=8 cm,CB=6 cm,
点M,N分别是AC,BC的中点.
(1)求线段MN的长.
解: 因为点M,N分别是AC,BC的中点,
1 1 所以CM= AC= ×8=4(cm), 2 2 1 1 CN= BC= ×6=3(cm), 2 2 所以MN=CM+CN=4+3=7(cm);
(2)若C为线段AB上任一点,满足AC+CB=a cm, 其他条件不变,你能猜想MN的长度吗?并说
类型2
线段分点与方程的结合
4.A,B两点在数轴上的位置如图所示,O为原点, 现A,B两点分别以1个单位长度/秒、4个单位长 度/秒的速度同时向左运动.
(1)几秒后,原点恰好在A,B两点正中间?
解:设x秒后,原点恰好在A,B两点正中间. 依题意得x+3=12-4x,解得x=1.8. 答:1.8秒后,原点恰好在A,B两点正中间.
明理 2 1 1 同(1)可得CM= AC,CN= BC, 2 2 1 1 所以MN=CM+CN= AC+ BC 2 2 1 1 = (AC+BC)= a cm. 2 2
(1)根据“点M,N分别是AC,BC的中点”, 点拨:
先求出MC、CN的长度,再利用MN=CM+ CN即可求出MN的长度;(2)与(1)同理,先用 AC、BC表示出MC、CN,MN的长度就等于 AC与BC长度和的一半.
(2)几秒后,恰好有OA∶OB=1∶2? 解: 设t秒后,恰好有OA∶OB=1∶2. ①B与A相遇前:12-4t=2(t+3),即t=1; ②B与A相遇后:4t-12=2(t+3),即t=9. 答:1秒或9秒后,恰好有OA∶OB=1∶2.
两点间的距离和线段的中点坐标 说课课件

例3 已知 ABC 的三个顶点为 A(1,0)、B(2,1)、C(0,3) ,试求BC边上的
中线AD的长度.
设计意图:例题的设计,是对新知识巩固和熟练的过程。可 以让学生相互交流,有助于培养学生思维的深刻性和批判性; 老师则是对普遍存在的问题集中处理,集体指导。
4、运用知识
巩固练习
B(3, 两点之间的距离. 4)
5、反思总结
理论升华
设计意图:由学生回顾本节课主要内容,并进行归纳总结.知识性内容
的小结能将传授知识转化为学生的内在素质,数学思想方法的小结能让学 生从更高层次上思考问题.这个过程,既培养了学生的语言表达能力和思 维的严谨性,又有利于学生构建完整的知识体系,养成良好的学习习惯.
6、布置作业、巩固提高
8.1 两点间的距离与线段中点的坐标
多媒体投影
一、两点间的距离公式 二、线段中点的坐标公式
例题
学生板演
活用板书,将知识重点、学习任务、学习流程留在黑板上,使板书和课件合理、科学的衔接.
六、评价分析
1、评价教学过程:教学中注重数学课程和信息技术
的整合,利用ppt课件、实物投影等,画面丰富生动, 使学生的多种感官获得外部刺激,有利于完善认知结 构,提高教学效率。同时,在教学中注意关注整个过 程和全体学生,利用小组竞赛,集体积分的比赛方式, 充分调动所有学生积极参与教学过程的每个环节,提 高学生学习的兴趣。 2、评价学习过程:通过问题引入,以尝试、提问、 讨论、练习等方式,在探究过程中,层层深入,充 分挖掘思维的深度和广度,关注整个过程和全体学 生,提高学习积极性。 3、评价情感教育:通过对学生的语言行为给予肯定 的评价,和对暴露问题的及时矫正,培养学生的理性 思维并陶冶情操。
8.1 两点间的距离与线段中 点的坐标
七年级数学上册 2.4 线段的和与差课件

A
C
BD
第十九页,共二十四页。
2. 如图,B、C为线段(xiànduàn)AD上的 两点,点C为线段AD的中点,
AC=5cm,BD=6cm,求线段AB的长 度?
第十四页,共二十四页。
中点应用
(yìngyòng)
1. 在下图中,点C是线段AB的中点。如
果(rúguǒ)AB=4cm,那么AC=
,
BC=
。
AC=CB=2cm
A
C
B
AC+CB=AB=4cm
第十五页,共二十四页。
中点应用
(yìngyòng)
2. 如图,AB=6cm,点C是线段(xiànduàn)AB的 中点,点D是线段CB的中点,那么AD有多长
1.画法 : (huà fǎ)
1).画直线l,在直线l上确定(quèdìng)一点A;
2).在直线l,以点A为圆心(yuánxīn),线段 a的长为半径画弧,交直线l于点B; 3).在直线l,以B点为圆心,线段 b的长为半径画弧,交直线l于点C;
结论 不能
少
a
b
AB
l C
线段AC的长度是线段a,b的长度的和,
观察图形,请你试着用自己(zìjǐ)的语言描述 此几何图形的特点.
A
M
B
线段AB上的一点M,把线段AB分成两条线 段AM与MB.如果线段AM与线段MB相等 (xiāngděng),那么点M就叫做线段AB的中点.
第八页,共二十四页。
线段 的中点 (xiànduàn)
文字语言
如图,点点MM为为线线段AB的中点,则线段AM、BM、
呢?
A
C DB
解:因为点C是线段(xiànduàn)AB的中点
数学人教版七年级上册线段的中点

几何语言:
∵点M、N是线段AB的三等分点,
∴AM=MN=NB= AB
(或AB =3AM=3MN=3NB)
类似地,还有四等分点,五等分点等等.
学生进行尺规作图.
教师在黑板上作图,并标出点M.
通过学案的设计引导学生总结归纳出线段中点的定义.
教师完善线段中点的概念.
结合图形,教师引导学生得到线段中点的几何符号语言的表示方法.
∴CM= AC= ×8=4
∵N是线段BC的中点,CB=6
∴CN = BC= ×6=3
∴MN=CM+CN =4+3=7 cm
(2)若AB=14 cm,则线段MN=7cm.
解:(2)如图,
∵M是线段AC的中点∴CM= AC
∵N是线段BC的中点∴CN = BC
∴MN=CM+CN = AC+ BC= (AC+BC)= AB= ×14=7 cm
教师引导学生类比线段的中点总结线段的三等分点、四等分点的结论,并得到一般的结论.
学生完成学案相应内容.
复习旧知,培养学生动手作图能力,同时培养学生的观察能力和归纳总结能力.
通过对线段中点的图形语言及符号语言的探讨,培养学生的数形结合思想.
通过几何语言表达培养学生严谨的思维过程,学会说理,渗透几何的推理过程.
②如图,当C点在线段AB上时,
则MN=BM-BN =4-3=1
综上所述,MN=7 cm或1 cm
4.综合延伸
如图,CD=2,D是线段AC的中点,点B在线段AC上,AB:BC =3:1,
(1)求线段BC的长.
解:(1)如图,∵D是线段AC的中点,DC=2
∴AC=2DC=2×2=4
∵BC:AB=1:3∴可设BC=x,AB=3x
∵点M、N是线段AB的三等分点,
∴AM=MN=NB= AB
(或AB =3AM=3MN=3NB)
类似地,还有四等分点,五等分点等等.
学生进行尺规作图.
教师在黑板上作图,并标出点M.
通过学案的设计引导学生总结归纳出线段中点的定义.
教师完善线段中点的概念.
结合图形,教师引导学生得到线段中点的几何符号语言的表示方法.
∴CM= AC= ×8=4
∵N是线段BC的中点,CB=6
∴CN = BC= ×6=3
∴MN=CM+CN =4+3=7 cm
(2)若AB=14 cm,则线段MN=7cm.
解:(2)如图,
∵M是线段AC的中点∴CM= AC
∵N是线段BC的中点∴CN = BC
∴MN=CM+CN = AC+ BC= (AC+BC)= AB= ×14=7 cm
教师引导学生类比线段的中点总结线段的三等分点、四等分点的结论,并得到一般的结论.
学生完成学案相应内容.
复习旧知,培养学生动手作图能力,同时培养学生的观察能力和归纳总结能力.
通过对线段中点的图形语言及符号语言的探讨,培养学生的数形结合思想.
通过几何语言表达培养学生严谨的思维过程,学会说理,渗透几何的推理过程.
②如图,当C点在线段AB上时,
则MN=BM-BN =4-3=1
综上所述,MN=7 cm或1 cm
4.综合延伸
如图,CD=2,D是线段AC的中点,点B在线段AC上,AB:BC =3:1,
(1)求线段BC的长.
解:(1)如图,∵D是线段AC的中点,DC=2
∴AC=2DC=2×2=4
∵BC:AB=1:3∴可设BC=x,AB=3x
人教版中考备战策略课件第16讲线段、角、相交线与平行线

答案:55°
三、解答题(共 4 3 分) 18.(8 分)如图,直线 a∥b,点 B 在直线 b 上, 且 AB⊥BC,∠1=55°,求∠2 的度数.
解:如图,∵AB⊥BC,∴∠1+∠3=90°. ∵∠1=55°,∴∠3=35°. ∵a∥b,∴∠2=∠3=35°.
19.(10 分)如图,已知直线 AB,CD 相交于点 O, OE,OF 为射线,∠AOE=90°,OF 平分∠AOC,∠AOF +∠BOD=51°,求∠EOD 的度数.
【答案】 B
考点二 余角、补角的定义 例 2 (2015·崇左)下列各图中,∠1与∠2互为余 角的是( )
【点拨】A 中,∠1 的对顶角与∠2 是同位角关系, 只能说明∠1=∠2;B 中,∠1 和∠2 是对顶角,∠1 =∠2;C 中,∠1+∠2=90°,∠1 与∠2 互余;D 中, ∠1+∠2=180°,∠1 与∠2 互补.综上所述,选 C.
3.平行线的判定 (1)定义:在同一平面内不相交的两条直线,叫做 平行线; (2)同位角相等,两直线平行; (3)内错角相等,两直线平行; (4)同旁内角互补,两直线平行.
温馨提示: 除上述平行线的判定方法外,还有“在同一平面 内垂直于同一条直线的两条直线平行”及“平行于同 一条直线的两条直线平行”的判定方法.
【解析】∵∠ECA=α°,∴ ∠ECB=180°-∠ECA=
180°- α°.∵CD
平
分
∠ECB
,
∴∠DCB
=
1 2
∠ECB
=
12×(180°- α°)=90-α2 °.∵FG∥CD,∴∠GFB=∠DCB
=90-α2 °.
答案:90-α2
16.(2015·泰州)如图,直线 l1∥l2,∠α=∠β, ∠1 =40°,则∠2= .
三、解答题(共 4 3 分) 18.(8 分)如图,直线 a∥b,点 B 在直线 b 上, 且 AB⊥BC,∠1=55°,求∠2 的度数.
解:如图,∵AB⊥BC,∴∠1+∠3=90°. ∵∠1=55°,∴∠3=35°. ∵a∥b,∴∠2=∠3=35°.
19.(10 分)如图,已知直线 AB,CD 相交于点 O, OE,OF 为射线,∠AOE=90°,OF 平分∠AOC,∠AOF +∠BOD=51°,求∠EOD 的度数.
【答案】 B
考点二 余角、补角的定义 例 2 (2015·崇左)下列各图中,∠1与∠2互为余 角的是( )
【点拨】A 中,∠1 的对顶角与∠2 是同位角关系, 只能说明∠1=∠2;B 中,∠1 和∠2 是对顶角,∠1 =∠2;C 中,∠1+∠2=90°,∠1 与∠2 互余;D 中, ∠1+∠2=180°,∠1 与∠2 互补.综上所述,选 C.
3.平行线的判定 (1)定义:在同一平面内不相交的两条直线,叫做 平行线; (2)同位角相等,两直线平行; (3)内错角相等,两直线平行; (4)同旁内角互补,两直线平行.
温馨提示: 除上述平行线的判定方法外,还有“在同一平面 内垂直于同一条直线的两条直线平行”及“平行于同 一条直线的两条直线平行”的判定方法.
【解析】∵∠ECA=α°,∴ ∠ECB=180°-∠ECA=
180°- α°.∵CD
平
分
∠ECB
,
∴∠DCB
=
1 2
∠ECB
=
12×(180°- α°)=90-α2 °.∵FG∥CD,∴∠GFB=∠DCB
=90-α2 °.
答案:90-α2
16.(2015·泰州)如图,直线 l1∥l2,∠α=∠β, ∠1 =40°,则∠2= .
各种四边形各边中点连线课件
数学竞赛中的应用
• 数学竞赛中的中点连线问题:在数学竞赛中,中点 连线问题是一个常见的题型,通常涉及到几何、代 数和解析几何等多个知识点。这类问题需要参赛者 具备严密的逻辑推理能力和扎实的数学基础,以找 到最优的解决方案。
05
中点连线在数学中的发展 与前景
中点连线在数学中的地位与作用
中点连线是几何学中的基本概念,它在数学中具有重要的地 位和作用。通过中点连线,我们可以研究几何图形的性质、 关系和变化,解决各种几何问题。
分类与特性
分类
根据四边形的对边关系,可分为平行 四边形、梯形、不规则四边形等。
特性
平行四边形对角相等且平行;梯形只 有一组对边平行;不规则四边形则无 特定特性。
面积与周长的计算
面积
根据四边形的不同类型,面积计算公式也不同。平行四边形面积=底×高;梯 形面积=(上底+下底)×高/2;不规则四边形面积需要通过分割或特殊性质来求 解。
各种四边形各边中点连线课件
目录
• 四边形的定义与性质 • 四边形各边中点连线 • 中点连线性质与定理 • 中点连线在实际生活中的应用 • 中点连线在数学中的发展与前景
01
四边形的定义与性质
定义与性质
定义
四边形是由四条线段首尾顺次连 接围成的平面图形。
性质
四边形具有不稳定性,即容易变 形;相对边相等且平行;相对角 相等或互补。
中点连线在数学教育中的意义与价值
中点连线是数学教育中的重要内容之一,通过学习中点连 线,学生可以掌握基本的几何知识和技能,培养逻辑思维 能力、空间想象能力和解决问题的能力。
中点连线的学习对于提高学生的数学素养和综合素质具有 重要意义,同时也有助于培养学生的创新意识和实践能力 。
两点之间的距离公式及中点坐标公式.ppt
A 0 , 0 , B a , 0 , C b , c , D b a , c .
所以
AB a ,
2 2
2 2 2
y D (b-a, c)
C (b, c) x
AD b a c ,
AC b c,
2 2 2
O
A(0,0)
B(a,0)
2 BD b 2 a c 2 2
d(A,C)=
2 2
即|AC|=|BC|且三点不共线
所以,三角形ABC为等腰三角形。
【例3】已知 ABCD ,求证 2 2 2 2 AC BD 2 AB AD .
证明:取A为坐标原点,AB所在直线为X轴建 立平面直角坐标系 xOy ,依据平行四边形的 性质可设点A,B,C,D的坐标为
A
[题组冲关] 3.假如某爱国实业家在20世纪初需要了解全国各地商业信
息,可采用的最快捷的方式是
(
)
A.乘坐飞机赴各地了解 B.通过无线电报输送讯息 C.通过互联网 D.乘坐火车赴各地了解
解析:本题考查中国近代物质生活的变迁。注意题干信 息“20世纪初”“最快捷的方式”,因此应选B,火车速度
”;此后十年间,航空事业获得较快发展。
筹办航空事宜
处
三、从驿传到邮政 1.邮政
(1)初办邮政: 1896年成立“大清邮政局”,此后又设
邮传部 邮传正式脱离海关。
,
(2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国邮联大会 。
2.电讯 (1)开端:1877年,福建巡抚在 办电报的开端。 (2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。 3.交通通讯变化的影响
优质中职数学基础模块下册:8.1《两点间的距离与线段中点的坐标》ppt课件(两份)
( , )、Q ( 3, )、R ( , ). 故所求的分点分别为P 3 5 2 4 1 2 9 2 1 4
8. 1
两点间的距离与线段中点的坐标
例3 已知 ABC 的三个顶点为 A(1,0)、B(2,1)、C (0,3) ,试
巩 固 知 识 典 型 例 题
求BC边上的中线AD的长度.
复习
A
数轴上两点的距离
B
A
o x1
x2
x1
o
B x2
所以A,B两点的距离为:
d(A,B) = |AB|=
X2– X1
一、平面上两点间的距离
已知平面上两点P1(x1,y1), P2(x2,y2), 如何求P1 P2的距离| P1 P2 |呢? y y
P
1
P
2
y2
y1
P
2
P
1
o
x1
x2
x
o
x
|P 1P 2 || x2 x1 |
继 续 探 索 活 动 探 究
读书部分:阅读教材相关章节 书面作业:教材习题8.1 A(必做) 教材习题8.1 B(选做) 实践调查:编写一道关于求线段
中点坐标的问题并求解.
8. 1 两点间的距离与线段中点的坐标
第八章
直线和圆的方程
8. 1
两点间的距离与线段中点的坐标
Y
创 设 情 境 兴 趣 导 入
练习
运 用 知 识 强 化 练 习
求A(−2,1)、B(3,4)两点间的距离 求A(−1,2)、B(5,3)两点间的距离
思考
,、 B(3, 在平面直角坐标系内,描出点 A点坐标与A点C点 的关系? 8. 1 两点间的距离与线段中点的坐标
8. 1
两点间的距离与线段中点的坐标
例3 已知 ABC 的三个顶点为 A(1,0)、B(2,1)、C (0,3) ,试
巩 固 知 识 典 型 例 题
求BC边上的中线AD的长度.
复习
A
数轴上两点的距离
B
A
o x1
x2
x1
o
B x2
所以A,B两点的距离为:
d(A,B) = |AB|=
X2– X1
一、平面上两点间的距离
已知平面上两点P1(x1,y1), P2(x2,y2), 如何求P1 P2的距离| P1 P2 |呢? y y
P
1
P
2
y2
y1
P
2
P
1
o
x1
x2
x
o
x
|P 1P 2 || x2 x1 |
继 续 探 索 活 动 探 究
读书部分:阅读教材相关章节 书面作业:教材习题8.1 A(必做) 教材习题8.1 B(选做) 实践调查:编写一道关于求线段
中点坐标的问题并求解.
8. 1 两点间的距离与线段中点的坐标
第八章
直线和圆的方程
8. 1
两点间的距离与线段中点的坐标
Y
创 设 情 境 兴 趣 导 入
练习
运 用 知 识 强 化 练 习
求A(−2,1)、B(3,4)两点间的距离 求A(−1,2)、B(5,3)两点间的距离
思考
,、 B(3, 在平面直角坐标系内,描出点 A点坐标与A点C点 的关系? 8. 1 两点间的距离与线段中点的坐标
人教版七年级数学上册课件:第四章几何图形初步 巧用线段中点(或分点)的有关计算 (共20张PPT)
设运动时间为x s,依题意得x+3=12-4x, 解得x=1.8. 答:1.8 s后,原点恰好在两点正中间.
(2)几秒后,恰好有OA:OB=1:2? 设运动时间为t s. ①B与A相遇前:12-4t=2(t+3),即t=1; ②B与A相遇后:4t-12=2(t+3),即t=9. 答:1 s或9 s后,恰好有OA:OB=1:2.
解:(1)因为点M,N分别是AC,BC的中点,
所以MC= 1 AC= 1 ×8=4(cm),
NC= 1 BC=2 1 ×62=3(cm). 所以M2 N=MC2 +NC=4+3=7(cm).
(2)若C为线段AB上任意一点,满足AC+CB=a cm,其
他条件不变,你能猜想出MN的长度吗?说明理由.
所以BN= BC= ×8=4(cm).
所以MN=M1 B+BN1 =10+4=14(cm). 综上所述,2 线段MN2 的长为6 cm或14 cm.
(2)根据(1)中的计算过程和结果,设AB=a,BC=b, 且a>b,其他条件都不变,求MN的长度(直接写 出结果).
MN= 1 (a+b)或MN= 1 (a-b).
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
(2)几秒后,恰好有OA:OB=1:2? 设运动时间为t s. ①B与A相遇前:12-4t=2(t+3),即t=1; ②B与A相遇后:4t-12=2(t+3),即t=9. 答:1 s或9 s后,恰好有OA:OB=1:2.
解:(1)因为点M,N分别是AC,BC的中点,
所以MC= 1 AC= 1 ×8=4(cm),
NC= 1 BC=2 1 ×62=3(cm). 所以M2 N=MC2 +NC=4+3=7(cm).
(2)若C为线段AB上任意一点,满足AC+CB=a cm,其
他条件不变,你能猜想出MN的长度吗?说明理由.
所以BN= BC= ×8=4(cm).
所以MN=M1 B+BN1 =10+4=14(cm). 综上所述,2 线段MN2 的长为6 cm或14 cm.
(2)根据(1)中的计算过程和结果,设AB=a,BC=b, 且a>b,其他条件都不变,求MN的长度(直接写 出结果).
MN= 1 (a+b)或MN= 1 (a-b).
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动五:课堂小结
文字 语言
C是线 段AB 的中 点
图形 语言
符号语言
A
C
∵C是线段 ∵C是线段 ∵C是线段 AB的中点, AB的中点, AB的中点, ∴ ∴ AB=2AC B ∴AC=BC.
或 或AB=2BC.
反过来 ∵AC=BC, ∴C是线段 AB的中点.
反过来 ∵ 或 , ∴C是线段 AB的中点.
4、已知:如图,D是线段AB中点, AB=6, E是线段BC中点,且BC=4,求线 段DE的长?
活动四:拓展提高 思考1:已知:线段AB=10,直线AB上 有一点C,且BC=4,M是线段AC中点, 求线段AM的长 .
思考2:已知一条直线上有A、B、C 三点,线段AB的中点为P,AB=10, 线段BC的中点为Q,BC=6,求线段 PQ的长。
反之推理,仍然成立. ① ∵点C在线段AB上,且 AC =BC ∴C是线段AB中点 ② ∵点C在线段AB上,且AB =2AC 或 AB=2BC ∴C是线段AB中点
③ ∵点C在线段AB上,且AC= AB,或BC = AB ∴C是线段AB中点
1 2 1 2
活动三:基础知识巩固 1、已知:如图,D是线段AB中点, AB=6, 求线段BD的长?
活动二:新知识学习 1、线段中点的定义:
线段上的一点将线段分成相等的两部 分,那么这 个点叫做这条线段的中点. 线段的中点也叫线段的二等分点
概念辨析: 下列不能判断点C是线段AB的中点的是( )
A、AC=BC C、AC+BC=AB
B、AB=2AC 1 D、BC= 2 AB
2、线段中点的找法:
(1)在学案上画一条线段AB,以刻度尺为 工具,如何确定线段AB的中点?试试看
线段的中点
学习目标
1、会用文字语言、图形语言、符号 语言表示线段的中点;
2、用线段的中点进行简单的计算。
活动一:新知识引入
1:《庄子 天下篇》中“一尺之捶(杖),日取 其半,万世不竭”的含义
2:如果给你一根绳子、一根木杖(绳 子长于木杖),你如何取到它们的一 半?
3、如果我们将绳子看成一条线段, 把折痕看成一个点,那么这个点就叫 做这条线段的______.
解: ∵ D是线段AB的中点,AB=6,
1 AB 2 ∴ BD=____________
∴
1 2 BD=____
×6=3
2、已知:如图,E是线段BC中点,BC=8, 求线段BE的长?
3、如图,C是线段AB中点,D是线段BC中点, 若AC=4,则BC=___ ,CD=_____, BD=_____,AB=______, AD=______ .
(2)在准备好的薄纸片上画一条线段AB, 怎样以最快捷的方式找到线段AB的中点?
(3)在(2)题中,在折痕上任取一点C, 连接AC,BC,猜测线段AC、BC的大小关 系,并通过测量来验证你的猜测。
C
(4)在折痕上另取一点D(点C除外),连 接AD、BD,猜测AD、BD的大小关系, 并通过测量来验证你的猜测。
反过来 ∵AB=2AC 或 AB=2BC, ∴C是线段 AB的中点.
学习目标
1、会用文字语言、图形语言、符号 语言表示线段的中点;
2、会用线段的中点进行简单的计算。
(5) 画一条线段AB,以直尺(没有刻度 的尺子)和圆规为工具,你能准确找到线 段AB的中点吗?画一画,试试看
3、线段中点的符号语言表示:
如图:点C是线段AB的中点,图中共有几条 线段?每两条线段之间有什么关系?你能说 出来吗?试试看
① ② ③ ∵C是线段AB中点 ∴ AC =BC ∵C是线段AB中点 ∴AB =2AC 或 AB=2BC ∵C是线段AB中点 1 1 ∴ AC= 2 AB 或 BC= 2 AB